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We outline a story line that introduces Newtonian mechanics by employing conservation of energy
to predict the motion of a particle in a one-dimensional potential. We show that incorporating
constraints and constants of the motion into the energy expression allows us to analyze more
complicated systems. A heuristic transition embeds kinetic and potential energy into the still more
powerful principle of least action. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

An eight sentence history of Newtonian mechanics1 shows
how much the subject has developed since Newton in
ducedF5dp/dt in the second half of the 1600s.2 In the
mid-1700s Euler devised and applied a version of the p
ciple of least action using mostly geometrical methods.
1755 the 19-year-old Joseph-Louis Lagrange sent Eule
letter that streamlined Euler’s methods into algebraic fo
‘‘ @A#fter seeing Lagrange’s work Euler dropped his ow
method, espoused that of Lagrange, and renamed the su
the calculus of variations.’’ 3 Lagrange, in his 1788Analyti-
cal Mechanics,4 introduced what we call the Lagrangia
function and Lagrange’s equations of motion. About hal
century later~1834–1835! Hamilton published Hamilton’s
principle,5 to which Landau and Lifshitz6 and Feynman7 re-
assigned the nameprinciple of least action.8 Between 1840
and 1860 conservation of energy was established in al
generality.9 In 1918 Noether10 proved several relations be
tween symmetries and conserved quantities. In the 19
Feynman11 devised a formulation of quantum mechanics th
not only explicitly underpins the principle of least action, b
also shows the limits of validity of Newtonian mechanics

Except for conservation of energy, students in introduct
physics are typically introduced to the mechanics of the
1600s. To modernize this treatment, we have suggested12 that
the principle of least action and Lagrange’s equations
come the basis of introductory Newtonian mechanics. Rec
articles discuss how to use elementary calculus to de
Newton’s laws of motion,13 Lagrange’s equations,14 and ex-
amples of Noether’s theorem15 from the principle of least
action, describe the modern rebirth of Euler’s methods16 and
suggest ways in which upper undergraduate physics cla
can be transformed using the principle of least action.17

How are these concepts and methods to be introduce
undergraduate physics students? In this paper we sugg
reversal of the historical order: Begin with conservation
energy and graduate to the principle of least action
Lagrange’s equations. The mathematical prerequisites for
proposed course include elementary trigonometry, polar
ordinates, introductory differential calculus, partial deriv
tives, and the idea of the integral as a sum of increment

The story line presented in this article omits most deta
and is offered for discussion, correction, and elaboration.
do not believe that a clear story line guarantees student
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derstanding. On the contrary, we anticipate that trials of t
approach will open up new fields of physics education
search.

II. ONE-DIMENSIONAL MOTION: ANALYTIC
SOLUTIONS

We start by using conservation of energy to analyze p
ticle motion in a one-dimensional potential. Much of th
power of the principle of least action and its logical of
spring, Lagrange’s equations, results from the fact that t
are based on energy, a scalar. When we start with conse
tion of energy, we not only preview more advanced conce
and procedures, but also invoke some of their power.
example, expressions for the energy which are consis
with any constraints automatically eliminate the correspo
ing constraint forces from the equations of motion. By usi
the constraints and constants of the motion, we often
reduce the description of multi-dimensional systems to o
coordinate, whose motion can then be found using conse
tion of energy. Equilibrium and statics also derive from co
servation of energy.

We first consider one-dimensional motion in a unifor
vertical gravitational field. Heuristic arguments lead to t
expressionmgy for the potential energy. We observe, wi
Galileo, that the velocity of a particle in free fall from re
starting at positiony50 decreases linearly with time:ẏ
52gt, where we have expressed the time derivative b
dot over the variable. This relation integrates to the form

y52
1

2
gt252

ẏ2

2g
. ~1!

We multiply Eq.~1! by mg and rearrange terms to obtain th
first example of conservation of energy:

05 1
2mẏ21mgy5K1U5E, ~2!

where the symbolE represents the total energy and the sy
bols K andU represent the kinetic and potential energy,
spectively.

A complete description of the motion of a particle in
general conservative one-dimensional potential follows fr
the conservation of energy. Unfortunately, an explicit fun
tion of the position versus time can be derived for only
fraction of such systems. Students should be encourage
guess analytic solutions, a powerful general strategy beca
514© 2004 American Association of Physics Teachers
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any proposed solution is easily checked by substitution
the energy equation. Heuristic guesses are assisted by
fact that the first time derivative of the position, not the se
ond, appears in the energy conservation equation.

The following example illustrates the guessing strategy
linear motion in a parabolic potential. This example also
troduces the potential energy diagram, a central featur
our story line and an important tool in almost every und
graduate subject.

A. Harmonic oscillator

Our analysis begins with a qualitative prediction of t
motion of a particle in a parabolic potential~or in any poten-
tial with motion bounded near a single potential energy m
mum!. If we consider the potential energy diagram for
fixed total energy, we can predict that the motion will
periodic. For a parabolic potential~Fig. 1! conservation of
energy is expressed as

E5 1
2mẋ21 1

2kx2. ~3!

We rearrange Eq.~3! to read

m

2E
ẋ2512

k

2E
x2. ~4!

Equation~4! reminds us of the trigonometric identity,

cos2 u512sin2 u. ~5!

We setu5vt and equate the right-hand sides of Eqs.~4! and
~5! and obtain the solution

x56S 2E

k D 1/2

sinvt. ~6!

If we take the time derivative ofx in Eq. ~6! and use it to
equate the left-hand sides of Eqs.~4! and ~5!, we find that18

v5S k

mD 1/2

. ~7!

The fact thatv does not depend on the total energyE of the
particle means that the period is independent ofE and hence
independent of the amplitude of oscillation described by
~6!. The simple harmonic oscillator is widely applied b
cause many potential energy curves can be approximate
parabolas near their minima.

At this point, it would be desirable to introduce the co
cept of theworldline, a position versus time plot that com
pletely describes the motion of a particle.

III. ACCELERATION AND FORCE

In the absence of dissipation, the force can be define
terms of the energy. We start with conservation of energ

E5 1
2mẋ21U~x!. ~8!

We take the time derivative of both sides and use the ch
rule:

05mẋẍ1U̇5mẋẍ1
dU~x!

dx
ẋ. ~9!

By invoking the tendency of a ball to roll downhill, we ca
define force as the negative spatial derivative of the po
tial,
515 Am. J. Phys., Vol. 72, No. 4, April 2004
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mẍ[F52
dU~x!

dx
, ~10!

from which we see thatF52kx for the harmonic potentia
andF52mg for the gravitational force near the earth’s su
face.

IV. NONINTEGRABLE MOTIONS IN ONE
DIMENSION

We guessed a solution for simple harmonic motion, bu
is important for students to know that for most mechani
systems, analytical solutions do not exist, even when
potential can be expressed analytically. For these cases
strategy begins by asking students to make a detailed q
tative prediction of the motion using the potential ener
diagram, for example, describing the velocity, accelerati
and force at different particle positions, such as A throug
in Fig. 1.

The next step might be to ask the student to plot by ha
a few sequential points along the worldline using a diffe
ence equation derived from energy conservation correspo
ing to Eq.~3!,

dx5H 2

m
@E2U~x!#J 1/2

dt, ~11!

whereU(x) describes an arbitrary potential energy. The p
cess of plotting necessarily invokes the need to specify
initial conditions, raises the question of accuracy as a fu
tion of step size, and forces an examination of the beha
of the solution at the turning points. Drawing the resulti
worldline can be automated using a spreadsheet with gra
ing capabilities, perhaps comparing the resulting appro
mate curve with the analytic solution for the simple ha
monic oscillator.

After the drudgery of these preliminaries, students w
welcome a more polished interactive display that nume
cally integrates the particle motion in a given potential. O
the potential energy diagram~see Fig. 2!, the student sets up
initial conditions by dragging the horizontal energy line u
or down and the particle position left or right. The compu
then moves the particle back and forth along theE-line at a

Fig. 1. The potential energy diagram is central to our treatment and requ
a difficult conceptual progression from a ball rolling down a hill pictured
an x-y diagram to a graphical point moving along a horizontal line
constant energy in an energy-position diagram. Making this progres
allows the student to describe qualitatively, but in detail, the motion o
particle in a one-dimensional potential at arbitrary positions such a
through F.
515J. Hanc and E. F. Taylor
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rate proportional to that at which the particle will mov
while simultaneously drawing the worldline~upper plot of
Fig. 2!.

V. REDUCTION TO ONE COORDINATE

The analysis of one-dimensional motion using conser
tion of energy is powerful but limited. In some importa
cases we can use constraints and constants of the moti
reduce the description to one coordinate. In these case
apply our standard procedure: qualitative analysis using
~effective! potential energy diagram followed by interactiv
computer solutions. We illustrate this procedure by some
amples.

A. Projectile motion

For projectile motion in a vertical plane subject to a u
form vertical gravitational field in the y-direction, the tot
energy is

E5 1
2mẋ21 1

2mẏ21mgy. ~12!

The potential energy is not a function ofx; therefore, as
shown in the following, momentum in thex-direction,px , is
a constant of the motion. The energy equation becomes

E5
1

2
mẏ21

px
2

2m
1mgy. ~13!

In Newtonian mechanics the zero of the energy is arbitr
so we can reduce the energy to a single dimensiony by
making the substitution:

E85E2
px

2

2m
5

1

2
mẏ21mgy. ~14!

Our analysis of projectile motion already has applied
limited version of a powerful theorem due to Noether.19 The
version of Noether’s theorem used here says that when
total energyE is not an explicit function of an independe
coordinate,x for example, then the function]E/] ẋ is a con-
stant of the motion.20 We have developed a simple, intuitiv
derivation of this version of Noether’s theorem. The deriv
tion is not included in this brief story line.

Fig. 2. Mockup of an interactive computer display of the worldline deriv
numerically from the energy and the potential energy function.
516 Am. J. Phys., Vol. 72, No. 4, April 2004
-

to
we
e

x-

y,

a

he

-

The above strategy uses a conservation law to reduce
number of dimensions. The following example uses co
straints to the same end.

B. Object rolling without slipping

Two-dimensional circular motion and the resulting kine
energy are conveniently described using polar coordina
The fact that the kinetic energy is an additive scalar le
quickly to its expression in terms of the moment of inertia
a rotating rigid body. When the rotating body is symmet
about an axis of rotation and moves perpendicularly to t
axis, the total kinetic energy is equal to the sum of the ene
of rotation plus the energy of translation of the center
mass.~This conclusion rests on the addition of vector co
ponents, but does not require the parallel axis theorem.! Roll-
ing without slipping is a more realistic idealization than sli
ing without friction.

We use these results to reduce to one dimension the
scription of a marble rolling along a curved ramp that lies
the x-y plane in a uniform gravitational field. Let the marb
have massm, radius r, and moment of inertiaI marble. The
nonslip constraint tells us thatv5rv. Conservation of en-
ergy leads to the expression:

E5
1

2
mv21

1

2
I marblev

21mgy

5
1

2
mv21

1

2
I marbleS v

r D 2

1mgy

5
1

2 S m1
I marble

r 2 D v21mgy5
1

2
Mv21mgy, ~15!

where

M5m1
I marble

r 2
. ~16!

The motion is described by the single coordinatey. Con-
straints are used twice in this example: explicitly in rollin
without slipping and implicitly in the relation between th
heighty and the displacement along the curve.

C. Motion in a central gravitational field

We analyze satellite motion in a central inverse-squ
gravitational field by choosing the polar coordinatesr andf
in the plane of the orbit. The expression for the total ene
is

E5
1

2
mv22

GMm

r
5

1

2
m~ ṙ 21r 2ḟ2!2

GMm

r
. ~17!

The anglef does not appear in Eq.~17!. Therefore we ex-
pect that a constant of the motion is given by]E/]ḟ, which
represents the angular momentumJ. ~We reserve the stan
dard symbolL for the Lagrangian, introduced later in th
paper.!

]E

]ḟ
5mr2ḟ5J. ~18!

We substitute the resulting expression forḟ into Eq.~17! and
obtain
516J. Hanc and E. F. Taylor
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E5
1

2
mṙ21

J2

2mr2
2

GMm

r
5

1

2
mṙ21Ueff~r !. ~19!

Students employ the plot of the effective potential ene
Ueff(r) to do the usual qualitative analysis of radial moti
followed by computer integration. We emphasize the disti
tions between bound and unbound orbits. With additional
of Eq. ~18!, the computer can be programmed to plot a t
jectory in the plane for each of these cases.

D. Marble, ramp, and turntable

This system is more complicated, but is easily analyzed
our energy-based method and more difficult to treat us
F5ma. A relatively massive marble of massm and moment
of inertia I marble rolls without slipping along a slot on a
inclined ramp fixed rigidly to a light turntable which rotate
freely so that its angular velocity is not necessarily const
~see Fig. 3!. The moment of inertia of the combined turntab
and ramp isI rot . We assume that the marble stays on
ramp and find its position as a function of time.

We start with a qualitative analysis. Suppose that initia
the turntable rotates and the marble starts at rest with res
to the ramp. If the marble then begins to roll up the ramp,
potential energy of the system increases, as does the ki
energy of the marble due to its rotation around the cente
the turntable. To conserve energy, the rotation of the tu
table must decrease. If instead the marble begins to roll d
the ramp, the potential energy decreases, the kinetic en
of the marble due to its rotation around the turntable a
decreases, and the rotation rate of the turntable will incre
to compensate. For a given initial rotation rate of the tu
table, there may be an equilibrium value at which the mar
will remain at rest. If the marble starts out displaced fro
this value, it will oscillate back and forth along the ramp.

More quantitatively, the square of the velocity of th
marble is

v25 ẋ21ḟ2x2 cos2 u. ~20!

Conservation of energy yields the relation

E5 1
2Mẋ21 1

2I rotḟ
21 1

2Mx2ḟ2 cos2 u1mgxsinu, ~21!

whereM indicates the marble’s mass augmented by the
ergy effects of its rolling along the ramp, Eq.~16!. The right
side of Eq.~21! is not an explicit function of the angle o
rotationf. Therefore our version of Noether’s theorem te

Fig. 3. System of marble, ramp, and turntable.
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us that]E/]ḟ is a constant of the motion, which we reco
nize as the total angular momentumJ:

]E

]ḟ
5~ I rot1Mx2 cos2 u!ḟ5J. ~22!

If we substitute into Eq.~21! the expression forḟ from Eq.
~22!, we obtain

E5
1

2
Mẋ21

J2

2~ I rot1Mx2 cos2 u!
1mgxsinu

5
1

2
Mẋ21Ueff~x!. ~23!

The values ofE and J are determined by the initial condi
tions. The effective potential energyUeff(x) may have a mini-
mum as a function ofx, which can result in oscillatory mo
tion of the marble along the ramp. If the marble starts at r
with respect to the ramp at the position of minimum effecti
potential, it will not move along the ramp, but execute
circle around the center of the turntable.

VI. EQUILIBRIUM AND STATICS: PRINCIPLE OF
LEAST POTENTIAL ENERGY

Our truncated story line does not include frictional forc
or an analysis of the tendency of systems toward increa
entropy. Nevertheless, it is common experience that mo
usually slows down and stops. Our use of potential ene
diagrams makes straightforward the intuitive formulation
stopping as a tendency of a system to reach equilibrium
local minimum of the potential energy. This result can
formulated as theprinciple of least potential energyfor sys-
tems in equilibrium. Even in the absence of friction, a p
ticle placed at rest at a point of zero slope in the poten
energy curve will remain at rest.~Proof: An infinitesimal
displacement results in zero change in the potential ene
Due to energy conservation, the change in the kinetic ene
must also remain zero. Because the particle is initially at r
the zero change in kinetic energy forbids displaceme!
Equilibrium is a result of conservation of energy.

Here, as usual, Feynman is ahead of us. Figure 4 show
example from his treatment of statics.21 The problem is to
find the value of the hanging weightW that keeps the struc
ture at rest, assuming a beam of negligible weight. Feynm
balances the decrease in the potential energy when
weight W drops 49 with increases in the potential energy fo
the corresponding 29 rise of the 60 lb weight and the 19 rise
in the 100 lb weight. He requires that the net potential ene
change of the system be zero, which yields

249W129~60 lb!119~100 lb!50, ~24!

Fig. 4. Feynman’s example of the principle of virtual work.
517J. Hanc and E. F. Taylor
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or W555 lb. Feynman calls this method theprinciple of vir-
tual work, which in this case is equivalent to the principle
least potential energy, both of which express conservatio
energy.

There are many examples of the principle of minimu
potential energy, including a mass hanging on a spring
lever, hydrostatic balance, a uniform chain suspended at
ends, a vertically hanging slinky,22 and a ball perched on to
of a large sphere.

VII. FREE PARTICLE. PRINCIPLE OF LEAST
AVERAGE KINETIC ENERGY

For all its power, conservation of energy can predict
motion of only a fraction of mechanical systems. In this a
Sec. VIII we seek a principle that is more fundamental th
conservation of energy. One test of such a principle is tha
leads to conservation of energy. Our investigations will e
ploy trial worldlines that are not necessarily consistent w
conservation of energy.

We first think of a free particle initially at rest in a regio
of zero potential energy. Conservation of energy tells us
this particle will remain at rest with zero average kine
energy. Any departure from rest, say by moving back a
forth, will increase the average of its kinetic energy from t
zero value. The actual motion of this free particle gives
least average kinetic energy. The result illustrates what
will call the principle of least average kinetic energy.

Now we view the same particle from a reference fra
moving in the negativex-direction with uniform speed. In
this frame the particle moves along a straight worldlin
Does this worldline also satisfy the principle of least avera
kinetic energy? Of course, but we can check this expecta
and introduce a powerful graphical method established
Euler.16

We fix two events A and C at the ends of the worldli
~see Fig. 5! and vary the time of the central event B so th
the kinetic energy is not the same on the legs labeled 1 an

Fig. 5. The time of the middle event is varied to determine the path of
minimum time-averaged kinetic energy.
518 Am. J. Phys., Vol. 72, No. 4, April 2004
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Then the time average of the kinetic energyK along the two
segments 1 and 2 of the worldline is given by

Kavg5
K1t11K2t2

t total
5

1

t total
F1

2
mv1

2t11
1

2
mv2

2t2G . ~25!

We multiply both sides of Eq.~25! by the fixed total time and
recast the velocity expressions using the notation in Fig.

Kavgt total5
1

2
m

d2

t2
t1

1

2
m

d2

~ t total2t !2
~ t total2t !

5
1

2
m

d2

t
1

1

2
m

d2

~ t total2t !
. ~26!

We find the minimum value of the average kinetic energy
taking the derivative with respect to the timet of the central
event:

S dKavg

dt D t total52
1

2
m

d2

t2
1

1

2
m

d2

~ t total2t !2

52
1

2
mv1

21
1

2
mv2

250. ~27!

From Eq.~27! we obtain the equality
1
2mv2

25 1
2mv1

2. ~28!

As expected, when the time-averaged kinetic energy ha
minimum value, the kinetic energy for a free particle is t
same on both segments; the worldline is straight between
fixed initial and final events A and C and satisfies the pr
ciple of minimum average kinetic energy. The same res
follows if the potential energy is uniform in the region und
consideration, because the uniform potential energy can
affect the kinetic energy as the location of point B chang
on the spacetime diagram.

In summary, we have illustrated the fact that for the sp
cial case of a particle moving in a region of zero~or uniform!
potential energy, the kinetic energy is conserved if we
quire that the time average of the kinetic energy has a m
mum value. The general expression for this average is

Kavg5
1

t total
Eentire

path

K dt. ~29!

In an introductory text we might introduce at this point
sidebar on Fermat’s principle of least time for the propa
tion of light rays.

Now we are ready to develop a similar but more gene
law that predicts every central feature of mechanics.

VIII. PRINCIPLE OF LEAST ACTION

Section VI discussed the principle of least potential ene
and Sec. VII examined the principle of least average kine
energy. Along the way we mentioned Fermat’s principle
least time for ray optics. We now move on to the principle
least action, which combines and generalizes the princip
of least potential energy and least average kinetic energ

A. Qualitative demonstration

We might guess~incorrectly! that the time average of th
total energy, the sum of the kinetic and potential energy,
a minimum value between fixed initial and final events.
examine the consequences of this guess, let us think of a

e

518J. Hanc and E. F. Taylor
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thrown in a uniform gravitational field, with the two event
pitch and catch, fixed in location and time~see Fig. 6!. How
will the ball move between these two fixed events? We s
by asking why the baseball does not simply move at cons
speed along the straight horizontal trajectory B in Fig.
Moving from pitch to catch with constant kinetic energy a
constant potential energy certainly satisfies conservation
energy. But the straight horizontal trajectory is excluded
cause of the importance of the averaged potential energ

We need to know how the average kinetic energy a
average potential energy vary with the trajectory. We be
with the idealized triangular path T shown in Fig. 6. If w
assume a fixed time between pitch and catch and that
speed does not vary wildly along the path, the kinetic ene
of the particle is approximately proportional to the square
the distance covered, that is, proportional to the quantityx0

2

1y0
2 using the notation in Fig. 6. The increase in the kine

energy over that of the straight path is proportional to
square of the deviationy0 , whether that deviation is below
or above the horizontal path. But any incremental deviat
from the straight-line path can be approximated by a sup
position of such triangular increments along the path. A
result, small deviations from the horizontal path result in
increase in the average kinetic energy approximately pro
tional to the average of the square of the vertical deviat
y0 .

The average potential energy increases or decrease
trajectories above or below the horizontal, respectively. T
magnitude of the change in this average is approxima
proportional to the average deviationy0 , whether this devia-
tion is small or large.

We can apply these conclusions to the average ofE5K
1U as the path departs from the horizontal. For paths ab
the horizontal, such as C, D, and E in Fig. 6, the average
both K and U increase with deviation from the horizonta
these increases have no limit for higher and higher pa
Therefore, no upward trajectory minimizes the average
K1U. In contrast, for paths that deviate downward sligh
from the horizontal, the averageK initially increases slower
than the averageU decrease, leading to a reduction in the
sum. For paths that dip further, however, the increase in
average kinetic energy~related to the square of the pa
length! overwhelms the decrease in the average potential

Fig. 6. Alternative trial trajectories of a pitched ball. For pathD the average
of the differenceK2U is a minimum.
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ergy ~which decreases only asy0). So there is a minimum of
the average ofK1U for some path below the horizonta
The path below the horizontal that satisfies this minimum
clearly not the trajectory observed for a pitched ball.

Suppose instead we ask how the average of the differe
K2U behaves for paths that deviate from the horizontal.
an argument similar to that in the preceding paragraph,
see that no path below the horizontal can have a minim
average of the difference. But there exists a path, such a
above the horizontal for which the average ofK2U is a
minimum. For the special case of vertical launch, stude
can explore this conclusion interactively using tutor
software.23

B. Analytic demonstration

We can check the preceding result analytically in the s
plest case we can imagine~see Fig. 7!. In a uniform vertical
gravitational field a marble of massm rolls from one hori-
zontal surface to another via a smooth ramp so narrow
we may neglect its width. In this system the potential ene
changes just once, halfway between the initial and final
sitions.

The worldline of the particle will be bent, correspondin
to the reduced speed after the marble mounts the ramp
shown in Fig. 8. We require that the total travel time fro
position A to position C have a fixed valuet total and check
whether minimizing the time average of the differenceK
2U leads to conservation of energy:

~K2U !avg5
1

t total
@~K2U !1t11~K2U !2t2#. ~30!

Fig. 7. Motion across a potential energy step.

Fig. 8. Broken worldline of a marble rolling across steps connected b
narrow ramp. The region on the right is shaded to represent the hi
potential energy of the marble on the second step.
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We define a new symbolS, called theaction:

S[~K2U !avgt total5~K2U !1t11~K2U !2t2 . ~31!

We can use the notation in Fig. 8 to write Eq.~31! in the
form

S5
1

2
Mv1

2t12mgy1t11
1

2
Mv2

2t22mgy2t2

5
Md2

2t
2mgy1t1

Md2

2~ t total2t !
2mgy2~ t total2t !, ~32!

whereM is given by Eq.~16!. We require that the value o
the action be a minimum with respect to the choice of
intermediate timet:

dS

dt
52

Md2

2t2
2mgy11

Md2

2~ t total2t !2
1mgy250. ~33!

This result can be written as

dS

dt
52S 1

2
Mv1

21mgy1D1S 1

2
Mv2

21mgy2D50. ~34!

A simple rearrangement shows that Eq.~34! represents con
servation of energy. We see that energy conservation
been derived from the more fundamental principle of le
action. Equally important, the analysis has completely de
mined the worldline of the marble.

The action Eq.~31! can be generalized for a potential e
ergy curve consisting of multiple steps connected by smo
narrow transitions, such as the one shown in Fig. 9:

S5~K2U !1t11~K2U !2t21~K2U !3t31~K2U !4t4 .
~35!

The argument leading to conservation of energy, Eq.~34!,
applies to every adjacent pair of steps in the potential ene
diagram. The computer can hunt for and find the minim
value ofS directly by varying the values of the intermedia
times, as shown schematically in Fig. 10.

A continuous potential energy curve can be regarded
the limiting case of that shown in Fig. 9 as the number
steps increases without limit while the time along each s
becomes an incrementDt. For the resulting potential energ
curve the general expression for the actionS is

S[Eentire
path

L dt5Eentire
path

~K2U ! dt. ~36!

Here L (5K2U for the cases we treat! is called the La-
grangian. The principle of least action says that the value
the actionS is a minimum for the actual motion of the pa
ticle, a condition that leads not only to conservation of e
ergy, but also to a unique specification of the entire wor
line.

Fig. 9. A more complicated potential energy diagram, leading in the limi
a potential energy curve that varies smoothly with position.
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More general forms of the principle of least action pred
the motion of a particle in more than one spatial dimens
as well as the time development of systems containing m
particles. The principle of least action can even predict
motion of some systems in which energy is not conserve24

The LagrangianL can be generalized so that the principle
least action can describe relativistic motion7 and can be used
to derive Maxwell’s equations, Schroedinger’s wave eq
tion, the diffusion equation, geodesic worldlines in gene
relativity, and steady electric currents in circuits, amo
many other applications.

We have not provided a proof of the principle of lea
action in Newtonian mechanics. A fundamental proof re
on nonrelativistic quantum mechanics, for instance that o
lined by Tyc25 which uses the deBroglie relation to show th
the phase change of a quantum wave along any worldlin
equal to S/\, where S is the classical action along tha
worldline. Starting with this result, Feynman and Hibbs ha
shown26 that the sum-over-all-paths description of quantu
motion reduces seamlessly to the classical principle of le
action as the masses of particles increase.

Once students have mastered the principle of least ac
it is easy to motivate the introduction of nonrelativistic qua
tum mechanics. Quantum mechanics simply assumes tha
electron explores all the possible worldlines considered
finding the Newtonian worldline of least action.

IX. LAGRANGE’S EQUATIONS

Lagrange’s equations are conventionally derived from
principle of least action using the calculus of variations27

The derivation analyzes the worldline as a whole. Howev
the expression for the action is a scalar; if the value of
sum is minimum along the entire worldline, then the cont
bution along each incremental segment of the worldline a
must be a minimum. This simplifying insight, due original
to Euler, allows the derivation of Lagrange’s equations us
elementary calculus.14 The appendix shows an alternativ
derivation of Lagrange’s equation directly from Newton
equations.

Fig. 10. The computer program temporarily fixes the end events of a t
segment section, say events B and D, then varies the time coordinate o
middle event C to find the minimum value of the totalS, then varies D while
C is kept fixed, and so on.~The end-events A and E remain fixed.! The
computer cycles through this process repeatedly until the value ofSdoes not
change further because this value has reached a minimum for the worl
as a whole. The resulting worldline approximates the one taken by
particle.
520J. Hanc and E. F. Taylor
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APPENDIX: DERIVATION OF LAGRANGE’S
EQUATIONS FROM NEWTON’S SECOND LAW

Both Newton’s second law and Lagrange’s equations
be derived from the more fundamental principle of le
action.13,14 Here we move from one derived formulation
the other, showing that Lagrange’s equation leads toF
5ma ~and vice versa! for particle motion in one
dimension.28

If we use the definition of force in Eq.~10!, we can write
Newton’s second law as:

F52
dU

dx
5mẍ. ~A1!

We assume thatm is constant and rearrange and recast
~A1! to read

d~2U !

dx
2

d

dt
~mẋ!5

d~2U !

dx
2

d

dt F d

dẋ S mẋ2

2 D G50. ~A2!

On the right-hand side Eq.~A2! we add terms whose partia
derivatives are equal to zero:

]

]x Fmẋ2

2
2U~x!G2

d

dt F ]

] ẋ S mẋ2

2
2U~x! D G50. ~A3!

We then setL5K2U, which leads to the Lagrange equatio
in one dimension:

]L

]x
2

d

dt F]L

] ẋG50. ~A4!

This sequence of steps can be reversed to show
Lagrange’s equation leads to Newton’s second law of mo
for conservative potentials.
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