Chapter 15. Cosmology

15.1 Current Cosmology 15-1

15.2 Friedmann-Roberson-Walker (FRW) Model of the Universe 15-3

15.3 Contents of the Universe I: How Density Components Vary with Scale Factor $a(t)$ 15-6

15.4 Universes with Different Curvatures 15-13

15.5 Solving for the Scale Factor 15-16

15.6 Look-Back Distance as a Function of Redshift 15-18

15.7 Why is the Rate of Expansion of the Universe Increasing? 15-19

15.8 Contents of the Universe II: Observations 15-24

15.9 Expansion History from Standard Candles 15-31

15.10 The Universe Now: The Omega Diagram 15-32

15.11 Fire or Ice? 15-34

- What does our Universe contain, beyond what we see with visible light?
- What is “dark matter”? Why is it called “dark”? How do we know it is there? Where do we find it concentrated?
- What is “dark energy”? How is it different from “dark matter”? Does it accumulate in specific locations?
- Does light itself, and radiation of all energies, affect the development of the Universe?
- The Universe is expanding, right? Is this expansion slowing down or speeding up?
- Will the Universe continue to expand, or recontract into a “Big Crunch”?

Download file name: Ch15Cosmology170510v1.pdf
Some say the world will end in fire,
Some say in ice.
From what I’ve tasted of desire
I hold with those who favor fire.
But if it had to perish twice,
I think I know enough of hate
To say that for destruction ice
Is also great
And would suffice.

—Robert Frost, “Fire and Ice”

15.1 CURRENT COSMOLOGY

Summary of current cosmology.

Will the Universe end at all? If it ends, will it end in fire: a high-temperature Big Crunch? Or will it end in ice: the relentless separation of galaxies that drift out of view for our freezing descendents? Both the poet and the citizen are interested in these questions.

Cosmology is the study of the content, structure, and development of the Universe. We live in a golden age of astrophysics and cosmology: Observations pour down from satellites above Earth’s atmosphere that scan the electromagnetic spectrum—from microwaves through gamma rays. These observations combine with ground-based observations in the visible and radio portions of the spectrum to yield a flood of images and data that fuel advances in theory and arouse public interest. For the first time in human history, data and testable models inform our view of the Universe almost all the way back to its beginning. We run these models forward to evaluate alternative predictions of our distant future.

Box 1 summarizes briefly the development of those parts of the Universe that we see. In recent decades we have been surprised by the observation that...
Want to create a fantasy? Immerse yourself in the expanding “quark soup” created at the Big Bang. This quark soup is so hot that nothing we observe today can survive: not an atom, not a nucleus, not even a proton or neutron—and certainly not you! Ignore this impossibility and take a look around.

Components of the quark soup move away from one another at many times the speed of light. How can this be? The speed limit of light is measured \(\text{in spacetime} \), but spacetime itself expands after the Big Bang. No limit on that speed!

Where are you located? Then and now every observer thinks s/he is at the center of the Universe. So the early Universe inflates in all directions away from you.

The temperature of the fireball drops; the ambient energy of the soup goes down. Quarks begin to “freeze out” (condense) into elementary particles such as protons and neutrons. Later a few protons and neutrons freeze out into the deuteron the proton-neutron nucleus of heavy hydrogen; still later a relatively small number of helium nuclei form (two protons and one neutron). Anti-protons and anti-neutrons are created too; they annihilate with protons and neutrons, respectively, to emit gamma rays. (Why are there more protons than anti-protons in our current Universe? We do not know!)

The state of the fireball—free electrons in a soup of high-speed protons, heavy hydrogen and helium nuclei—is an example of a plasma. The plasma fireball is still opaque to light, because a photon cannot move freely through it; free electrons absorb photons, then re-emit them in random directions.

About 300,000 years after the Big Bang, the temperature drops to the point that electrons cascade down the energy levels of hydrogen, deuterium, and helium to form atoms.

At this moment the Universe “suddenly” (during a few tens of thousands of years on your wristwatch) becomes transparent, which releases light to move freely.

From your point of view—still at your own “center of the Universe”—the surrounding Universe does not become transparent instantaneously; light from a distant source still reaches you after some lapse in \(t \). Instead you see the wall of plasma moving away from you at the speed of light. How can plasma move with light speed? The plasma wall is moving through the plasma, which is riding at rest in expanding spacetime. The “wall of plasma” is not a thing; at sequential instants you see light emitted sequentially from electrons farther and farther from you as these electrons drop into nuclei to form neutral atoms.

As the firewall recedes from you, you see it cooling down. Why? Because atoms in the firewall are moving away from you; the farther the light has to travel to you, the faster the emitting atoms moved when they emitted the light that you see now. Greater time on your wristwatch means longer wavelength (lower frequency) of the background radiation surrounding you.

Fast forward to the present. Looking outward in any direction, you still see the firewall receding from you as it passes through the recombining plasma at the speed of light, but now Doppler down-shifted in temperature to 2.725 degrees Kelvin in your location. Welcome to our current Universe!

Only about four percent of the Universe is visible to us. Rotation and relative motion of galaxies, along with expansion of the Universe itself, appear to show that 23 percent of our Universe consists of dark matter that interacts with visible matter only through gravitation. Moreover, the present Universe appears to be increasing its rate of expansion due to a so-far mysterious dark energy that composes 73 percent of the Universe. If current cosmological models are correct, the accelerating expansion will continue indefinitely. The present chapter further analyzes this apparently crazy prediction.

Major goals of current astrophysics research are (1) to find more accurate values of quantities that make up the Universe as a whole, (2) to explore the nature of dark matter, which evidently accounts for about 23 percent of the mass-energy in the Universe, and (3) to explore the nature of dark energy, which makes up about 73 percent. Everything we are made of and can see and touch accounts for only four percent of the mass of the Universe. This consists
Section 15.2 Friedmann-Robertson-Walker (FRW) Model of the Universe

Einstein’s equations tell us how the Universe develops in \(t \).

Chapter 14 introduced the Robertson-Walker metric, expressed in co-moving coordinates \(\chi \) and \(\phi \), and the set of functions \(S(\chi) \) that embody the curvature of spacetime. We assumed this spacetime curvature to be uniform—on average—throughout the Universe. The Robertson-Walker metric contains the undetermined \(t \)-dependent \(R(t) \) and cannot provide a cosmological model until we know how \(R(t) \) develops with \(t \). Our task in the present chapter is to find an equation for \(R(t) \) and to use it to describe the past history and to evaluate possible alternative futures of the Universe. In order to simplify the algebra that follows, we introduce a dimensionless scale factor \(a(t) \) equal to the function \(R(t) \) at any \(t \) divided by its value \(R(t_0) \) at present, \(t_0 \):

\[
a(t) \equiv \frac{R(t)}{R(t_0)} \quad \text{(scale factor: } t_0 \equiv \text{ now on Earth})
\]

In 1922 Alexander Alexandrovich Friedmann combined the Robertson-Walker metric with Einstein’s field equations to obtain what we now call the **Friedmann equation**, which relates the rate of change of the scale factor to the total mass-energy density \(\rho_{\text{tot}} \), assumed to be uniform on average, throughout the Universe. Even though uniform in space, the mass-energy density is a function of the \(t \)-coordinate, \(\rho_{\text{tot}}(t) \). The resulting model of the Universe is called the **Friedmann-Robertson-Walker model** or simply the **FRW cosmology**. The Friedmann equation is:

\[
H^2(t) \equiv \left(\frac{\dot{R}(t)}{R(t)} \right)^2 = \frac{\dot{a}^2(t)}{a^2(t)} = \frac{8\pi \rho_{\text{tot}}(t)}{3} - \frac{K}{a^2(t)} \quad \text{(Friedmann equation)}
\]

where \(K \) is the constant parameter in the Robertson-Walker space metric of Chapter 14, with the values \(K > 0, K = 0, \) or \(K < 0 \) for a closed, flat, or open Universe, respectively. A dot over a symbol indicates a derivative with respect to the \(t \)-coordinate, in this case the \(t \)-coordinate read directly on the...
wristwatches of co-moving galaxies. In the present chapter we describe the different constituents that add up to the total $\rho_{\text{tot}}(t)$.

The Friedmann equation (2) also contains a definition of the Hubble parameter $H(t)$, introduced in Chapter 14. The Hubble parameter changes as the scale factor $a(t)$ evolves with t. Remember: When you see H, it means $H(t)$. In this chapter we almost always use the value of H at the present t_0 and give it the symbol H_0.

$H(t_0) \equiv H_0$ is its value now.

Comment 1. An aside on units

In the Friedmann equation (2), R, t, and mass are all measured in meters; $a(t)$ is dimensionless, its t-derivative $\dot{a}(t)$ has the unit meter$^{-1}$, and density ρ_{tot} has the units of (meters of mass)/meter3 (m$^{-2}$). If you choose to express everything in conventional units, such as mass in kilograms, then the Friedmann equation becomes (using conversion factors inside the front cover):

$$H^2(t) \equiv \frac{\dot{a}^2(t)}{a^2(t)} = \frac{8\pi G}{3} \rho_{\text{tot}}(t) - \frac{K c^2}{a^2(t)}$$ (Friedmann equation, conventional units)

For simplicity we use equation (2) in what follows.

Write equation (2) in a form that shows how expansion (that stretches space, described by H) fights with density (that curves spacetime due to ρ_{tot}) to determine the value of K.

$$K = a^2(t) \left[\frac{8\pi}{3} \rho_{\text{tot}}(t) - H^2(t) \right]$$

A large density ρ_{tot} in (5) tends to increase the value of K, increasing positive curvature of the Universe. In contrast, a large expansion rate H tends to lower the value of K, decreasing the positive curvature of the Universe. In all cases, $\rho_{\text{tot}}(t)$ and $H(t)$ vary together so as to make K independent of t. This remarkable coincidence reflects the local conservation of energy: $(H a)^2$ is proportional to the “kinetic energy” of a co-moving object in an expanding Universe, while the term proportional to density in equation (5) is proportional to minus the “gravitational potential energy” of that object. Thus the Einstein field equations link geometry and energy.

We need a benchmark value for the density ρ_{tot}, something with which to compare observed values. A useful reference density is the critical density $\rho_{\text{crit}}(t)$, which is the total density for which spacetime is flat, a condition described by the value $K = 0$. For densities greater than the critical density ($\rho_{\text{tot}} > \rho_{\text{crit}}$) the Universe has a closed geometry ($K > 0$). For densities less than the critical density ($\rho_{\text{tot}} < \rho_{\text{crit}}$) the Universe has an open geometry ($K < 0$). The Friedmann equation (2) shows that the Hubble parameter H is a function of t. Therefore the critical density also changes with t. We define the critical density now as $\rho_{\text{crit},0}$, determined by the Hubble constant H_0, the critical density now.

Einstein links geometry with energy.

Critical density ρ_{crit} yields flat spacetime.
present value of the Hubble parameter. Substitute this value and $K = 0$ into
the Friedmann equation (2) to obtain:

$$\rho_{\text{crit}, 0} \equiv \frac{3H_0^2}{8\pi}$$ \hspace{1cm} \text{(critical density for flat spacetime, now on Earth)} \hspace{1cm} (6)

The ratio of total density to critical density (for flat spacetime) now on
Earth is a parameter used widely in cosmology. We give this parameter the
Greek symbol capital omega, Ω:

$$\Omega_{\text{tot}, 0} \equiv \frac{\rho_{\text{tot}}(t_0)}{\rho_{\text{crit}, 0}}$$ \hspace{1cm} (7)

Throughout this chapter, we retain the subscript zero as a reminder that we
mean the density measured now relative to the critical value now on Earth.
Combining equations (5), (6), and (7) now (when $a(t_0) \equiv 1$) gives a simple
relation between the curvature parameter K and density parameter $\Omega_{\text{tot}, 0}$:

$$K = H_0^2(\Omega_{\text{tot}, 0} - 1)$$ \hspace{1cm} \text{(now on Earth)} \hspace{1cm} (8)

QUERY 1. Value of the critical density now on Earth

A. Estimate the numerical value of the critical density in equation (6) in units of (meters of
mass)/meter3= meter$^{-2}$. For the value of H_0 see equation (28) and equations later in this chapter.

B. Express your estimate of the value of the critical density in kilograms per cubic meter.

C. Express your estimate of the value of the critical density as a fraction of the density of water
(one gram per cubic centimeter).

D. Express your estimate of the value of the critical density in units of hydrogen atoms (effectively,
protons) per cubic meter.

The Friedmann equation (2) relates the rate of change of the scale factor $a(t)$ to the contents of the Universe. Before we can solve this equation for $a(t)$,
we need to list the contributions to the total density ρ_{tot} and determine the
t-dependence of each. Section 15.3 catalogs the different contents of the
Universe and describes how each of them varies with scale factor $a(t)$. After
further analysis, Section 15.7 returns to observations that detail estimated
amounts of these different components.
15.3 CONTENTS OF THE UNIVERSE I: HOW DENSITY COMPONENTS VARY WITH SCALE FACTOR $a(t)$

Matter, radiation, and dark energy.

The Friedmann-Robertson-Walker model of the Universe has been widely accepted for 40 years, but recent observations have significantly modified our picture of the contents of the Universe. Such is the excitement of being at the research edge of so large a subject.

We group the contents of the Universe into three broad categories: matter, radiation, and dark energy. Each category is chosen because of the way its contribution to the total density changes as the Universe expands. We describe these changes in terms of the scale factor $a(t)$, leaving until later (Section 15.6) the derivation of the way this scale factor changes with t.

Matter

The first category we refer to as matter. By matter we mean particles or nonrelativistic objects with mass much greater than the mass-equivalent of their kinetic energy. Objects in this category are:

- **STARS**, including white dwarfs, neutron stars, and black holes.
- **GAS**, mostly hydrogen, with a smattering of other elements and dust.
- **NEUTRINOS**, very light particles recently determined to have a small mass. Neutrinos are produced, among other ways, by the decay of free neutrons.
- **DARK MATTER**, the non-luminous stuff, as yet unidentified, that makes up most of the matter in the Universe.

Stars, interstellar gas, and dust are made of atoms. Cosmologists sometimes call atomic matter baryonic matter because most of the mass is made of baryons—largely protons and neutrons. The mass of an electron is negligible compared to the mass of an atomic nucleus, so even though the electron is not technically a baryon (its technical classification: lepton), this distinction is unimportant when counting mass.

Current observations lead to the estimate that **luminous matter**, the stars we can see, make up about one percent of the density of the Universe, with stars and gas together totaling four percent. What a surprise that all the stars, individually and in galaxies and groups of galaxies, taken together, have only a minor influence on the development of the Universe! Yet observation forces us to this conclusion.

Cosmic background neutrinos have not been directly detected, but their presence is inferred from our understanding of nuclear physics in the early Universe. They contribute at most a small fraction of one percent to all the mass in the Universe.

Dark matter is currently estimated to account for approximately 23 percent of the mass-energy of the Universe. What is dark matter? And how do
we know that it contributes so large a fraction? We do not know what dark
matter is, but from observations we infer its density and some of its properties.

From the rotation curves of galaxies (the tangential velocities of gas as a
function of R—Figure 5) we can derive the magnitude of gravitational forces
needed to keep the galaxies from flying apart, and, by implication, the amount
and distribution of matter in galaxies. The results (Section 15.8) show that
luminous matter in a galaxy, which of course is all that we can observe directly,
typically provides only a few percent of the mass required to bind the galaxy
together. Dark matter was originally postulated in the 1970s to complete the
total needed to hold each galaxy together as it rotates. Observations on the
dynamics of galaxy clusters—first made in the 1930s and greatly refined in the
1980s and 1990s—provide further evidence for the presence of dark matter.

The energy density ρE of a gas of particles (whether particles of baryonic
matter or dark matter) is the number density n of the particles times the
energy E per particle. For nonrelativistic matter, the energy per particle is
well approximated by its mass m, so the energy density of matter becomes
\[\rho_{\text{mat}} = nm. \]
The mass of the particle is a constant (independent of the
expansion of the Universe). However, the number density n, the number of
particles per unit volume, drops as the volume increases, varying with the
scale factor as $a^{-3}(t)$, since volume is proportional to the cube of the linear
dimension. By the definition in equation (1), the scale factor $a(t)$ has the value
unity at the present age of the Universe t_0. Call $\rho_{\text{mat}, 0}$ the value of the energy
density of matter now. Then at any t we predict:
\[\rho_{\text{mat}}(t) = \rho_{\text{mat}, 0} \ a^{-3}(t) \]

Equation (9) tells us that if we know the matter density today and the scale
factor $a(t)$ as a function of t, we can determine the value of the energy density
of matter at any other t, past or future. (Thus far we still have not found the
t-dependence of $a(t)$.)

Radiation

Particles whose mass is much less than their energy earn the name radiation.
Today the category radiation consists almost exclusively of photons. At much
earlier times, neutrinos—relativistic particles with kinetic energy much greater
than their mass—were a significant part of the radiation component.

At the present stage of the Universe, radiation is a whisper, but it used to
be a shout. Shortly after the Big Bang, radiation contributed the dominant
fraction of the mass-energy density of the Universe. In the hot ionized plasma
of the early Universe, radiation and matter were tightly coupled: photons
continually scattered from free electrons, so photons could not move in
straight lines and escape. About 300 000 years after the Big Bang, however,
the Universe cooled to a temperature of about 3 000 K, at which electrons
combined with protons to create hydrogen gas (with some helium and a trace
amount of lithium). This period is called recombination, even though the
stable electron-nucleus combination was taking place for the first time. At
recombination, the Universe became transparent to radiation, and photons
were essentially decoupled from matter, free to stream across the Universe
unimpeded. The cosmic microwave background radiation that we observe in all
directions is a view of that early transition from opaque to transparent, with
later expansion lowering our observed temperature to 2.725 degrees Kelvin. It
is remarkable that the low-energy photons we detect as background radiation
between the stars have been streaming freely for billions of years, not
interacting with anything until they enter our detectors.

The number of photons emitted by all the stars in the history of the
Universe is tiny compared with the number of photons created in the hot Big
Bang. In the early Universe these photons were continually being emitted,
absorbed, and scattered, but the number of photons remains approximately
constant as the Universe expands. Therefore the number of photons per unit
volume varies inversely as the scale factor cubed, or as $a^{-3}(t)$, just as the
number of matter particles do. But there is an additional effect for photons.
The equation $E = hf = hc/\lambda$ connects the energy E of a photon to the
frequency f and wavelength λ of the corresponding electromagnetic wave. The
symbol h stands for **Planck’s constant**, with the value $h = 6.63 \times 10^{-34}$
kilogram-meter2/second in conventional units. As this wave propagates
through an expanding space, its wavelength increases in proportion to $a(t)$.
This increased wavelength is observed as the redshift of light from distant
galaxies. An increasing wavelength implies a **decrease** in the energy of each
photon, an energy that varies as $a^{-1}(t)$. This leads to an extra (inverse) power
of $a(t)$ compared with that for matter in equation (9) because of the drop in
energy of each photon as the Universe expands. Let $\rho_{\text{rad},0}$ represent the energy
density of radiation at t_0, the present age of the Universe. Then we predict
that the radiation density obeys the equation

$$\rho_{\text{rad}}(t) = \rho_{\text{rad},0} a^{-4}(t)$$

Dark Energy

After matter and radiation, the remaining contribution to the contents of the
Universe is rather bizarre stuff which we call **dark energy**. Dark energy is
entirely unrelated to **dark matter**, the major component of matter. Dark
energy is detected only indirectly, through its effects on cosmic expansion. Its
composition is unknown. Dark energy is the component of the total energy
density that accounts for the observed (and surprising) current increase in the
rate of expansion of the Universe. Observations described in Sections 15.7 and
15.8 lead to the estimate that approximately 73 percent of the mass-energy of
the Universe is in the form of dark energy.

QUERY 2. Energy density of radiation
The cosmic microwave background radiation has a nearly perfect blackbody spectrum with current
temperature $T_0 = 2.725$ K. The temperature decreases as the Universe expands (Box 1).
Section 15.3 Contents of the Universe I: How Density Components Vary with Scale Factor $a(t)$

$$T = T_0 a^{-1}(t)$$

(11)

The energy density u_{rad} (energy/volume) of blackbody radiation in conventional units is given by the equation

$$u_{\text{rad}} = \frac{\pi^2}{15} \frac{(k_B T)^4}{(ch)^3} \equiv a_{\text{rad}} T^4$$

(12)

Here k_B is the Boltzmann constant, c is the speed of light, and $\hbar \equiv h/2\pi$ where h is the Planck constant. The quantity a_{rad} is called the radiation constant.

A. Show that equations (11) and (12) are consistent with equation (10).

B. Find the present value of the energy density that corresponds to the cosmic background radiation, in kilograms per cubic meter. (We assume that the complete equivalence of energy and mass is by now second nature for you.)

C. Express your answer to part B as a fraction or multiple of the critical density, $\rho_{\text{crit},0}$.

D. Take the average energy of a photon in the gas of cosmic background radiation surrounding us to be $k_B T$. Estimate the present-day number of photons per cubic meter. Compare your result with the critical mass density expressed in the number of hydrogen atoms (effectively, protons) per cubic meter.

E. At what absolute temperature T will blackbody radiation energy density be equal to the value of the critical density $\rho_{\text{crit},0}$ now on Earth?

Dark energy is a generic term which encompasses all of the various possibilities for its composition. One possibility is the so-called vacuum energy. We often think of the vacuum as “nothing,” but that is not the picture offered by modern physics through quantum field theory, which defines the vacuum to be the state of lowest possible energy. As the Universe expands, this lowest possible vacuum energy density does not drop, but rather remains constant. Of what does vacuum energy consist? One can think of the vacuum as containing virtual particles that are continually being created and rapidly annihilated, according to quantum field theory. The presence of virtual particles is a well-known and well-tested consequence of the standard model of particle physics. For example, virtual particles in the surrounding vacuum have a small but detectable effect on the energy levels of hydrogen. Virtual particles surely have gravitational effects, but it has proved very difficult to correctly estimate the magnitude of these effects.

Cosmological effects of vacuum energy are described using the cosmological constant symbolized by the capital Greek lambda, Λ. In 1917 Einstein added this cosmological constant to his original field equations in order to make the Universe static, that is to keep it from collapsing from what he assumed must be an everlasting constant state. Einstein later removed the cosmological constant from the field equations when Hubble showed in 1929...
that the Universe is expanding, but the cosmological constant continues to pop up in different theories of cosmology, as it does here as a possible source of dark energy. The presence of the cosmological constant in modern theory does not imply a static Universe. In the 1960s, Yakov Borisovich Zel’dovich and Erast B. Gliner showed that vacuum energy is equivalent to the cosmological constant.

Other more complicated candidates for dark energy could lead to a time-dependent energy density, but there is no current consensus about these possibilities. A full description of dark energy may have to await the development of a complete theory of quantum gravity, which does not yet exist. In this chapter we assume that dark energy does not change with t.

IF vacuum energy accounts for dark energy, THEN as the Universe expands the density of dark energy remains constant. We use the subscript Λ for dark energy to remind ourselves of our assumption that vacuum energy accounts for dark energy, and take ρ_Λ to be the symbol for constant dark energy:

$$\rho_{\text{dark energy}}(t) \equiv \rho_\Lambda = \text{constant} \quad (13)$$

Objection 1. Equation (13) says that the density of dark energy remains constant as the Universe expands. Result: Total dark energy increases as the Universe expands. This violates the law of conservation of energy.

The law of conservation of energy says that total energy is conserved for an isolated system. But the term isolated does not apply to the Universe as a whole. By definition, the Universe contains all observable particles; it is not isolated from anything. Result: The law of conservation of energy does not apply to the Universe as a whole.

Table 1 summarizes the contents of the Universe and the scale factor dependence of each component. The t-independent density of dark (vacuum) energy contrasts with the density of matter, proportional to $a^{-3}(t)$, and the energy density of radiation, proportional to $a^{-4}(t)$, both of which decrease as the Universe expands. As a result, dark energy influences the development of the Universe more and more as t increases.

Variation of the total density with the scale factor $a(t)$

We can now write an expression for the t-dependence of total density from equations (9), (10), and (13),

$$\rho_{\text{tot}}(t) = \frac{\rho_{\text{mat},0}}{a^3(t)} + \frac{\rho_{\text{rad},0}}{a^4(t)} + \rho_\Lambda \quad (14)$$

Divide through by the critical density at the present t, equation (6), to express the result as fractions of the present critical density, as in equation (7):
Contents of the Universe: How Density Components Vary with Scale Factor $a(t)$

In Section 15.3, we explore how the density components of the universe change with the scale factor $a(t)$. The content is presented in Table 15.1, outlining the different components and their scale variations.

Table 15.1: Contents of the Universe

<table>
<thead>
<tr>
<th>Contents</th>
<th>Consisting of</th>
<th>Scale variation with t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter</td>
<td>stars, gas, dark matter, (neutrinos: negligible)</td>
<td>$\rho_{\text{mat}}, 0 \ a^{-3}(t)$</td>
</tr>
<tr>
<td>Radiation</td>
<td>photons, (earlier: neutrinos)</td>
<td>$\rho_{\text{rad}}, 0 \ a^{-4}(t)$</td>
</tr>
<tr>
<td>Dark energy</td>
<td>cosmological constant?</td>
<td>$\rho_{\Lambda} = \text{constant}$</td>
</tr>
</tbody>
</table>

Equation 15

We want to plot equation (15) as a function of the scale factor $a(t)$. To do this, we need numerical values for the three fractional densities in that equation. These fractional densities also define contributions to the total density parameter Ω defined in equation (7).

In Section 15.7, we describe current observations that yield the approximate values:

$$\Omega_{\text{mat}}, 0 \equiv \frac{\rho_{\text{mat}}, 0}{\rho_{\text{crit}}, 0} = 0.27 \pm 0.03$$

$$\Omega_{\Lambda}, 0 \equiv \frac{\rho_{\Lambda}}{\rho_{\text{crit}}, 0} = 0.73 \pm 0.03$$

In Query 9, you showed that currently on Earth the background radiation yields an energy density of approximately 5×10^{-5} times the critical density. The assumption that neutrinos have zero mass and move with the speed of light would increase this by 68% implying

$$\Omega_{\text{rad}}, 0 \equiv \frac{\rho_{\text{rad}}, 0}{\rho_{\text{crit}}, 0} \approx 8.4 \times 10^{-5}$$

We know now that neutrinos are nonrelativistic—that is, with mass—so this is not the correct value; nonetheless, their contribution to the density today is so small that the error made in equation (18) by assuming massless neutrinos is negligible.

Figure 1 plots equation (15) with numerical values given in equations (16) through (18). Because each of the individual quantities is proportional to a power of $a(t)$, when one component dominates the total density, ρ versus $a(t)$ is a straight line on the log-log graph. Figure 1 shows that the radiation contribution has little effect at present, but was dominant at early stages because of the multiplier a^{-4} in equation (15). For a while after the radiation-dominated era, matter had the greatest influence on the evolution of
FIGURE 1 Total mass-energy density of the Universe (heavy line) in units of the present critical value as a function of the expansion scale factor. The vertical dashed lines denote transitions between the radiation-dominated early phase, the matter-dominated middle era, and the vacuum-energy-dominated late stage of the Universe. (We assume here that dark energy is vacuum energy.)

But the influence of matter is also fading by now because of the multiplier a^{-3}. The contribution of dark energy was negligible in the distant past but has an increasing effect at the present and later stages of expansion, because its density remains constant, while densities of matter and radiation decay away with the increase in $a(t)$. If the data and assumptions behind Figure 1 are correct, we are at the beginning of the era dominated by dark energy.

QUERY 3. Contributions to the Density

A. Use equation (15) to find the approximate values of $\rho_{\text{tot}}(t)/\rho_{\text{crit},0}$ at the following times:

- at the end of the radiation-dominated era (that is, when radiation and matter make approximately equal contributions)
Section 15.4 Universes with Different Curvatures

- at the end of the matter-dominated era (that is, when matter and dark energy make approximately equal contributions)
- now on Earth
- when \(a(t) = 10^2 \).

Check that your results agree with the main curve (heavy line) in Figure 1.

B. What additional information do you need in order to answer the question: How many billions of years ago did the radiation-dominated era end?

Objection 2. It seems an odd coincidence that at the present moment—now in Figure 1—we are at the transition between the matter-dominated Universe and one shaped by vacuum energy. Is there a deep reason for this? Could life have developed on Earth at a different \(t \)-coordinate on the curves of Figure 1?

Deep questions indeed, which we encourage you to pursue. We do not see how to answer these questions with the limited range of skills developed in this book. Also, we do not see how to move past speculation to scientific verification, mainly because we have only one Universe in which this “experiment” is taking place. We cannot (yet? ever?) do a statistical study that compares several or many Universes!

15.4 Universes with Different Curvatures

Effective potential for the Universe

We can use the Friedmann equation (2), to analyze the development of alternative model Universes with different assumptions for the curvature \(K \). To put the Friedmann equation in a more useful form, divide it through by \(H_0^2 \) and substitute for the critical density from equation (6):

\[
\left(\frac{H}{H_0} \right)^2 = \left(\frac{\dot{a}}{H_0 a} \right)^2 = \frac{\rho_{\text{tot}}}{\rho_{\text{crit},0}} - \frac{K}{H_0^2 a^2}
\]

(19)

where, remember, a dot over a symbol means its derivative with respect to \(t \).

Re-express equation (19) in terms of the components of \(\Omega_{\text{tot}} \) defined in equations (8), (16), (17), and (18):

\[
\left(\frac{H}{H_0} \right)^2 = \left(\frac{\dot{a}}{H_0 a} \right)^2 = \Omega_{\text{mat,0}} a^{-3} + \Omega_{\text{rad,0}} a^{-4} + \Omega_{\Lambda,0} - \frac{K}{H_0^2 a^2}
\]

(20)

For the present, \(t_0 \), when \(a(t_0) = 1 \), we can write equation (20) in the very simple form:

\[
1 = \Omega_{\text{mat,0}} + \Omega_{\text{rad,0}} + \Omega_{\Lambda,0} - \frac{K}{H_0^2} \quad \text{(now, on Earth)}
\]

(21)
This equation allows us to determine the curvature parameter K from current measurements of $\Omega_{\text{mat},0}$, $\Omega_{\text{rad},0}$, and $\Omega_{\Lambda,0}$. Compare it with equation (8).

Current observations lead to the conclusion that, within measurement uncertainties of about 2% in $\Omega_{\text{tot},0}$, the Universe is flat ($K = 0$), in agreement with equations (16) through (18).

For any arbitrary t, we can arrange equation (20) to read:

$$\dot{a}^2 - H_0^2 \left[\Omega_{\text{mat},0}a^{-1} + \Omega_{\text{rad},0}a^{-2} + \Omega_{\Lambda,0}a^2\right] = -K$$

(22)

Compare equation (22) with the corresponding Newtonian expression derived from the conservation of energy for a particle moving in the x-direction subject to a potential $V(x)$:

$$\dot{x}^2 + \frac{2V(x)}{m} = \frac{2E_{\text{total}}}{m}$$

(Newton) (23)

In the Newtonian case we can get a qualitative feel for the particle motion by plotting $V(x)$ as a function of position and drawing a straight line at the value of E_{total}. We use equation (22) for a similar purpose, to get a qualitative feel for the evolution of the Universe. Rewrite equation (22) as:

$$\dot{a}^2 + V_{\text{eff}}(a) = -K$$

(24)

Here the $-K$ on the right takes the place of total energy, and $V_{\text{eff}}(a)$ is an effective potential given by the equation

$$V_{\text{eff}}(a) \equiv -H_0^2 \left[\Omega_{\text{mat},0}a^{-1} + \Omega_{\text{rad},0}a^{-2} + \Omega_{\Lambda,0}a^2\right]$$

(25)

Isn’t it remarkable that effective potentials appear when we analyze orbits of a stone (Chapter 9), trajectories of light (Chapter 12), and expansion of the Universe (present chapter)?

We summarize here the assumptions on which equations (22), (24), and (25) are based.

ASSUMPTIONS FOR THE DEPENDENCE OF \dot{a} ON $a(t)$

Assumptions

1. The Universe is homogeneous (on average the same in all locations).
2. The Universe is isotropic (on average the same as viewed in all directions).
3. Dark energy is vacuum energy and therefore its density is constant, independent of $a(t)$.
4. **Background assumptions**: There are no other forms of mass-energy in the Universe; spacetime has four dimensions; general relativity is correct; the Standard Model of particle theory is correct, and so on.

Figure 2 plots V_{eff}/H_0^2 as a function of $a(t)$, using the values of the densities given in equations (16), (17), and (18). For the range of $a(t)$ plotted,
Section 15.4 Universes with Different Curvatures

FIGURE 2 Effective potential governing the evolution of $a(t)$ according to equations (24) and (25). The “energy level” is set by $V_{\text{eff}}/H_0^2 = -K/H_0^2$. The figure shows an example of a closed Universe that expands endlessly. Our Universe has $K = 0$ to a good approximation and will apparently expand without limit.

radiation has negligible effect. Figure 2 carries a lot of information about the history and alternative futures of the Universe according to different values of K. In the Newtonian analogy, an effective potential with a positive slope yields a force tending to slow down positive motion along the horizontal axis, while the portion of the effective potential with a negative slope yields a force tending to speed up positive motion along the horizontal axis. These two conditions occur, respectively, to the left and the right of the peak at $a(t) \approx 0.57$. By analogy, then, $a(t)$ decelerates to the left of $a(t) \approx 0.57$ and accelerates to the right of $a(t) \approx 0.57$. This acceleration is due to dark energy.

(Caution: Cosmological models described in older textbooks, written before dark energy was shown to be significant in the observed expansion of the Universe—say, before 1999—effectively assume that $\Omega_{\Lambda,0} = 0$ so the expansion does not accelerate.)

QUERY 4. The Friedmann-Robertson-Walker Universe

Figure 2 enables us to deduce many things about the history of the Universe. Answer the following questions about the predictions of this model under the assumption that the Universe begins with a Big Bang. Make a reasonable assumption about the qualitative influence of radiation on $V_{\text{eff}}(a)$ for small $a(t)$.

“Effective potential” for the Universe
15. True or false: The descending curve to the right of $a(t) \approx 0.57$ says that the Universe is contracting after $a(t)$ reaches this value.

2. Can the Universe be closed and expand endlessly?

3. Can the Universe be closed and recontract?

4. Can the Universe be open and expand endlessly?

5. Can the Universe be open and recontract?

6. Can the Universe be flat and expand endlessly?

7. Can the Universe be flat and recontract?

8. Describe qualitatively the evolution of a flat Universe ($K = 0$). Be specific about the evolution of $a(t)$ in the region to the right of the peak in the curve of V_{eff}/H_0^2.

9. What point on the graph of Figure 2 corresponds to a value of K that would lead to a static Universe? How could the Universe arrive at this configuration starting from a Big Bang? Is this static configuration stable or unstable, and what are the physical meanings of the terms stable and unstable?

15.5 SOLVING FOR THE SCALE FACTOR

Integrating $\dot{a}(t)$

Thus far we have stuffed all our ignorance about the time development of the Universe into the scale factor $a(t)$, as given in equation (14) and plotted along the horizontal axes in Figures 1 and 2. We need to determine how $a(t)$ itself develops with time. To do this we integrate the Friedmann equation (2) as modified in equation (22). Using equations (8) and (21), rearrange (22) to read:

$$\frac{da}{dt} = H_0[\Omega_{\text{mat}},0(a^{-1} - 1) + \Omega_{\text{rad}},0(a^{-2} - 1) + \Omega_{\Lambda},0(a^2 - 1) + 1]^{1/2}$$ \hspace{1cm} (26)

Integrate da/dt.

By eliminating the curvature we have shown that the components of Ω_0 completely determine the expansion of the Universe—they are important! Now invert this equation and derive an integral with the limits from now $(a(t_0) = 1)$ to any arbitrary $a(t)$:

$$t - t_0 = \frac{1}{H_0} \int_{a_0}^{a} \left[\Omega_{\text{mat}},0(a'^{-1} - 1) + \Omega_{\text{rad}},0(a'^{-2} - 1) + \Omega_{\Lambda},0(a'^2 - 1) + 1\right]^{1/2} \, da'$$ \hspace{1cm} (27)

Here a' is the dummy variable of integration. We can integrate equation (27) numerically from the present t_0 to either a future t ($a > 1$) or to an earlier t ($a < 1$). The Big Bang occurred when $a = 0$.

In order to carry out the integration in (27), we need to put into the integral all of our t-variations of the Ω functions. Before doing this, however, we express the constituents of (27) in convenient units. Recall that the scale factor $a(t)$ is unitless and is defined to have the value unity at present, equation (1). If we choose to express t in years, then the t-derivative $\dot{a}(t)$ will
have the units years$^{-1}$. Then, the current value of the Hubble constant H_0 will also be expressed in the unit of years$^{-1}$. This is a different unit than those conventional in the field. Recent observations yield the following approximate value for H_0 in conventional units:

$$H_0 = 72 \pm 3 \frac{\text{kilometers/second}}{\text{Megaparsec}}$$

(28)

QUERY 5. Hubble parameter H_0 in years$^{-1}$

Use conversion factors inside the front cover to convert the units of (28) to years$^{-1}$. Verify that the resulting value is:

$$H_0 \approx 7.37 \times 10^{-11} \text{ year}^{-1}$$

(29)

It is not a coincidence that the quantity $H_0^{-1} = 1.36 \times 10^{10}$ years in equation (29) approximates the estimated age of the Universe: $t_0 \approx 14$ billion years. If $a(t)$ represented a linear expansion, then we would have $a = At$ for some constant A, and because $a = a(t_0) = 1$ today, the age of the Universe would be $t_0 = A^{-1}$. The Hubble constant is $H_0 \equiv \dot{a}(t_0)/a(t_0) = A$. So, for the case of linear expansion, $t_0 = H_0^{-1}$. Although the solution $a(t)$ is not linear in our Universe, $a(t_0)/t_0$ is close to $\dot{a}(t_0) = H_0$ because the Universe has recently made the transition from deceleration to acceleration. Therefore the age of the Universe approximately equals the Hubble time H_0^{-1}.

QUERY 6. Various kinds of Universes

Integrate equation (27) in three simplifying cases, under the assumption that spacetime is flat ($K = 0$).

A. Assume the Universe contains only matter and that $\Omega_{\text{mat},0} = 1$. Find an expression for $a(t)$ and the corresponding value of $H_0 t_0$.

B. Assume the Universe contains only radiation and that $\Omega_{\text{rad},0} = 1$. Find an expression for $a(t)$ and the corresponding value of $H_0 t_0$.

C. Assume that the Universe contains only dark energy and that $\Omega_{\Lambda,0} = 1$. Find an expression for $a(t)$.

D. *Optional.* Discuss the validity of your results for parts A, B, and C for $t < t_0$ and in particular for $t = 0$.

Integrating equation (27) requires that we know the values of the components of the total density. Remember that the total density parameter Ω_{tot} determines the curvature parameter according to equation (21). Therefore (27) has been integrated numerically for several cases, as shown in Figure 3. The model with dark energy present clearly undergoes accelerated expansion at late times.
FIGURE 3 Expansion scale factor $a(t)$ versus t for three different models. The solid curve is the favored model with $\Omega_{\text{mat},0} = 0.27$ and $\Omega_{\text{\Lambda},0} = 0.73$. The two dotted curves show alternative models with no dark energy, $\Omega_{\text{mat},0} = 1$ and $\Omega_{\text{rad},0} = 1$. Can you tell which is which? The curves all have the same slope where they cross $a = 1$, because that slope is the measured current value H_0 of the Hubble constant, equations (28) and (29).

15.6 LOOK-BACK DISTANCE AS A FUNCTION OF REDSHIFT

Where are earlier emitters now?

Box 4 in Section 14.5 shows that the calculated look-back distance now to an object that emitted light at t and is observed by us now is (when expressed using the scale factor)

$$d_0(t) = \int_t^{t_0} \frac{dt'}{a(t')} \quad \text{(look-back distance, now on Earth)} \quad (30)$$

where t' is a dummy variable. We call d_0 the **look-back distance**. In Box 4 in Section 14.4 we approximated $a(t) \approx H_0 t$ to deduce that $d_0 = 40+$ billion light years for $t = 0.7$ billion years after the Big Bang as the t-coordinate of emission. We can now improve on this estimate, using our new understanding of $a(t)$.

- **Objection 3.** Wait! With what observations do we verify the current look-back distance of 40+ billion light years to an object that emitted light 0.7 billion years after the Big Bang?
We cannot verify the current look-back distance with observation. The speed of light is finite. Right now we see the emitting object as it was 0.7 billion years after the Big Bang. We have no direct information about its condition since then. The 40+ billion light year present look-back distance is our projection under a set of assumptions about the motion of this emitter in the approximately 13 billion years since it emitted the light we see now.

QUERY 7. Look-back distance d_0 **in terms of redshift** z.

Because astronomers measure redshift z, not t, we rewrite (30) using the relation between redshift and expansion, equation (28) of Section 14.4, which now becomes

$$1 + z(t) = \frac{1}{a(t)}$$

(31)

A. Differentiate both sides of (31) and use equation (2) to write H as a function of z:

$$H(z) = -a(t) \frac{dz}{dt}$$

(32)

B. Substitute the result into equation (30) and show that

$$d_0(z) = \int_0^z \frac{dz'}{H(z')}$$

(33)

where z' is a dummy variable of integration.

Now we can numerically integrate equation (33) using the best-fit FRW model. Figure 4 shows the calculated “look-back” (present) distance to a galaxy with observed redshift z.

15.7 WHY IS THE RATE OF EXPANSION OF THE UNIVERSE INCREASING?

Figure 3 displays changes in the scale factor $a(t)$ of the Universe as a function of t. The slope of the curve at any point is the rate of expansion $\dot{a}(t)$ then. Changes in the slope correspond to changes in this expansion rate. We can call the rate of change of the expansion rate the *acceleration of the scale factor*, symbolized by a double dot: $\ddot{a}(t)$. Why does the Universe change its rate of expansion?

For the matter-dominated era, one can understand that matter mutually attracts and “holds back” or “slows down” the expansion, as shown in the left-hand portion of Figure 4. But the expansion in the dark-energy-dominated era clearly violates this explanation, since the rate of expansion increases.
FIGURE 4 The present-day “look-back distance” d_0 to objects at redshift z. As explained in Box 4 in Section 14.4, in an expanding Universe an object that we see now (at its earlier position) is at present much farther away from us in light-years than the age of the Universe in years.

there. What is the physical reason for this increased expansion rate? This question is the subject of the present section.

Begin with some basic thermodynamics. The first law of thermodynamics says that as the volume of a box of gas increases by dV, the energy of the gas inside it decreases by an amount PdV where P is the pressure of the gas, as long as no heat flows into or out of the box. The energy change PdV goes into the work done by the gas due to its pressure acting on the outward-moving wall of the box. The energy of the gas is simply the volume that it occupies times its energy density. However, we measure energy in units of mass, so the energy density is just the mass density ρ_{tot}. Therefore we have

$$d(\rho_{\text{tot}}V) = -P_{\text{tot}}dV \quad (34)$$

Expanding gas cools.

It turns out that this relation holds whenever the volume of a gas changes, regardless of the shape of the box. It even holds when there are no walls at all! It implies a general result: an expanding gas cools.

In Query 8 you show that the second time derivative, the acceleration $\ddot{a}(t)$ of the scale factor, depends not only on the density ρ_{tot} but also on pressure.

$\ddot{a}(t)$ depends on pressure.

Pressure, along with total density, appears in Einstein’s field equations. In special relativity, pressure and energy density transform into each other under Lorentz transformations in a way analogous to (but not the same as) electric and magnetic fields. Energy density in one inertial frame implies pressure in another. Since the Einstein field equations are written to be valid in any
frame, pressure must make a contribution to gravity (spacetime curvature). Positive pressure has an attractive gravitational effect similar to positive energy density.

The gravitational effect of pressure may seem paradoxical: the greater the positive pressure, the more negative the value of \ddot{a}, the acceleration of the scale factor. We are used to watching pressure expand things like a bicycle tire. The stretching surface of an expanding balloon is often used as an analogy to the expansion of our Universe. These images can carry the incorrect implication that positive pressure is what makes the Universe expand. A balloon is expanded by pressure differences: the pressure inside the balloon is higher than the pressure outside combined with the balloon surface tension. Pressure differences produce mechanical forces. By contrast, we are considering a homogeneous pressure, the same everywhere—there is no “outside” of the Universe for it to expand into. There is no mechanical force of pressure in this case, only a gravitational force.

QUERY 8. Acceleration of the Scale Factor

A. Divide the energy conservation equation (34) through by dt (in other words, consider the differential energy change in an increment dt) and apply it to a local volume V that has the current value V_0 and expands (or possibly contracts) with the Universe according to the equation $V = V_0 a^3(t)$. Show that

$$\dot{\rho}_{\text{tot}} = -3 \frac{\dot{a}}{a} (\rho_{\text{tot}} + P_{\text{tot}}) \quad (35)$$

B. Rewrite the Friedmann equation (2) as

$$\dot{a}^2 = \frac{8\pi}{3} \rho_{\text{tot}} a^2 - K \quad (36)$$

Take the t-derivative of both sides of (36) and substitute equation (35) to obtain the equation for the acceleration of the cosmic scale factor:

$$\frac{\ddot{a}}{a} = - \frac{4\pi}{3} (\rho_{\text{tot}} + 3P_{\text{tot}}) \quad (37)$$

This equation predicts that for a positive total density and positive total pressure, the scale factor will decelerate with t.

Here comes the big surprise. In Query 9 you show that dark energy leads to *negative* pressure. In contrast to positive pressure, negative pressure tends to *increase* the rate of expansion of the Universe. Recent observations bring evidence that we live in a Universe whose rate of expansion is increasing, not decreasing as our model would predict if only matter and radiation were present. Now for the details.
QUERY 9. Pressure from Different Sources

A. Solve equation (35) for \(P_{\text{tot}} \) and show that the result is:

\[
P_{\text{tot}} = -\frac{a}{3\dot{a}} \dot{\rho}_{\text{tot}} - \rho_{\text{tot}}
\]

Equation (38) is linear in \(\dot{\rho}_{\text{tot}} \) and \(\rho_{\text{tot}} \). Therefore we can apply it separately to the different components of which \(\rho_{\text{tot}} \) and \(P_{\text{tot}} \) are composed. In parts B through D below, apply equation (38) to each component of the density to find the individual pressures due to matter, dark energy, and radiation.

B. Apply equation (38) to nonrelativistic matter for which \(\rho_{\text{mat}}(t) = \rho_{\text{mat},0} a^{-3}(t) \). What is the pressure \(P_{\text{mat}}(t) \)?

C. Apply equation (38) to dark energy for which \(\rho_{\Lambda}(t) = \text{constant} = \rho_{\Lambda,0} \). What is the pressure \(P_{\Lambda}(t) \)? This surprising result leads to an unavoidable fate for the Universe.

D. Finally, apply equation (38) to a gas of photons. Though we can neglect \(\rho_{\text{rad}} \) in describing how the Universe behaves today, Figure 1 shows that in the early Universe \(\rho_{\text{rad}} \) was larger than the corresponding matter term \(\rho_{\text{mat}} \) and could not be neglected. For radiation, \(\rho_{\text{rad}}(t) = \rho_{\text{rad},0} a^{-4}(t) \). What is the pressure of radiation \(P_{\text{rad}}(t) \)?

E. Substitute your results of parts B through D into equation (37) to find an expression for \(\ddot{a} \) as a function of \(a(t) \):

\[
\ddot{a} = -\frac{4\pi}{3}[\rho_{\text{mat},0} a^{-2} + 2\rho_{\text{rad},0} a^{-3} - 2\rho_{\Lambda,0} a]
\]

F. Assuming that \(\rho_{\text{rad},0} \) is negligible, show that the condition for acceleration today \((a = 1) \) is

\[
\Omega_{\Lambda,0} > \frac{1}{2} \Omega_{\text{mat},0}
\]

The result of part C of Query 9 tells us that the pressure of the vacuum is negative, a result unfamiliar in elementary thermodynamics. However, it is perfectly physical—neither the energy density nor the pressure of the vacuum arise from physical particles. The vacuum has constant energy density produced by quantum fluctuations. Conservation of energy—represented by equation (35)—then implies that the pressure must be negative. Negative pressure—but not negative mass density—is physically allowed.

Equation (39) gives a history of the changes in expansion rate since the Big Bang. Early in the expansion, when the dimensionless scale factor \(a(t) \) was very small, the dominant term on the right side of (39) was due to radiation, because \(a^{-3} \) was large. As \(a(t) \) increased, the matter term, proportional to \(a^{-2} \), came to dominate. These radiation and matter terms in (39) resulted in negative acceleration of \(a(t) \), that is a decrease in the expansion rate \(\dot{a} \). More recently, as \(a(t) \) approached its current value one, the negative dark energy term, proportional to \(a \), has become more and more important. At the present
age of the Universe, the net result is a positive value of the acceleration \(\ddot{a}(t) \),
that is an increase in the expansion rate \(\dot{a}(t) \).

What is the physical reason for these changes in acceleration of the
dimensionless scale factor \(a(t) \)? Simply that matter has mass and zero
pressure, while radiation energy density and pressure are both positive. Both
mass and positive pressure contribute to a deceleration of \(a(t) \), a decrease of
\(\dot{a}(t) \), as seen in (39). In contrast, dark energy contributes positive mass but
negative pressure. The same equation shows us that negative pressure of dark
energy contributes to an acceleration of \(a(t) \), that is an increase in \(\dot{a}(t) \), an
effect that dominates as \(a(t) \) becomes large.

QUERY 10. Einstein’s Static Universe
Einstein introduced the cosmological constant \(\Lambda \) to make the Universe static according to general
relativity. This constant \(\Lambda \) is related to \(\rho_\Lambda \) by

\[
\rho_\Lambda = \frac{\Lambda}{8\pi G} \quad \text{(conventional units)}
\]

To change to units of meters, use the usual shortcut, setting \(G = 1 \). Then

\[
\rho_\Lambda = \frac{\Lambda}{8\pi} \quad \text{(units of meters)}
\]

Einstein’s model included only matter \(\rho_{\text{mat}} \) and the cosmological constant \(\Lambda \).

A. From (36), show that \(\ddot{a} = 0 \) and \(a = 1 \) (Universe always has the same scale factor as now) imply

\[
K = \frac{8\pi}{3} (\rho_{\text{mat}} + \rho_\Lambda) \quad (\ddot{a} = 0)
\]

B. From (39), show that \(\ddot{a} = 0 \) implies

\[
\rho_{\text{mat}} - 2\rho_\Lambda = 0 \quad (\ddot{a} = 0)
\]

C. Combine these to deduce that Einstein’s static Universe is closed, with spatial curvature

\[
K = \Lambda = 8\pi \rho_\Lambda = 4\pi \rho_{\text{mat}} \quad \text{ (Einstein’s static Universe)}
\]

D. From Figure 1, show that Einstein’s model is unstable. That is, any slight displacement from
the maximum leads to a runaway Universe that either expands or contracts.

E. Suppose \(\Lambda < 0 \). Is a static Universe possible then?

Now that we have a model for the \(t \)-development of the Universe, we need
to validate the assumptions that went into it, namely the values of \(\Omega_{\text{mat},0} \) and
\(\Omega_{\Lambda,0} \) given in equations (16) and (17) along with the value of \(\Omega_{\text{rad},0} \) given in
equation (18). For that validation we turn to observations.
Chapter 15 Cosmology

15.8 CONTENTS OF THE UNIVERSE II: OBSERVATIONS

In this section we examine observational evidence for the quantitative amounts of the different components of our Universe: matter (visible baryonic plus dark matter), dark energy, and radiation. This will allow us, in Section 15.10, to draw numerical conclusions about our Universe now and to use our present model to project these results into the past and future.

Galaxy Rotation: Evidence for Dark Matter

How do we know that dark matter exists around and within galaxies? The most direct evidence comes from observing the orbits of stars or gas around a galaxy. Spiral galaxies are perfect for this exercise—their rotating disks contain neutral hydrogen gas that emits radiation with a rest wavelength of 21 centimeters. If we see the galaxy edge on, then as gas orbits the galaxy it moves directly towards us on one side of the galaxy and directly away from us on the other side. We then use the Doppler effect to measure the speed of the gas as a function of its R-value from the center of the galaxy. The result is a rotation curve.

Figure 5 shows the rotation curve of a nearby edge-on spiral galaxy. It is quite different from a graph of the orbital speeds of planets in the Solar System, which decrease with increasing R-value from the Sun according to Kepler’s Third Law. Spiral galaxies by contrast almost always have nearly-constant rotation curves at radii outside of their dense centers.

Evidence for dark matter appears when we ask what one would expect the rotation curve to be if the gravitating mass were composed of only the observed stars and gas. Now think of the galaxy face-on, like a dinner plate held at arm’s length, with stars rotating in circular paths at R from the center of the disk. Optical measurements of spiral galaxies show that the surface luminosity density, \(\Sigma(R) \), varies exponentially from the center to the edge to a very good approximation:

\[
\Sigma(R) = \Sigma_0 \exp(-R/h)
\]

(46)

The surface luminosity density is defined as the total luminosity emitted along a column perpendicular to the galactic disk, taken to be the direction toward us. In this equation, sigma \(\Sigma \) (Greek capital S) in the function \(\Sigma(R) \) simply means “surface” and is not a summation sign. The constant \(\Sigma_0 \) is surface luminosity density at the center of the galaxy. We assume that the galaxy is sparse enough so that light from the stars across the thickness of the disk simply adds in the direction toward us. Surface luminosity density has units of luminosity (typically watts or solar luminosities, \(L_{\text{Sun}} \)) per unit area (typically square meters or square parsecs).

The form of equation (46) has two constants: \(\Sigma_0 \), the central surface luminosity density, and \(h \), the disk’s scale length. For NGC 3198 the approximate values for these parameters are...
FIGURE 5 Upper plot: Rotation curve for spiral galaxy NGC 3198, from Begeman 1989, *Astronomy and Astrophysics*, 223, 47. Filled dots: Points showing the shape of a rotation curve if the attractive mass were concentrated at the center, for example in our solar system. The vertical position of the filled-dot curve depends on the value of the central mass, but the shape of the curve does not.

\[\Sigma_0 = 100 \, L_{\text{Sun}} / \text{parsec}^2, \quad h = 2.725 \text{ kiloparsec} \]

One solar luminosity \((L_{\text{Sun}})\) is the amount of power emitted by the sun in optical light. To get the luminosity \(dL\) emitted between radii \(R\) and \(R + dR\) of the galactic disk, multiply by the area of the annulus: \(dL = \Sigma(R) 2\pi R dR\). The total light emitted out to \(R\) follows immediately by integration.

To predict the rotation curve arising from luminous matter we need to know how much mass there is, not how much light the stars emit. If the luminous matter in galaxies is mainly stars like the sun, then the light in solar luminosities, \(L_{\text{Sun}}\), equals approximately the mass in solar masses, \(M_{\text{Sun}}\). In other words, if the total light emitted from the center out to \(R\) is \(L(R)\), then the total luminous mass (stars and gas) is \(M(R) = \Upsilon L(R)\) where capital Greek upsilon \(\Upsilon\) is a factor called the **mass-to-light ratio** and whose units are solar mass per solar luminosity, that is \(M_{\text{Sun}} / L_{\text{Sun}}\). If all stars in the
Chapter 15 Cosmology

galaxy were identical to our sun, then Υ would have the value unity. However, not all stars have the same mass-to-light ratio. A reasonable range for spiral galaxies is $0.5 < \Upsilon < 5$.

In Query 11 you apply these ingredients to show that NGC 3198 contains substantial amounts of dark matter. Make the following assumptions:

1. To describe motion of stars, assume mass density of the galaxy is spherically symmetric, but a function of R. (The tangential speed of stars in the disk has approximately the same value regardless of whether the mass is distributed in a thin disk or in a more spherical halo.)

2. Motion of stars in a galaxy can be described using Newtonian mechanics, including Newton’s result that total mass inside a spherically symmetric distribution leads to a gravitational force equivalent to the force due to that total mass concentrated at the center of the sphere.

3. Stars in the galaxy move in circular orbits at a speed V that is a function of R.

4. The surface mass density follows the same function as the surface luminosity density, implying that the mass enclosed in a sphere of R is

$$M(R) = \Upsilon \int_0^R \Sigma_0 e^{-r/b} 2\pi r \, dr$$

(48)

In Query 11 you show that assumption 4 is incorrect; the galaxy contains more mass than that of its stars.

QUERY 11. Dark Matter from a Rotation Curve

With the following outline, combine Figure 5 with the surface luminosity density of equation (46), to show that the galaxy contains far more mass than can be accounted for by the stars.

A. Set up the Newtonian equation of motion and use it to find an expression for the circular speed V as a function of R, in terms of the enclosed mass $M(R)$

B. Carry out the integration in equation (48) and use it to obtain a prediction for $V(R)$.

Qualitatively describe the predicted $V(R)$. Does it have a maximum value? Does it approach a nonzero constant as $R \to \infty$? If not, how does it behave for $R \gg h$, where b is in the integrand of (48)? Also, how does it behave for $R \ll h$?

C. The observed rotation curve will exceed the predicted one if there is dark matter present, which is not accounted for by equation (48). Use Figure 5 and assume that the luminous matter predominates for $R < 5$ kpc, what is the maximum mass-to-light ratio Υ for the luminous matter in NGC 3198?

D. From the results of the previous parts together with Figure 5, determine the ratio of total mass to luminous mass contained within 30 kpc from the center of NGC 3198.
Increasingly sophisticated measurements of dark matter in and around galaxies have led to a consensus range $0.2 < \Omega_{\text{mat},0} < 0.35$.

Cosmic Microwave Background Radiation

The Universe is filled with a nearly uniform glow of microwaves called the cosmic microwave background (CMB) radiation. This radiation has a blackbody spectrum, whose intensity as a function of frequency f is given by the Planck law, discovered in 1900 by Max Planck:

$$I(f) = \frac{2\hbar f^3}{c^3} \frac{1}{e^{\hbar f/k_B T} - 1}$$

(49)

Radiation that has this spectrum (this dependence on frequency) is produced by an opaque medium with temperature T. The microwave background radiation fits the Planck law stunningly well—the COsmic Background Explorer (COBE) satellite measured the spectrum to match the Planck Law to about 1 part in 10^4 in the early 1990s. Figure 6 shows the measured spectrum; the estimate of the best-fit temperature has increased by 0.001 K to $T_0 = 2.725$ K since this figure was made in 1998, where, remember, T_0 is the temperature now.

At first glance, the microwave background radiation is absurd—the Universe is not opaque, and the matter that emitted the radiation was much hotter than 3 degrees above absolute zero. However, the microwave background radiation is a messenger from the early Universe, and it has aged and become stretched out during the trip. Remarkably, the form of the Planck law—the shape of the function (49) for different temperatures—is preserved by the cosmic redshift (Section 14.4). As the Universe expands, the frequency of every light wave and the temperature of the radiation decrease in proportion to $1/a(t)$. In other words, at redshift z—defined in equation (27) of Section 14.4—the radiation temperature was higher. Using equations (11) and (31), we find:

$$T(z) = (1 + z)T_0$$

(50)

This is an example of the way cosmologists use redshift as a proxy for increase in t since the Big Bang.

Most of the gas filling the Universe is hydrogen. Neutral atomic hydrogen gas is transparent to microwaves, to infrared light, and to optical light—only when the photon energy becomes large enough to ionize hydrogen does the gas become opaque. For the conditions prevailing in the Universe, hydrogen gas ionizes at a temperature comparable to that of the surface layer of cool stars, $T \approx 3000$ K. Conclusion: the microwave background radiation was produced at a redshift $z \approx 3000/2.725 = 1100$. We call the value of t at which this occurred the recombination time (even though it is the t-value at which electrons and protons first combined to make hydrogen).

The age of the Universe at the t-value when hydrogen became transparent, t_{CMB}, follows from $a(t_{\text{CMB}}) \approx 2.725/3000$. A rather complicated argument...
leads to the value $t_{\text{CMB}} \approx 300,000 \text{ years}$. The CMB radiation gives us a picture of the Universe nearly 14 billion years ago. Currently this is our earliest view of the Universe; only neutrinos and gravitational waves could have penetrated the primordial plasma to bring us information from farther back toward the t-value of the Big Bang.

Objection 4. This is hard to visualize. From where is the cosmic microwave background originating? From the direction of the center of the Universe? What direction is that?

There is no unique center of the Universe; every observer has the impression of being at the center, as explained in Chapter 14. Looking
outward in every direction, we see radiation from the receding surface of last scattering that has been down-shifted to a temperature of 2.725\(^{0}\) Kelvin, as illustrated in Figure 6.

What do we see when we look at microwave radiation from the early Universe? The spectrum tells only part of the story. To see the rest, we can look at images of the sky in microwaves. The first sensitive all-sky maps of the microwave background radiation were made in the early 1990s by the COBE satellite. In 2001 a new microwave telescope called the Wilkinson Microwave Anisotropy Probe (WMAP) was launched into orbit. It has greatly refined our picture of the early Universe.

Figure 8 shows an image of the microwave brightness around the sky made by WMAP. The Planck law is an excellent fit to the spectrum in a fixed direction of the sky; however, the temperature varies slightly in different directions. The temperature varies by a few parts in \(10^5\) from place to place in the early Universe. These fluctuations are, we believe, the seeds from which galaxies, stars, and all cosmic structures formed during the past 13 billion years.

In this chapter we focus on the average properties of the Universe rather than the fluctuations. However, the map of fluctuations is also a treasure trove
FIGURE 8 An all-sky map of the cosmic microwave background radiation at high contrast made by the WMAP satellite, with radiation from the nearby milky way stars removed. The oval is a projection of the entire sky onto the page. The colors in the original are “false colors” that indicate the temperature of the radiation ranging from $T_0 - 2 \times 10^{-4}$ K (black) to $T_0 + 2 \times 10^{-4}$ K (red) where T_0 is the average temperature. The early Universe had slight temperature variations. (Image courtesy of the WMAP Science Team, from the WMAP website.)

The one degree scale has a direct physical significance and can be used to measure the curvature of the Universe. The fluctuations in temperature are due to sound waves in the hot gas of the early Universe: the Universe was filled with a super low frequency static created in the aftermath of the Big Bang. Sound waves compressed and rarefied the gas, changing its temperature. Sound waves oscillated in t but they also oscillated in amplitude at a given t-coordinate. The temperature fluctuations we see in the microwave background give a snapshot of the spatial variation of these sound waves 400 000 years after the Big Bang!

The one degree scale is a measure of how far those sound waves could travel from their creation at the Big Bang until $t = 400$ 000 years, when they were revealed to us as fluctuations in the cosmic microwave background radiation. This gives us a standard ruler. IF we know the size of this standard ruler in meters and the distance the released radiation has since travelled to reach our telescopes—AND we know the spatial geometry (open, closed, or flat)—THEN we can predict the angular size of the fluctuations. In practice, we measure the angular size and other quantities enabling us to determine accurately the standard ruler size and the distance travelled. This method is
called “baryon acoustic oscillations” (BAO). See Figure 8. The details are
beyond the level of this book, but the result is not: The angular size
measurement implies that the cosmic spatial curvature K is very small,
consistent with zero. The spatial geometry of the Universe appears to be the
simplest one possible: flat space. On the other hand, dark matter and dark
energy curve spacetime in such a way that the cosmic expansion accelerates.
What a strange Universe we live in!

15.9 EXPANSION HISTORY FROM STANDARD CANDLES

Finding t from redshift z

Astronomers do not directly measure $a(t)$. As discussed in Chapter 14, they
measure redshift z and luminosity distance $d_L(z)$. The observable redshift is
used as a proxy for the unobservable cosmic t via equation (31). The goal here
is to determine t from redshift z. From equations (31) and (32)

$$\frac{dz}{dt} = -(1 + z)H(z) \quad (51)$$

where H is the Hubble parameter at t related to redshift z by equation (31).
In an expanding Universe, $(1 + z)H > 0$, so redshift increases looking
backwards in t. If astronomers could measure $H(z)$ directly, we could integrate
(51) to get $t(z)$:

$$t_0 - t(z) = \int_0^z \frac{dz}{(1 + z)H(z)} \quad (52)$$

Unfortunately, $H(z)$ is very difficult to measure directly. The luminosity
distance d_L is much easier, especially since the refinement of Type Ia
supernovas as standard candles (Section 14.6). The relation between d_L and z
can be found starting from results of Chapter 14. Along a light ray ($d\tau = 0$)
coming from a distant supernova to our telescope, equation (17) of Chapter 14
gives

$$dt = -R(t)d\chi \quad (53)$$

which implies

$$R(t_0)\chi = -R(t_0)\int_{t_0}^t \frac{dt'}{R(t')} = -\int_{t_0}^t \frac{dt'}{a(t')} \quad (54)$$

Equation (44) of Section 14.6, with $d_A = d_L/(1 + z)^2$ tells us that

$$\frac{d_L(z)}{1 + z} = R(t_0)S(\chi) \quad (55)$$
where $S(\chi)$ is given by equations (18) to (20) of Section 14.3. Therefore, in a flat Universe ($K = 0$, implying $S = \chi$),

\[
\frac{d_L(z)}{1 + z} = -\int_{t_0}^{t} \frac{dt'}{a(t')} \quad \text{(flat Universe)} \quad (56)
\]

Thus, if $d_L(z)$ is measured at many different redshifts, one can determine $t(z)$ by differentiating (56) and re-integrating it again. Differentiating:

\[
\frac{d}{dz} \left\{ \frac{d_L(z)}{1 + z} \right\} = -\frac{1}{a(t)} \frac{dt}{dz} = -(1 + z) \frac{dt}{dz} \quad \text{(flat Universe)} \quad (57)
\]

then reintegrating:

\[
t_0 - t(z) = \int_z^{z_0} \left\{ \frac{d}{dz} \left\{ \frac{d_L(z)}{1 + z} \right\} \right\} \frac{dz}{1 + z} \quad \text{(flat Universe)} \quad (58)
\]

which must be integrated numerically. More complicated formulas are required if $K \neq 0$, but the idea is similar. In practice, measurements are too imprecise to determine $d_L(z)$ with enough accuracy so that equation (58) can be used directly. Instead, astronomers construct different model universes by adopting choices for parameters $\Omega_{\text{mat},0}$ and $\Omega_{\Lambda,0}$. They integrate equation (26) to get $a(t)$, then substitute into (56) (or its generalization for a non-flat Universe) to predict $d_L(z)$.

15.10 THE UNIVERSE NOW: THE OMEGA DIAGRAM

Squeeze the Universe model from all sides.

Observational data from supernovas and the microwave background radiation constrain the values of $\Omega_{\text{mat},0}$ and $\Omega_{\Lambda,0}$. We have already seen that radiation contributes very little to the critical density today. The major contributors are thus matter (dark matter plus baryons) and dark energy, which we model as a cosmological constant.

During recent years, our knowledge of the density parameter values has gone from shadowy outline to measurements of 10% accuracy. Figure 9 illustrates our current knowledge about the key parameters based on observations of Type Ia supernovas (SNe), the cosmic microwave background radiation (CMB), and the Baryon Acoustic Oscillations (BAO). The microwave background data clearly show that the Universe is close to flat, perhaps exactly so. They also imply a nonzero dark energy contribution, especially when combined with the baryon acoustic oscillations. The latter measurement is most sensitive to $\Omega_{\text{mat},0}$ and indicates that there is too little matter to close the Universe. Microwave background and BAO data independently support the radical claim made by the supernova observers in 1998 that the Universe is accelerating. We found out earlier that the expansion accelerates if $\Omega_{\Lambda,0} > \frac{1}{3} \Omega_{\text{mat},0}$.
FIGURE 9 The Omega Diagram. Parameters Ω_m and Ω_Λ are called $\Omega_{\text{mat},0}$ and $\Omega_{\Lambda,0}$ in this chapter. Relative amounts of matter and vacuum energy in the universe at present corresponds to the relatively tiny region of intersection of three sets of measurements: Type Ia supernovas (SNe), the cosmic microwave background radiation (CMB), and “baryon acoustic oscillations” (BAO). Darkest regions represent a statistical 68% confidence level and the lighter two represent statistical 95% and 99.78% confidence levels, respectively. The straight line represents conditions for a flat Universe.

Figure 9 does not include all of the constraints on the Omegas. When they are applied, the result is equations (16) and (17). Future satellite missions should shrink the uncertainties in the Omegas to less than 0.01. Once they do, we may still be left with two outstanding mysteries: What are dark matter and dark energy?

QUERY 12. No Big Bang?
Are all points on the Omega diagram allowable? Some can be excluded because they have no hot dense phase. In other words, some regions correspond to “No Big Bang.”
Chapter 15 Cosmology

A. Consider a FRW Universe with $\Omega_{\text{mat},0} = 1$ and $\Omega_{\Lambda,0} = 3$. Neglect radiation. What are $V_{\text{eff}}(a)/H_0^2$ and $-K/H_0^2$ for this case?

B. Sketch $V_{\text{eff}}(a)/H_0^2$ similar to Figure 2 for the parameters of part A. Show that the Universe has a turning point in the past, so that it could not start from $a = 0$ (the Big Bang) and get to $a = 1$ (today) in this model.

C. Consider models with $\Omega_{\text{mat},0} = 0$ and only dark energy with $\Omega_{\Lambda,0} > 0$. Show that these models also have a turning point at $a > 0$.

D. Show that a given model cannot have a Big Bang if there exists a solution $a = a_{\text{min}}$ of the equation:

$$V_{\text{eff}}(a) + K = 0 \quad \text{where } 0 < a_{\text{min}} < 1$$

(59)

E. Show that the Universe will recollapse if there exists a solution $a = a_{\text{max}}$ of (59) with $a_{\text{max}} > 1$.

15.11 FIRE OR ICE?

You predict the fate of the Universe.

Will the Universe end in fire or in ice? You choose the answer to this question:

ANSWER 1: FIRE if the temperature $T \to \infty$ for large t-values. This requires $a(t) \to 0$ for large t-values in equation (11). This happened, in effect, at the Big Bang. It will happen again if the expansion reverses, leading to a Big Crunch, that is $a \to 0$ in the future (Part E of Query 11).

ANSWER 2: ICE if the temperature $T \to 0$ for large t-values, or $a \to \infty$ as $t \to \infty$. What does Figure 2 imply for this case?

DECIDE: You are now an informed cosmologist. Choose one of Robert Frost’s alternatives in his poem that began this chapter: Will the Universe end in fire or in ice?

Download file name: Ch15Cosmology170510v1.pdf