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We outline a story line that introduces Newtonian mechanics by employing conservation of
energy to predict the motion of a particle in a one-dimensional potential. We show that
incorporating constraints and constants of the motion into the energy expression allows is to
analyze more complicated systems. A heuristic transition embeds kinetic and potential
energy into the still more powerful principle of least action.

I. INTRODUCTION
An eight sentence history of Newtonian mechanics1 shows how much the subject has

developed since Newton introduced F = dp/dt in the second half of the 1600s.2 In the mid-
1700s Euler devised and applied a version of the principle of least action using mostly
geometrical methods. In 1755 the 19-year-old Joseph-Louis Lagrange sent Euler a letter that
streamlined Euler’s methods into algebraic form. “[A]fter seeing Lagrange’s work Euler
dropped his own method, espoused that of Lagrange, and renamed the subject the calculus of
variations.”3 Lagrange, in his 1788 Analytical Mechanics,4 introduced what we call the
Lagrangian function and Lagrange’s equations of motion. About half a century later (1834-35)
Hamilton published Hamilton’s principle,5 to which Landau and Lifshitz6 and Feynman7

reassigned the name principle of least action.8 Between 1840 and 1860 conservation of energy
was established in all its generality.9 In 1918 Noether10 proved several relations between
symmetries and conserved quantities. In the 1940s Feynman11 devised a formulation of
quantum mechanics that not only explicitly underpins the principle of least action, but also
shows the limits of validity of Newtonian mechanics.
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Except for conservation of energy, students in introductory physics are typically
introduced to the mechanics of the late 1600s. To modernize this treatment, we have
suggested12 that the principle of least action and Lagrange’s equations become the basis of
introductory Newtonian mechanics. Recent articles discuss how to use elementary calculus to
derive Newton’s laws of motion, 13 Lagrange’s equations, 14 and examples of Noether’s
theorem15 from the principle of least action, describe the modern rebirth of Euler’s methods16

and suggest ways in which upper undergraduate physics classes can be transformed using
the principle of least action. 17

How are these concepts and methods to be introduced to undergraduate physics
students? In this paper we suggest a reversal of the historical order: Begin with conservation
of energy and graduate to the principle of least action and Lagrange’s equations. The
mathematical prerequisites for the proposed course include elementary trigonometry, polar
coordinates, introductory differential calculus, partial derivatives, and the idea of the integral
as a sum of increments.

The story line presented in this article omits most details and is offered for discussion,
correction, and elaboration. We do not believe that a clear story line guarantees student
understanding. On the contrary, we anticipate that trials of this approach will open up new
fields of physics education research.

II. ONE-DIMENSIONAL MOTION: ANALYTIC SOLUTIONS
We start by using conservation of energy to analyze particle motion in a one-dimensional
potential. Much of the power of the principle of least action and its logical offspring,
Lagrange’s equations, results from the fact that they are based on energy, a scalar. When we
start with conservation of energy, we not only preview more advanced concepts and
procedures, but also invoke some of their power. For example, expressions for the energy
which are consistent with any constraints automatically eliminate the corresponding
constraint forces from the equations of motion. By using the constraints and constants of the
motion, we often can reduce the description of multi-dimensional systems to one coordinate,
whose motion can then be found using conservation of energy. Equilibrium and statics also
derive from conservation of energy.

We first consider one-dimensional motion of in a uniform vertical gravitational field.
Heuristic arguments lead to the expression mgy for the potential energy. We observe, with
Galileo, that the velocity of a particle in free fall from rest starting at position y = 0 decreases
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linearly with time: ˙ y = −gt , where we have expressed the time derivative by a dot over the
variable. This relation integrates to the form

y = −
1
2

gt 2 = −
˙ y 2

2g
. (1)

We multiply Eq. (1) by mg and rearrange terms to obtain the first example of conservation of
energy:

0 =
1

2
m˙ y 2 + mgy = K + U = E , (2)

where the symbol E represents the total energy and the symbols K and U represent the
kinetic and potential energy respectively.

A complete description of the motion of a particle in a general conservative one-
dimensional potential follows from the conservation of energy. Unfortunately, an explicit
function of the position versus time can be derived for only a fraction of such systems.
Students should be encouraged to guess analytic solutions, a powerful general strategy
because any proposed solution is easily checked by substitution into the energy equation.
Heuristic guesses are assisted by the fact that the first time derivative of the position, not the
second, appears in the energy conservation equation.

The following example illustrates the guessing strategy for linear motion in a parabolic
potential. This example also introduces the potential energy diagram, a central feature of our
story line and an important tool in almost every undergraduate subject.

Harmonic oscillator. Our analysis begins with a qualitative prediction of the motion of a
particle in a parabolic potential (or in any potential with motion bounded near a single
potential energy minimum). Using the potential energy diagram for a fixed total energy, we
predict that the motion will be periodic. For the parabolic potential (Fig. 1) the conservation
of energy is expressed as

E =
1
2

m˙ x 2 +
1
2

kx 2. (3)

We rearrange Eq. (3) to read:
m
2E

˙ x 2 =1−
k

2E
x2 . (4)

Equation (4) reminds us of the trigonometric identity,

cos2θ =1− sin2θ . (5)
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Figure 1. The potential energy diagram is central to our treatment and requires a difficult

conceptual progression from a ball rolling down a hill pictured in an x-y diagram to a

graphical point moving along a horizontal line of constant energy in an energy-position

diagram. Making this progression allows the student to describe qualitatively, but in

detail, the motion of a particle in a one-dimensional potential at arbitrary positions such

as A through F.

We set θ = ωt and equate the right-hand sides of Eqs. (4) and (5) and obtain the solution

x = ±
2E
k

 

 
 

 

 
 
1/ 2

sinωt . (6)

If we take the time derivative of x in Eq. (6) and use it to equate the left-hand sides of Eqs. (4)
and (5), we find that18

ω =
k
m

 

 
 

 

 
 
1/2

. (7)

The fact that ω does not depend on the total energy E of the particle means that the period is
independent of E and hence independent of the amplitude of oscillation described by Eq. (6).
The simple harmonic oscillator is widely applied because many potential energy curves can
be approximated as parabolas near their minima.

At this point, it would be desirable to introduce the concept of the worldline, a position
versus time plot that completely describes the motion of a particle.
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III. ACCELERATION AND FORCE
In the absence of dissipation, the force can be defined in terms of the energy. We start with
conservation of energy:

E =
1
2

m˙ x 2 + U(x). (8)

We take the time derivative of both sides and use the chain rule:

0 = m˙ x ̇  ̇ x + ˙ U = m˙ x ̇  ̇ x + dU
dx

˙ x . (9)

By invoking the tendency of a ball to roll downhill, we can define force as the negative spatial
derivative of the potential,

m˙ ̇ x ≡ F = −
dU x( )

dx
, (10)

from which we see that F = −kx  for the harmonic potential and F = – mg for the gravitational
force near the earth’s surface.

IV. NON-INTEGRABLE MOTIONS IN ONE DIMENSION
We guessed a solution for simple harmonic motion, but it is important for students to know
that for most mechanical systems, analytical solutions do not exist, even when the potential
can be expressed analytically. For these cases, our strategy begins by asking students to make
a detailed qualitative prediction of the motion using the potential energy diagram, for
example, describing the velocity, acceleration, and force at different particle positions, such
as A through F in Fig. 1.

The next step might be to ask the student to plot by hand a few sequential points along
the worldline using a difference equation derived from energy conservation corresponding to
Eq. (3),

dx =
2
m

E −U x( )[ ]
 
 
 

 
 
 

1/ 2

dt , (11)

where U(x) describes an arbitrary potential energy. The process of plotting necessarily
invokes the need to specify the initial conditions, raises the question of accuracy as a function
of step size, and forces an examination of the behavior of the solution at the turning points.
Drawing the resulting worldline can be automated using a spreadsheet with graphing
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capabilities, perhaps comparing the resulting approximate curve with the analytic solution
for the simple harmonic oscillator.

After the drudgery of these preliminaries, students will welcome a more polished
interactive display that numerically integrates the particle motion in a given potential. On the
potential energy diagram (see Fig. 2), the student sets up initial conditions by dragging the
horizontal energy line up or down and the particle position left or right. The computer then
moves the particle back and forth along the E-line at a rate proportional to that at which the
particle will move, while simultaneously drawing the worldline (upper plot of Fig. 2).

Position

E

U

time

Energy

Position

Figure 2. Mockup of an interactive computer display of the worldline derived numerically from
the energy and the potential energy function.
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V. REDUCTION TO ONE COORDINATE
The analysis of one-dimensional motion using conservation of energy is powerful but
limited. In some important cases we can use constraints and constants of the motion to
reduce the description to one coordinate. In these cases we apply our standard procedure:
qualitative analysis using the (effective) potential energy diagram followed by interactive
computer solutions. We illustrate this procedure by some examples.

(a) Projectile motion. For projectile motion in a vertical plane subject to a uniform vertical
gravitational field in the y-direction, the total energy is

E =
1
2

m˙ x 2 +
1
2

m˙ y 2 + mgy , (12)

The potential energy is not a function of x; therefore, as shown in the following, momentum

in the x-direction, px, is a constant of the motion. The energy equation becomes:

E =
1
2

m˙ y 2 +
px

2

2m
+ mgy . (13)

In Newtonian mechanics the zero of the energy is arbitrary, so we can reduce the energy to a
single dimension y by making the substitution:

E '= E −
px

2

2m
=

1
2

m˙ y 2 + mgy . (14)

Our analysis of projectile motion already has applied a limited version of the powerful
theorem due to Noether.19 The version of Noether’s theorem used here says that when the
total energy E is not an explicit function of an independent coordinate, x for example, then
the function ∂E ∂˙ x  is a constant of the motion.20 We have developed for students a simple,
intuitive derivation of this version of Noether’s theorem. The derivation is not included in
this brief story line.

The above strategy uses a conservation law to reduce the number of dimensions. The
following example uses constraints to the same end.

(b) Object rolling without slipping. Two-dimensional circular motion and the resulting kinetic
energy are conveniently described using polar coordinates. The fact that the kinetic energy is
an additive scalar leads quickly to its expression in terms of the moment of inertia of a
rotating rigid body. When the rotating body is symmetric about an axis of rotation and
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moves perpendicularly to this axis, the total kinetic energy is equal to the sum of the energy
of rotation plus the energy of translation of the center of mass. (This conclusion rests on the
addition of vector components, but does not require the parallel axis theorem.) Rolling
without slipping is a more realistic idealization than sliding without friction.

We use these results to reduce to one dimension the description of a marble rolling along
a curved ramp that lies in the x-y plane in a uniform gravitational field. Let the marble have
mass m, radius r, and moment of inertia Imarble. The non-slip constraint tells us that v = rω .
Conservation of energy leads to the expression:

E =
1
2
mv2 +

1
2
Imarbleω

2 +mgy =
1
2
mv2 +

1
2
Imarble

v
r

 

 
 

 

 
 

2

+mgy

   =
1
2
m+

Imarble

r2

 

 
 

 

 
 v2 +mgy =

1
2
Mv2 +mgy,

(15)

where

M = m +
Imarble
r2

. (16)

The motion is described by the single coordinate y. Constraints are used twice in this
example: explicitly in rolling without slipping and implicitly in the relation between the
height y and the displacement along the curve.

(c) Motion in a central gravitational field. We analyze satellite motion in a central inverse-square
gravitational field by choosing the polar coordinates r and φ in the plane of the orbit. The
expression for the total energy is

E =
1
2

mv 2 −
GMm

r
=

1
2

m ˙ r 2 + r2 ˙ φ 2( ) −
GMm

r
. (17)

The angle φ does not appear in Eq. (17). Therefore we expect that a constant of the motion is

given by ∂E ∂ ˙ φ , which represents the angular momentum J. (We reserve the standard
symbol L for the Lagrangian, introduced later in this paper.)

∂E
∂ ˙ φ 

= mr2 ˙ φ = J . (18)

We substitute the resulting expression for ˙ φ  into Eq. (17) and obtain:

E =
1

2
m˙ r 2 +

J 2

2mr2 −
GMm

r
=

1

2
m˙ r 2 + Ueff r( ) . (19)

Students employ the plot of the effective potential energy Ueff r( )  to do the usual qualitative
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analysis of radial motion followed by computer integration. We emphasize the distinctions
between bound and unbound orbits. With additional use of Eq. (18), the computer can be
programmed to plot a trajectory in the plane for each of these cases.

Figure 3. System of marble, ramp, and turntable.

(d) Marble, ramp, and turntable. This system is more complicated, but is easily analyzed by our
energy-based method and more difficult to treat using F = ma. A relatively massive marble of
mass m and moment of inertia Imarble rolls without slipping along a slot on an inclined ramp
fixed rigidly to a light turntable which rotates freely so that its angular velocity is not
necessarily constant (see Fig. 3). The moment of inertia of the combined turntable and ramp
is Irot. We assume that the marble stays on the ramp and find its position as a function of time.

We start with a qualitative analysis. Suppose that initially the turntable rotates and the
marble starts at rest with respect to the ramp. If the marble then begins to roll up the ramp,
the potential energy of the system increases, as does the kinetic energy of the marble due to
its rotation around the center of the turntable. To conserve energy, the rotation of the
turntable must decrease. If instead the marble begins to roll down the ramp, the potential
energy decreases, the kinetic energy of the marble due to its rotation around the turntable
axis decreases, and the rotation rate of the turntable will increase to compensate. For a given
initial rotation rate of the turntable, there may be an equilibrium value at which the marble
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will remain at rest. If the marble starts out displaced from this value, it will oscillate back and
forth along the ramp.

More quantitatively, the square of the velocity of the marble is

v 2 = ˙ x 2 + ˙ φ 2x 2 cos2 θ . (20)
Conservation of energy yields the relation

E =
1
2

M˙ x 2 +
1
2

Irot
˙ φ 2 +

1
2

Mx 2 ˙ φ 2 cos2 θ + mgx sinθ , (21)

where M indicates the marble’s mass augmented by the energy effects of its rolling along the
ramp, Eq. (16). The right side of Eq. (21) is not an explicit function of the angle of rotation φ.

Therefore our version of Noether’s theorem tells us that ∂E ∂ ˙ φ  is a constant of the motion,
which we recognize as the total angular momentum J:

∂E
∂ ˙ φ 

= Irot + Mx 2 cos2 θ( ) ˙ φ = J . (22)

If we substitute into Eq. (21) the expression for ˙ φ  from Eq. (22), we obtain

E =
1

2
M˙ x 2 +

J 2

2 Irot + Mx 2 cos2 θ( )
+ mgx sinθ =

1

2
M˙ x 2 + Ueff x( ) . (23)

The values of E and J are determined by the initial conditions. The effective potential energy

Ueff x( ) may have a minimum as a function of x, which can result in oscillatory motion of the

marble along the ramp. If the marble starts at rest with respect to the ramp at the position of
minimum effective potential, it will not move along the ramp, but execute a circle around the
center of the turntable.

VI. EQUILIBRIUM AND STATICS: PRINCIPLE OF LEAST POTENTIAL ENERGY
Our truncated story line does not include frictional forces or an analysis of the tendency of
systems toward increased entropy. Nevertheless, it is common experience that motion
usually slows down and stops. Our use of potential energy diagrams makes straightforward
the intuitive formulation of stopping as a tendency of a system to reach equilibrium at a local
minimum of the potential energy. This result can be formulated as the principle of least
potential energy for systems in equilibrium. Even in the absence of friction, a particle placed at
rest at a point of zero slope in the potential energy curve will remain at rest. (Proof: An
infinitesimal displacement results in zero change in the potential energy. Due to energy
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conservation, the change in the kinetic energy must also remain zero. Because the particle is
initially at rest, the zero change in kinetic energy forbids displacement.) Equilibrium is a
result of conservation of energy.

Figure 4. Feynman’s example of the principle of virtual work

Here, as usual, Feynman is ahead of us. Figure 4 shows an example from his treatment of
statics.21 The problem is to find the value of the hanging weight W that keeps the structure at
rest, assuming a beam of negligible weight. Feynman balances the decrease in the potential
energy when the weight W drops 4" with increases in the potential energy for the
corresponding 2" rise of the 60�lb weight and the 1" rise in the 100 lb weight. He requires that
the net potential energy change of the system be zero, which yields

-4"W + 2" (60 lb) + 1" (100 lb) = 0, (24)
or W = 55 lb. Feynman calls this method the principle of virtual work, which in this case is
equivalent to the principle of least potential energy, both of which express conservation of
energy.

There are many examples of the principle of minimum potential energy, including a mass
hanging on a spring, a lever, hydrostatic balance, an uniform chain suspended at both ends, a
vertically hanging slinky, 22 and a ball perched on top of a large sphere.

VII. FREE PARTICLE. PRINCIPLE OF LEAST AVERAGE KINETIC ENERGY
For all its power, conservation of energy can predict the motion of only a fraction of
mechanical systems. In this and Sec. VIII we seek a principle that is more fundamental than
conservation of energy. One test of such a principle is that it leads to conservation of energy.
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Our investigations will employ trial worldlines that are not necessarily consistent with

conservation of energy.

We first think of a free particle initially at rest in a region of zero potential energy.

Conservation of energy tells us that this particle will remain at rest with zero average kinetic

energy. Any departure from rest, say by moving back and forth, will increase the average of

its kinetic energy from the zero value. The actual motion of this free particle gives the least

average kinetic energy. The result illustrates what we will call the principle of least average
kinetic energy.

Now we view the same particle from a reference frame moving in the negative x-direction

with uniform speed. In this frame the particle moves along a straight worldline. Does this

worldline also satisfy the principle of least average kinetic energy? Of course, but we can

check this expectation and introduce a powerful graphical method established by Euler (Ref

16).

t

ttotal

A fixed

C fixed

x

B

1

2ttotal – t

d 2d

Figure 5. The time of the middle event is varied to determine the path of

the minimum time-averaged kinetic energy.
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We fix two events A and C at the ends of the worldline (see Fig. 5) and vary the time of
the central event B so that the kinetic energy is not the same on the legs labeled 1 and 2. Then
the time average of the kinetic energy K along the two segments 1 and 2 of the worldline is
given by,

Kavg =
K1t1 + K2t2

ttotal
=
1
ttotal

1
2
mv1

2t1 +
1
2
mv2

2t2
 

  
 

  . (25)

We multiply both sides of Eq. (25) by the fixed total time and recast the velocity expressions
using the notation in Fig. 5:

Kavgt total =
1
2
m d2

t 2 t +
1
2
m d2

t total − t( )2 t total − t( )

                =
1
2
m d2

t
+

1
2
m d2

t total − t( )
.

(26)

We find the minimum value of the average kinetic energy by taking the derivative with
respect to the time t of the central event:

dKavg

dt
 

 
 

 

 
 ttotal = −

1
2
m d2

t 2
+
1
2
m d2

ttotal − t( )2
= −

1
2
mv1

2 +
1
2
mv2

2 = 0 . (27)

From Eq. (27) we obtain the equality:
1
2
mv2

2 =
1
2
mv1

2. (28)

As expected, when the time-averaged kinetic energy has a minimum value, the kinetic
energy for a free particle is the same on both segments; the worldline is straight between the
fixed initial and final events A and C and satisfies the principle of minimum average kinetic
energy. The same result follows if the potential energy is uniform in the region under
consideration, because the uniform potential energy cannot affect the kinetic energy as the
location of point B changes on the spacetime diagram.

In summary, we have illustrated the fact that for the special case of a particle moving in a
region of zero (or uniform) potential energy, the kinetic energy is conserved if we require that
the time average of the kinetic energy has a minimum value. The general expression for this
average is

Kavg =
1
ttotal

Kdt
entire
path

∫ . (29)
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In an introductory text we might introduce at this point a sidebar on Fermat’s principle of

least time for the propagation of light rays.

Now we are ready to develop a similar but more general law that predicts every central

feature of mechanics.

VIII. PRINCIPLE OF LEAST ACTION
Section VI discussed the principle of least potential energy and Sec.�VII examined the

principle of least average kinetic energy. Along the way we mentioned Fermat’s principle of

least time for ray optics. We now move on to the principle of least action, which combines

and generalizes the principles of least potential energy and least average kinetic energy.

Figure 6. Alternative trial trajectories of a pitched ball. For path D the average of the
difference K – U is a minimum.

(a) Qualitative demonstration. We might guess (incorrectly) that the time average of the total

energy, the sum of the kinetic and potential energy, has a minimum value between fixed

initial and final events. To examine the consequences of this guess, let us think of a ball

thrown in a uniform gravitational field, with the two events, pitch and catch, fixed in location
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and time (see Fig. 6). How will the ball move between these two fixed events? We start by
asking why the baseball does not simply move at constant speed along the straight horizontal
trajectory B in Fig. 6. Moving from pitch to catch with constant kinetic energy and constant
potential energy certainly satisfies conservation of energy. But the straight horizontal
trajectory is excluded because of the importance of the averaged potential energy.

We need to know how the average kinetic energy and average potential energy vary with
the trajectory. We begin with the idealized triangular path T shown in Fig. 6. If we assume a
fixed time between pitch and catch and that the speed does not vary wildly along the path,
the kinetic energy of the particle is approximately proportional to the square of the distance

covered, that is, proportional to the quantity x0
2 + y0

2  using the notation in Fig. 6. The increase
in the kinetic energy over that of the straight path is proportional to the square of the
deviation y0, whether that deviation is below or above the horizontal path. But any
incremental deviation from the straight-line path can be approximated by a superposition of
such triangular increments along the path. As a result, small deviations from the horizontal
path result in an increase in the average kinetic energy approximately proportional to the
average of the square of the vertical deviation y0.

The average potential energy increases or decreases for trajectories above or below the
horizontal, respectively. The magnitude of the change in this average is approximately
proportional to the average deviation y0, whether this deviation is small or large.

We can apply these conclusions to the average of E = K + U as the path departs from the
horizontal. For paths above the horizontal, such as C, D, and E in Fig. 6, the averages of both
K and U increase with deviation from the horizontal; these increases have no limit for higher
and higher paths. Therefore, no upward trajectory minimizes the average of K + U. In
contrast, for paths that deviate downward slightly from the horizontal, the average K initially
increases slower than the average U decrease, leading to a reduction in their sum. For paths
that dip further, however, the increase in the average kinetic energy (related to the square of
the path length) overwhelms the decrease in the average potential energy (which decreases
only as y0). So there is a minimum of the average of K + U for some path below the
horizontal. The path below the horizontal that satisfies this minimum is clearly not the
trajectory observed for a pitched ball!

Suppose instead we ask how the average of the difference K – U behaves for paths that
deviate from the horizontal. By an argument similar to that in the preceding paragraph, we
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see that no path below the horizontal can have a minimum average of the difference. But
there exists a path, such as D, above the horizontal for which the average of K – U is a
minimum. For the special case of vertical launch, students can explore this conclusion
interactively using tutorial software.23

(b) Analytic demonstration. We can check the preceding result analytically in the simplest case
we can imagine (see Fig. 7). In a uniform vertical gravitational field a marble of mass m rolls
from one horizontal surface to another via a smooth ramp so narrow that we may neglect its
width. In this system the potential energy changes just once, halfway between the initial and
final positions.

d d

A
C

v1

By1
y2

x

1 2

Figure 7. Motion across a potential energy step.

The worldline of the particle will be bent, corresponding to the reduced speed after the
marble mounts the ramp, as shown in Fig. 8. We require that the total travel time from
position A to position C have a fixed value ttotal and check whether minimizing the time
average of the difference K – U leads to conservation of energy.

K −U( )avg =
1
ttotal

K −U( )1t1 + K −U( )2 t2[ ] . (30)

We define a new symbol S, called the action:
S ≡ K −U( )avg t total = K −U( )1t1 + K −U( )2 t2 . (31)

We can use the notation in Fig. 8 to write Eq. (31) in the form

S =
1
2
Mv1

2t1 −mgy1t1 +
1
2
Mv2

2t2 −mgy2t2

  =
Md2

2t
−mgy1t +

Md2

2 t total − t( )
−mgy2 t total − t( ).

(32)

where M is given by Eq. (16).
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t

ttotal

A fixed

C fixed

d 2d x

B

1

2
ttotal – t

Figure 8. Broken worldline of a marble rolling across steps connected by a

narrow ramp. The region on the right is shaded to represent the higher

potential energy of the marble on the second step

We require that the value of the action be a minimum with respect to the choice of the
intermediate time t:

dS
dt

= −
Md2

2t 2
−mgy1 +

Md2

2 ttotal − t( )2
+ mgy2 = 0. (33)

This result can be written as

dS
dt

= −
1
2
Mv1

2 + mgy1
 

 
 

 

 
 +

1
2
Mv2

2 + mgy2
 

 
 

 

 
 = 0. (34)

A simple rearrangement shows that Eq. (34) represents conservation of energy. We see that
energy conservation has been derived from the more fundamental principle of least action.
Equally important, the analysis has completely determined the worldline of the marble.

The action Eq. (31) can be generalized for a potential energy curve consisting of multiple
steps connected by smooth, narrow transitions, such as the one shown in Fig. 9:
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1
2

3 4
y1

y2
y3

y4

d d d d

Figure 9. A more complicated potential energy diagram,
leading in the limit to a potential energy curve that varies
smoothly with position.

S = K −U( )1t1 + K −U( )2 t2 + K −U( )3 t3 + K −U( )4 t4 . (35)

The argument leading to conservation of energy, Eq. (34), applies to every adjacent pair of
steps in the potential energy diagram. The computer can hunt for and find the minimum
value of S directly by varying the values of the intermediate times, as shown schematically in
Fig. 10.

A continuous potential energy curve can be regarded as the limiting case of that shown in
Fig. 9 as the number of steps increases without limit while the time along each step becomes
an increment ∆t. For the resulting potential energy curve the general expression for the action
S is

S ≡ L
entire
path

∫ dt = K −U( )
entire
path

∫ dt . (36)

Here L (= K – U for the cases we treat) is called the Lagrangian. The principle of least action
says that the value of the action S is a minimum for the actual motion of the particle, a
condition that leads not only to conservation of energy, but also to a unique specification of
the entire worldline.

More general forms of the principle of least action predict the motion of a particle in more
than one spatial dimension as well as the time development of systems containing many
particles. The principle of least action can even predict the motion of some systems in which
energy is not conserved.24 The Lagrangian L can be generalized so that the principle of least
action can describe relativistic motion (Ref.7) and can be used to derive Maxwell’s equations,
Schroedinger’s wave equation, the diffusion equation, geodesic worldlines in general
relativity, and steady electric currents in circuits, among many other applications.
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1
2 3 4

t

x

Fixed

Fixed

B

C

D
E

A

Figure 10. The computer program temporarily fixes the end events of a two-

segment section, say events B and D, then varies the time coordinate of the

middle event C to find the minimum value of the total S, then varies D while

C is kept fixed, and so on. (The end-events A and E remain fixed.) The

computer cycles through this process repeatedly until the value of S does not

change further because this value has reached a minimum for the worldline

as a whole. The resulting worldline approximates the one taken by the

particle.

We have not provided a proof of the principle of least action in Newtonian mechanics. A
fundamental proof rests on nonrelativistic quantum mechanics, for instance that outlined by
Tyc25 which uses the deBroglie relation to show that the phase change of a quantum wave
along any worldline is equal to S h, where S is the classical action along that worldline.
Starting with this result, Feynman and Hibbs have shown26 that the sum-over-all-paths
description of quantum motion reduces seamlessly to the classical principle of least action as
the masses of particles increase.

Once students have mastered the principle of least action, it is easy to motivate the
introduction of nonrelativistic quantum mechanics. Quantum mechanics simply assumes that
the electron explores all the possible worldlines considered in finding the Newtonian
worldline of least action.
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IX. LAGRANGE’S EQUATIONS
Lagrange’s equations are conventionally derived from the principle of least action using the
calculus of variations.27 The derivation analyzes the worldline as a whole. However, the
expression for the action is a scalar; if the value of the sum is minimum along the entire
worldline, then the contribution along each incremental segment of the worldline also must
be a minimum. This simplifying insight, due originally to Euler, allows the derivation of
Lagrange’s equations using elementary calculus (Ref. 14). The appendix shows an alternative
derivation of Lagrange’s equation directly from Newton’s equations.
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APPENDIX: DERIVATION OF LAGRANGE’S EQUATIONS FROM NEWTON’S
SECOND LAW
Both Newton’s second law and Lagrange’s equations can be derived from the more
fundamental principle of least action (Ref. 13, 14). Here we move from one derived
formulation to the other, showing that Lagrange’s equation leads to F = ma (and vice versa)
for particle motion in one dimension.28

If we use the definition of force in Eq. (10), we can write Newton’s second law as:

F = −
dU
dx

= m˙ ̇ x . (A1)

We assume that m is constant and rearrange and recast Eq. (A1) to read:
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On the right-hand side Eq. (A2) we add terms whose partial derivatives are equal to zero:
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We then set L = K – U, which leads to the Lagrange equation in one dimension:

∂L
∂x

−
d
dt

∂L
∂˙ x 

 

  
 

  = 0 . (A4)
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This sequence of steps can be reversed to show that Lagrange’s equation leads to Newton’s
second law of motion for conservative potentials.
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