From conservation of energy to the principle of least action: A story line
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We outline a story line that introduces Newtonian mechanics by employing conservation of energy
to predict the motion of a particle in a one-dimensional potential. We show that incorporating
constraints and constants of the motion into the energy expression allows us to analyze more
complicated systems. A heuristic transition embeds kinetic and potential energy into the still more
powerful principle of least action. @004 American Association of Physics Teachers.
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[. INTRODUCTION derstanding. On the contrary, we anticipate that trials of this
approach will open up new fields of physics education re-

An eight sentence history of Newtonian mechahitsows ~ search.
how much the subject has developed since Newton intro-
duced F=dp/dt in the second half of the 1608sin the  1l. ONE-DIMENSIONAL MOTION: ANALYTIC
mid-1700s Euler devised and applied a version of the prinSOLUTIONS
ciple of least action using mostly geometrical methods. In , i
1755 the 19-year-old Joseph-Louis Lagrange sent Euler a Ve start by using conservation of energy to analyze par-
letter that streamlined Euler’s methods into algebraic formlicle motion in a one-dimensional potential. Much of the
“[Alfter seeing Lagrange’s work Euler dropped his ownPOWer of the principle of least action and its logical off-

method, espoused that of Lagrange, and renamed the subj&&/iNg, Lagrange’s equations, results from the fact that they
the calculus of variationg ® Lagrange, in his 178&nalyti- &€ based on energy, a scalar. When we start with conserva-

cal Mechanicé introduced what we call the Lagrangian tion of energy, we not only preview more advanced concepts

function and Lagrange’s equations of motion. About half aand procedures, but also invoke some of their power. For

century later(1834—183% Hamilton published Hamilton’s example, expre;sions for th.e energy'which are consistent
principle? to which Landau and Lifshifzand Feynmahre- with any constraints automatically eliminate the correspond-
assigned the namerinciple of least actior} Between 1840 ing constraint forces from the equations of.motlon. By using
and 1860 conservation of energy was established in all it€ constraints and constants of the motion, we often can
enerality’ In 1918 Noethe?® proved several relations be- reduce the description of multi-dimensional systems to one
gNeen syr.nmetries and conszrved quantities. In the 194 oordinate, whose motion can then be found using conserva-

Feynman' devised a formulation of quantum mechanics thatjg?vg;grr: %rfgghlégglyhbnum and statics also derive from con-
not only eXpI'C'tIY u_nderpms_the principle Of least action, but We first consider one-dimensional motion in a uniform
also shows the limits of validity of Newtonian mechanics.

Except for conservation of energy, students in introductoryvertlcal gravitational field. Heuristic arguments lead to the

physics are typically introduced to the mechanics of the |at%e;xp_r essiormgy for the_ potential energy. We observe, with
1600s. To modernize this treatment, we have sugg alileo, that the velocity of a particle in free fall from rest

the principle of least action and Lagrange’s equations be§_tartlng at positiony=0 decreases Ilnegrly Wlth “T“Q’
come the basis of introductory Newtonian mechanics. Recerit ~ 91, Where we have expressed the time derivative by a
articles discuss how to use elementary calculus to derivdot over the variable. This relation integrates to the form

Newton’s laws of motiort? Lagrange’s equation$,and ex- 1 y2

\ . . _ 2 __
amples of Noether’s theorethfrom the principle of least y=-— Egt TS (D)
action, describe the modern rebirth of Euler's metibdsd 9

suggest ways in which upper undergraduate physics class&ge multiply Eq.(1) by mg and rearrange terms to obtain the
can be transformed using the principle of least action. first example of conservation of energy:
How are these concepts and methods to be introduced to 1
undergraduate physics students? In this paper we suggest a 0 amy*+mgy=K+U=E, )
reversal of the historical order: Begin with conservation ofwhere the symboE represents the total energy and the sym-
energy and graduate to the principle of least action andbols K andU represent the kinetic and potential energy, re-
Lagrange’s equations. The mathematical prerequisites for thepectively.
proposed course include elementary trigonometry, polar co- A complete description of the motion of a particle in a
ordinates, introductory differential calculus, partial deriva-general conservative one-dimensional potential follows from
tives, and the idea of the integral as a sum of increments. the conservation of energy. Unfortunately, an explicit func-
The story line presented in this article omits most detailgion of the position versus time can be derived for only a
and is offered for discussion, correction, and elaboration. Wéraction of such systems. Students should be encouraged to
do not believe that a clear story line guarantees student uruess analytic solutions, a powerful general strategy because
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the energy equation. Heuristic guesses are assisted by th

any proposed solution is easily checked by substitution into
Energy Total energy of particle

fact that the first time derivative of the position, not the sec- :

ond, appears in the energy conservation equation. A\ [B |C D
The following example illustrates the guessing strategy for zggmia' — o

linear motion in a parabolic potential. This example also in- » e

troduces the potential energy diagram, a central feature of

our story line and an important tool in almost every under-

graduate subject.

A. Harmonic oscillator Pasition

Our analysis begins with a qualitative prediction of the Fig. 1. The potential energy diagram is central to our treatment and requires
motion of a particle in a parabolic potenti@r in any poten- a difficult conceptual progression from a ball rolling down a hill pictured in

tial with tion b ded ingl tential .. an x-y diagram to a graphical point moving along a horizontal line of
lal with motion bounded neéar a single potential energy mMinl-;,nqan; energy in an energy-position diagram. Making this progression

r_num)- If we consider the poten_tial energy diagram for Qallows the student to describe qualitatively, but in detail, the motion of a
fixed total energy, we can predict that the motion will be particle in a one-dimensional potential at arbitrary positions such as A

periodic. For a parabolic potentiéFig. 1) conservation of through F.
energy is expressed as

E=3ImX?+ 1kx2. 3
. dU(x)
We rearrange Eq23) to read mx=F = — (10)
dx '’
m . k
EXZ: 1- EXZ- (49 from which we see thaE = —kx for the harmonic potential
] ) . o . andF = —mg for the gravitational force near the earth’s sur-
Equation(4) reminds us of the trigonometric identity, face.
cog 6=1—sir? 6. (5)
We setf= wt and equate the right-hand sides of Egg.and |\ NONINTEGRABLE MOTIONS IN ONE
(5) and obtain the solution DIMENSION
2E 1/2
X==* (T) sinwt. (6) We guessed a solution for simple harmonic motion, but it
is important for students to know that for most mechanical

If we take the time derivative of in Eq. (6) and use it to  systems, analytical solutions do not exist, even when the
equate the left-hand sides of E¢4) and(5), we find that®  potential can be expressed analytically. For these cases, our
K\ 12 strategy begins by asking students to make a detailed quali-
- 7) tative prediction of the motion using the potential energy
m diagram, for example, describing the velocity, acceleration,
and force at different particle positions, such as A through F

w=

The fact thaiw does not depend on the total enefgpf the Fio 1
particle means that the period is independert @ind hence n T;]g' . i st iaht be t K the student to plot by hand
independent of the amplitude of oscillation described by Eq, , ¢ N€Xt Step Might be 1o ask the student {o piot by nan
(6). The simple harmonic oscillator is widely applied be- a few sequential points along the worldline using a differ-

cause many potential energy curves can be approximated goce equation derived from energy conservation correspond-

parabolas near their minima. Ing to Eq.(3),
At this point, it would be desirable to introduce the con- 2 12
cept of theworldline, a position versus time plot that com- dXZ[E[E— U(X)]] dt, (13)
pletely describes the motion of a particle.
whereU (x) describes an arbitrary potential energy. The pro-
cess of plotting necessarily invokes the need to specify the
[1l. ACCELERATION AND FORCE initial conditions, raises the question of accuracy as a func-
o , _tion of step size, and forces an examination of the behavior
In the absence of dissipation, the force can be defined igf the solution at the turning points. Drawing the resulting
terms of the energy. We start with conservation of energy: \yqridline can be automated using a spreadsheet with graph-
E=ImX+U(x). (8) ing capabilities, perhaps comparing the resulting approxi-
) L ) _.mate curve with the analytic solution for the simple har-
We take the time derivative of both sides and use the chaif,onic oscillator.
rule: After the drudgery of these preliminaries, students will
dU(x) . welcome a more polished interactive display that numeri-
ax X. 9 cally integrates the particle motion in a given potential. On
the potential energy diagrafsee Fig. 2, the student sets up
By invoking the tendency of a ball to roll downhill, we can initial conditions by dragging the horizontal energy line up
define force as the negative spatial derivative of the potener down and the particle position left or right. The computer
tial, then moves the particle back and forth along Eikne at a

0=mxx+U=mxx+
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Fig. 2. Mockup of an interactive computer display of the worldline derived
numerically from the energy and the potential energy function.

rate proportional to that at which the particle will move,
while simultaneously drawing the worldlin@ipper plot of
Fig. 2.

V. REDUCTION TO ONE COORDINATE

The analysis of one-dimensional motion using conserva-

tion of energy is powerful but limited. In some important
cases we can use constraints and constants of the motion

reduce the description to one coordinate. In these cases we
apply our standard procedure: qualitative analysis using the

(effective potential energy diagram followed by interactive

The above strategy uses a conservation law to reduce the
number of dimensions. The following example uses con-
straints to the same end.

B. Object rolling without slipping

Two-dimensional circular motion and the resulting kinetic
energy are conveniently described using polar coordinates.
The fact that the kinetic energy is an additive scalar leads
quickly to its expression in terms of the moment of inertia of
a rotating rigid body. When the rotating body is symmetric
about an axis of rotation and moves perpendicularly to this
axis, the total kinetic energy is equal to the sum of the energy
of rotation plus the energy of translation of the center of
mass.(This conclusion rests on the addition of vector com-
ponents, but does not require the parallel axis thegrBwil-
ing without slipping is a more realistic idealization than slid-
ing without friction.

We use these results to reduce to one dimension the de-
scription of a marble rolling along a curved ramp that lies in
the x-y plane in a uniform gravitational field. Let the marble
have massan, radiusr, and moment of inertid,zpe- The
nonslip constraint tells us that=r . Conservation of en-
ergy leads to the expression:

1

2
_1 2+1
—Emv E

1

_(m+

1
E mU2+§|marbI6‘92+mgy

v 2
Imarble( F) +mgy
to

I marble

1
2 vz+mgy=§Mvz+mgy, (15)

~2

computer solutions. We illustrate this procedure by some exwhere

amples.

A. Projectile motion

For projectile motion in a vertical plane subject to a uni-
form vertical gravitational field in the y-direction, the total
energy is

E=im¥X°+ imy>+ mgy. (12

The potential energy is not a function &f therefore, as
shown in the following, momentum in thedirection,p,, is
a constant of the motion. The energy equation becomes

P
Emy2+ﬁ+mgy.

E

13

(16)

The motion is described by the single coordingteCon-
straints are used twice in this example: explicitly in rolling
without slipping and implicitly in the relation between the
heighty and the displacement along the curve.

C. Motion in a central gravitational field

We analyze satellite motion in a central inverse-square
gravitational field by choosing the polar coordinatesnd ¢
in the plane of the orbit. The expression for the total energy

is
In Newtonian mechanics the zero of the energy is arbitrary,

so we can reduce the energy to a single dimensidoy
making the substitution:

(14)

Our analysis of projectile motion already has applied
limited version of a powerful theorem due to NoethtThe

: GMm
PPt - ——.

2 ot
; 2m(r

(17

The angle¢ does not appear in Eq17). Therefore we ex-

pect that a constant of the motion is givendfy/ d¢, which
represents the angular momentum(We reserve the stan-

ard symbolL for the Lagrangian, introduced later in this

version of Noether’s theorem used here says that when tI"Peaper)

total energyE is not an explicit function of an independent
coordinate x for example, then the functiofE/dx is a con-
stant of the motior’® We have developed a simple, intuitive

JE .
—=mri¢=J.

P (18)

derivation of this version of Noether’s theorem. The deriva-We substitute the resulting expression iﬁ)into Eq.(17) and

tion is not included in this brief story line.
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q) Fig. 4. Feynman’s example of the principle of virtual work.
us that&E/a¢ is a constant of the motion, which we recog-
nize as the total angular momentum
Fig. 3. System of marble, ramp, and turntable. Z_E_ = (ot Mx2 co 0)¢:J_ (22)
) If we substitute into Eq(21) the expression foés from Eq.
1 ., 9 GMm_1 ., (22), we obtain
E=—-mr<+ — =-mr+Ugx(r). (19 '
2 2mr2 r 2 1 JZ
Students employ the plot of the effective potential energy E= §M5<2+ 201+ Mx2 co2 6) +mgxsiné
Uex(r) to do the usual qualitative analysis of radial motion (ot co
followed by computer integration. We emphasize the distinc- 1.,
tions between bound and unbound orbits. With additional use = 5 MX“+ Uet(X). (23
of Eg. (18), the computer can be programmed to plot a tra-
jectory in the plane for each of these cases. The values ofE and J are determined by the initial condi-

tions. The effective potential enerdy.z(x) may have a mini-

mum as a function ok, which can result in oscillatory mo-

tion of the marble along the ramp. If the marble starts at rest
This system is more complicated, but is easily analyzed byvith respect to the ramp at the position of minimum effective

our energy-based method and more difficult to treat usingpotential, it will not move along the ramp, but execute a

F=ma. A relatively massive marble of magsand moment circle around the center of the turntable.

of inertia | e rolls without slipping along a slot on an

inclined ramp fixed rigidly to a light turntable which rotates

freely so that its angular velocity is not necessarily constanv!l. EQUILIBRIUM AND STATICS: PRINCIPLE OF

(see Fig. 3 The moment of inertia of the combined turntable LEAST POTENTIAL ENERGY

and ramp isl,,;. We assume that the marble stays on the ) ) o
ramp and find its position as a function of time. Our truncated story line does not include frictional forces

We start with a qualitative analysis. Suppose that initiallyOf @n analysis of the tendency of systems toward increased
the turntable rotates and the marble starts at rest with respe@Btropy. Nevertheless, it is common experience that motion
to the ramp. If the marble then begins to roll up the ramp, the!Sually slows down and stops. Our use of potential energy
potential energy of the system increases, as does the kineftadrams makes straightforward the intuitive formulation of
energy of the marble due to its rotation around the center oftoPping as a tendency of a system to reach equilibrium at a
the turntable. To conserve energy, the rotation of the turnlocal minimum of the potential energy. This result can be
table must decrease. If instead the marble begins to roll dowfPrmulated as therinciple of least potential energfpr sys-
the ramp, the potential energy decreases, the kinetic enerj?ms in equilibrium. Even in the absence of friction, a par-
of the marble due to its rotation around the turntable axidicle placed at rest at a point of zero slope in the potential
decreases, and the rotation rate of the turntable will increas@ergy curve will remain at restProof: An infinitesimal
to compensate. For a given initial rotation rate of the turn-displacement results in zero change in the potential energy.
table, there may be an equilibrium value at which the marbld2Ue to energy conservation, the change in the kinetic energy
will remain at rest. If the marble starts out displaced fromMmust also remain zero. Because the particle is initially at rest,
this value, it will oscillate back and forth along the ramp. the zero change in kinetic energy forbids displacement.

More quantitatively, the square of the velocity of the Equilibrium is a result of conservation of energy.

D. Marble, ramp, and turntable

marble is Here, as usual, Feynman is ahead of us. Figure 4 shows an
. example from his treatment of statisThe problem is to
v2=X2+ ¢*x* cos 6. (200 find the value of the hanging weighl that keeps the struc-

ture at rest, assuming a beam of negligible weight. Feynman
. , ) balances the decrease in the potential energy when the
E=IMX?+ 3%+ IMX2¢p? cog O+mgxsing, (21)  weight W drops 4 with increases in the potential energy for

whereM indicates the marble’s mass augmented by the en.t—he corresponding”?rise of th_e 60 Ib weight and thé.’ tise
ergy effects of its rolling along the ramp, E@.6). The right in the 100 Ib weight. He requires that the net potential energy

side of Eqg.(21) is not an explicit function of the angle of change of the system be zero, which yields
rotation ¢. Therefore our version of Noether’s theorem tells —4"W+2"(60 Ib)+1"(100 Ib=0, (29

Conservation of energy yields the relation

517 Am. J. Phys., Vol. 72, No. 4, April 2004 J. Hanc and E. F. Taylor 517



C fixed segments 1 and 2 of the worldline is given by

Then the time average of the kinetic eneigyalong the two
tiotal

Kitg+Kot, 1 /1, 1
== —mutty+ - mosty|. (25
ave ttotal ttotal 2 v 2 22
We multiply both sides of Eq25) by the fixed total time and
recast the velocity expressions using the notation in Fig. 5:

DT U S N
avgttotal 2 m tz t+ 2 m (ttota|_t)2 (ttotal t)
1 d? 1 d?
- EmT+ Em(ttotal_t) .
We find the minimum value of the average kinetic energy by
taking the derivative with respect to the tirhef the central

(26)

event:
dK 1 d® 1 d?
(ﬁ)ttotalz —sMz+sm———
h o g )P dt 2% 2 (toat)
A fixed d 2d 1 1
— 2 2__
Fig. 5. The time of the middle event is varied to determine the path of the - E mui+ Emvz_ 0. (27)

minimum time-averaged kinetic energy.
From Eq.(27) we obtain the equality
. . . smu=3mo3. (28)

or W=551Ib. Feynman calls this method thenciple of vir- ) o
tual work which in this case is equivalent to the principle of AS expected, when the time-averaged kinetic energy has a
least potential energy, both of which express conservation dhinimum value, the kinetic energy for a free particle is the
energy. same on both segments; the worldline is straight between the

There are many examples of the principle of minimumfixed initial and final events A and C and satisfies the prin-
potential energy, including a mass hanging on a spring, &Ple of minimum average kinetic energy. The same result
lever, hydrostatic balance, a uniform chain suspended at bofi@!lows if the potential energy is uniform in the region under

ends, a vertically hanging slink,and a ball perched on top consideration, because the uniform potential energy cannot
of a large sphere. affect the kinetic energy as the location of point B changes

on the spacetime diagram.
In summary, we have illustrated the fact that for the spe-
VII. FREE PARTICLE. PRINCIPLE OF LEAST cial case of a particle moving in a region of zéaw uniform)
AVERAGE KINETIC ENERGY potential energy, the kinetic energy is conserved if we re-
quire that the time average of the kinetic energy has a mini-

For all its power, conservation of energy can predict themum value. The general expression for this average is
motion of only a fraction of mechanical systems. In this and

Sec. VIII we seek a principle that is more fundamental than :if
conservation of energy. One test of such a principle is that it Mt otal ep“;‘tf
leads to conservation of energy. Our investigations will em- ) o ) )
ploy trial worldlines that are not necessarily consistent with N an introductory text we might introduce at this point a
conservation of energy. sidebar on Fermat's principle of least time for the propaga-
We first think of a free particle initially at rest in a region tion of light rays. o
of zero potential energy. Conservation of energy tells us that NOW we are ready to develop a similar but more general
this particle will remain at rest with zero average kinetic '@W that predicts every central feature of mechanics.
energy. Any departure from rest, say by moving back and
forth, will increase the average of its kinetic energy from theVIll. PRINCIPLE OF LEAST ACTION
zero value. The actual motion of this free particle gives the ) ] o ]
least average kinetic energy. The result illustrates what we Section VI discussed the principle of least potential energy
will call the principle of least average kinetic energy and Sec. VIl examined the principle of least average kinetic
Now we view the same particle from a reference frame€nergy. Along the way we mentioned Fermat's principle of
moving in the negative-direction with uniform speed. In least time for ray optics. We now move on to the principle of
this frame the particle moves along a straight worldline.least action, which combines and generalizes the principles
Does this worldline also satisfy the principle of least averagef least potential energy and least average kinetic energy.
kinetic energy? Of course, but we can check this ex_pectatio[a‘_ Qualitative demonstration
and introduce a powerful graphical method established by
Euler?® We might guessincorrectly that the time average of the
We fix two events A and C at the ends of the worldline total energy, the sum of the kinetic and potential energy, has
(see Fig. b and vary the time of the central event B so thata minimum value between fixed initial and final events. To
the kinetic energy is not the same on the legs labeled 1 and 2xamine the consequences of this guess, let us think of a ball

K dt. (29
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Fig. 7. Motion across a potential energy step.
pitch  J catch ergy (which decreases only 8g). So there is a minimum of
N ] Z > the average oK+ U for some path below the horizontal.

X
2 The path below the horizontal that satisfies this minimum is
clearly not the trajectory observed for a pitched ball.
Suppose instead we ask how the average of the difference
(K + UJy,, minimum? K—U behaves for paths that deviate from the horizontal. By
an argument similar to that in the preceding paragraph, we
Fig. 6. Alternative trial trajectories of a pitched ball. For patithe average  see that no path below the horizontal can have a minimum
of the differenceK —U is a minimum. average of the difference. But there exists a path, such as D,
above the horizontal for which the average KfU is a

] ) o ] ) minimum. For the special case of vertical launch, students
thrown in a uniform gravitational field, with the two events, can explore this conclusion interactively using tutorial

pitch and catch, fixed in location and tinigee Fig. . How  goftware?®

will the ball move between these two fixed events? We start

by asking why the bas_eball do.es not sim_ply move at constarg Analytic demonstration

speed along the straight horizontal trajectory B in Fig. 6.

Moving from pitch to catch with constant kinetic energy and We can check the preceding result analytically in the sim-

constant potential energy certainly satisfies conservation dilest case we can imagirisee Fig. 7. In a uniform vertical

energy. But the straight horizontal trajectory is excluded begravitational field a marble of mass rolls from one hori-

cause of the importance of the averaged potential energy. zontal surface to another via a smooth ramp so narrow that
We need to know how the average kinetic energy andve may neglect its width. In this system the potential energy

average potential energy vary with the trajectory. We begirthanges just once, halfway between the initial and final po-

with the idealized triangular path T shown in Fig. 6. If we sitions.

assume a fixed time between pitch and catch and that the The worldline of the particle will be bent, corresponding

speed does not vary wildly along the path, the kinetic energyo the reduced speed after the marble mounts the ramp, as

of the particle is approximately proportional to the square ofshown in Fig. 8. We require that the total travel time from

the distance covered, that is, proportional to the quamfjty Position A to position C have a fixed valugy, and check

+y2 using the notation in Fig. 6. The increase in the kineticwhether minimizing the time average of the differerice

energy over that of the straight path is proportional to the—U leads to conservation of energy:

square of the deviatiog,, whether that deviation is below 1
or above the horizontal path. But any incremental deviation (K—U)a\,g=t—[(K—U)1tl+(K— U),ts]. (30
from the straight-line path can be approximated by a super- total

position of such triangular increments along the path. As a
result, small deviations from the horizontal path result in an
increase in the average kinetic energy approximately propor- A
tional to the average of the square of the vertical deviation

Yo

C fixed

ttotal

The average potential energy increases or decreases for
trajectories above or below the horizontal, respectively. The
magnitude of the change in this average is approximately
proportional to the average deviatigp, whether this devia-
tion is small or large.

We can apply these conclusions to the averag& oK
+U as the path departs from the horizontal. For paths above
the horizontal, such as C, D, and E in Fig. 6, the averages of t
both K and U increase with deviation from the horizontal;
these increases have no limit for higher and higher paths.
Therefore, no upward trajectory minimizes the average of
K+U. In contrast, for paths that deviate downward slightly
from the horizontal, the averad¢ initially increases slower A fixed o o :
than the averag®) decrease, leading to a reduction in their
sum. For paths that dlp further, however, the increase in thgig. 8. Broken worldline of a marble rolling across steps connected by a

average kinetic energyrelated to the square of the Path narrow ramp. The region on the right is shaded to represent the higher
length overwhelms the decrease in the average potential erpotential energy of the marble on the second step.

total — t
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Fig. 9. A more complicated potential energy diagram, leading in the limit to
a potential energy curve that varies smoothly with position.
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. . A 2 8 4 >
We define a new symbd, called theaction Fixed 1 >

X
S=(K- U)avgttotalz (K=U)sts+(K=U)at;. 31 Fig. 10. The computer program temporarily fixes the end events of a two-

; ; ; ; ; segment section, say events B and D, then varies the time coordinate of the
We can use the notation in Fig. 8 to write qu) in the middle event C to find the minimum value of the toBthen varies D while

form C is kept fixed, and so onThe end-events A and E remain fixgedhe
1 1 computer cycles through this process repeatedly until the valSeloés not
= — 24 _ — 2t _ change further because this value has reached a minimum for the worldline
S= s Muvit;—mgyt; + 5 Moust,—mgyat, . . .
2 2 as a whole. The resulting worldline approximates the one taken by the
particle.
Md? Md?
=———m t+ ——m tiota— 1), 32
2t ay1 Z(ttotal_t) gyZ( total ) ( )

whereM is given by Eq.(16). We require that the value of  \15re general forms of the principle of least action predict

the action be a minimum with respect to the choice of thene motion of a particle in more than one spatial dimension
intermediate time: as well as the time development of systems containing many

2 2 particles. The principle of least action can even predict the
ds Md Md . . \ . 2
== Mgyt —————— +mgy,=0. (33 motion of some systems in wh|c_h energy is not conse ed.
dt 2t2 2(tiota— 1) The Lagrangiar. can be generalized so that the principle of

least action can describe relativistic moti@nd can be used
to derive Maxwell's equations, Schroedinger’s wave equa-
ds 1 5 1, tion,_the diffusion equation, _geodesic wqudli_nes_ in general
dat §M01+ mgy. EM02+ mgy,|=0. (34) relativity, and steady electric currents in circuits, among
many other applications.
A simple rearrangement shows that E84) represents con- We have not provided a proof of the principle of least
servation of energy. We see that energy conservation hasction in Newtonian mechanics. A fundamental proof rests
been derived from the more fundamental principle of leasbn nonrelativistic quantum mechanics, for instance that out-
action. Equally important, the analysis has completely detertined by Ty which uses the deBroglie relation to show that
mined the worldline of the marble. the phase change of a quantum wave along any worldline is
The action Eq(31) can be generalized for a potential en- equal to S/%, where S is the classical action along that
ergy curve consisting of multiple steps connected by smoothyorldline. Starting with this result, Feynman and Hibbs have
narrow transitions, such as the one shown in Fig. 9: showrf® that the sum-over-all-paths description of quantum
motion reduces seamlessly to the classical principle of least
S=(K=U)sty (K= U)alat (K=U)sts + (K U)4E§5) action as the masses of p:},l/rticles increase. Prnep
Once students have mastered the principle of least action,
The argument leading to conservation of energy, 84), itis easy to motivate the introduction of nonrelativistic quan-
applies to every adjacent pair of steps in the potential energyum mechanics. Quantum mechanics simply assumes that the
diagram. The computer can hunt for and find the minimumelectron explores all the possible worldlines considered in
value ofSdirectly by varying the values of the intermediate finding the Newtonian worldline of least action.
times, as shown schematically in Fig. 10.
A continuous potential energy curve can be regarded as
the limiting case of that shown in Fig. 9 as the number of
steps increases without limit while the time along each stepX. LAGRANGE'S EQUATIONS

becomes an incrementt. For the resulting potential energy . ) ) )
curve the general expression for the act®is Lagrange’s equations are conventionally derived from the

principle of least action using the calculus of variatiéhs.
The derivation analyzes the worldline as a whole. However,
S= JentireL dt= fentire(K_U) dt. (36) the expression for the action is a scalar; if the value of the
path path sum is minimum along the entire worldline, then the contri-
Here L (=K—U for the cases we treats called the La- bution along each incremental segment of the worldline also
grangian. The principle of least action says that the value ofmust be a minimum. This simplifying insight, due originally
the actionSis a minimum for the actual motion of the par- to Euler, allows the derivation of Lagrange’s equations using
ticle, a condition that leads not only to conservation of en-elementary calculu¥: The appendix shows an alternative
ergy, but also to a unique specification of the entire world-derivation of Lagrange’s equation directly from Newton’s
line. equations.

This result can be written as

+
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