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We derive Lagrange’s equations of motion from the principle of least action using elementary
calculus rather than the calculus of variations. We also demonstrate the conditions under which
energy and momentum are constants of the motion. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

The equations of motion1 of a mechanical system can b
derived by two different mathematical methods—vector
and analytical. Traditionally, introductory mechanics beg
with Newton’s laws of motion which relate the force, m
mentum, and acceleration vectors. But we frequently nee
describe systems, for example, systems subject to constr
without friction, for which the use of vector forces is cum
bersome. Analytical mechanics in the form of the Lagran
equations provides an alternative and very powerful tool
obtaining the equations of motion. Lagrange’s equations
ploy a single scalar function, and there are no annoying v
tor components or associated trigonometric manipulatio
Moreover, the analytical approach using Lagrange’s eq
tions provides other capabilities2 that allow us to analyze a
wider range of systems than Newton’s second law.

The derivation of Lagrange’s equations in advanced m
chanics texts3 typically applies the calculus of variations t
the principle of least action. The calculus of variation b
longs to important branches of mathematics, but is
widely taught or used at the college level. Students of
encounter the variational calculus first in an advanced
chanics class, where they struggle to apply a new mathem
cal procedure to a new physical concept. This paper prov
a derivation of Lagrange’s equations from the principle
least action using elementary calculus,4 which may be em-
ployed as an alternative to~or a preview of! the more ad-
vanced variational calculus derivation.

In Sec. II we develop the mathematical background
deriving Lagrange’s equations from elementary calcul
Section III gives the derivation of the equations of moti
for a single particle. Section IV extends our approach
demonstrate that the energy and momentum are constan
the motion. The Appendix expands Lagrange’s equation
multiparticle systems and adds angular momentum as an
ample of generalized momentum.

II. DIFFERENTIAL APPROXIMATION TO THE
PRINCIPLE OF LEAST ACTION

A particle moves along thex axis with potential energy
V(x) which is time independent. For this special case
Lagrange function or LagrangianL has the form:5

L~x,v !5T2V5 1
2mv22V~x!. ~1!
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The actionS along a world line is defined as

S5Ealong the
world line

L~x,v !dt. ~2!

The principle of least action requires that between a fix
initial event and a fixed final event the particle follow
world line such that the actionS is a minimum.

The actionS is an additive scalar quantity, and is the su
of contributionsLDt from each segment along the enti
world line between two events fixed in space and time. B
causeS is additive, it follows that the principle of least actio
must hold for each individual infinitesimal segment of t
world line.6 This property allows us to pass from the integr
equation for the principle of least action, Eq.~2!, to
Lagrange’s differential equation, valid anywhere along t
world line. It also allows us to use elementary calculus
this derivation.

We approximate a small section of the world line by tw
straight-line segments connected in the middle~Fig. 1! and
make the following approximations: The average posit
coordinate in the Lagrangian along a segment is at the m
point of the segment.7 The average velocity of the particle i
equal to its displacement across the segment divided by
time interval of the segment. These approximations app
to segmentA in Fig. 1 yield the average LagrangianLA and
actionSA contributed by this segment:

LA[LS x11x2

2
,
x22x1

Dt D , ~3a!

SA'LADt5LS x11x2

2
,
x22x1

Dt DDt, ~3b!

with similar expressions forLB andSB along segmentB.

III. DERIVATION OF LAGRANGE’S EQUATION

We employ the approximations of Sec. II to deriv
Lagrange’s equations for the special case introduced th
As shown in Fig. 2, we fix events 1 and 3 and vary thex
coordinate of the intermediate event to minimize the act
between the outer two events.

For simplicity, but without loss of generality, we choos
the time incrementDt to be the same for each segmen
510© 2004 American Association of Physics Teachers
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which also equals the time between the midpoints of the
segments. The average positions and velocities along
mentsA andB are

xA5
x11x

2
, vA5

x2x1

Dt
, ~4a!

xB5
x1x3

2
, vB5

x32x

Dt
. ~4b!

The expressions in Eq.~4! are all functions of the single
variablex. For later use we take the derivatives of Eq.~4!
with respect tox:

dxA

dx
5

1

2
,

dvA

dx
51

1

Dt
, ~5a!

dxB

dx
5

1

2
,

dvB

dx
52

1

Dt
. ~5b!

Let LA andLB be the values of the Lagrangian on segme
A and B, respectively, using Eq.~4!, and label the summed
action across these two segments asSAB :

Fig. 1. An infinitesimal section of the world line approximated by tw
straight line segments.

Fig. 2. Derivation of Lagrange’s equations from the principle of least act
Points 1 and 3 are on the true world line. The world line between them
approximated by two straight line segments~as in Fig. 1!. The arrows show
that thex coordinate of the middle event is varied. All other coordinates
fixed.
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SAB5LADt1LBDt. ~6!

The principle of least action requires that the coordinates
the middle eventx be chosen to yield the smallest value
the action between the fixed events 1 and 3. If we set
derivative ofSAB with respect tox equal to zero8 and use the
chain rule, we obtain

dSAB

dx
505

]LA

]xA

dxA

dx
Dt1

]LA

]vA

dvA

dx
Dt1

]LB

]xB

dxB

dx
Dt

1
]LB

]vB

dvB

dx
Dt. ~7!

We substitute Eq.~5! into Eq.~7!, divide through byDt, and
regroup the terms to obtain

1

2 S ]LA

]xA
1

]LB

]xB
D2

1

Dt S ]LB

]vB
2

]LA

]vA
D50. ~8!

To first order, the first term in Eq.~8! is the average value
of ]L/]x on the two segmentsA and B. In the limit Dt
→0, this term approaches the value of the partial derivat
at x. In the same limit, the second term in Eq.~8! becomes
the time derivative of the partial derivative of the Lagrangi
with respect to velocityd(]L/]v)/dt. Therefore in the limit
Dt→0, Eq. ~8! becomes the Lagrange equation inx:

]L

]x
2

d

dt S ]L

]v D50. ~9!

We did not specify the location of segmentsA andB along
the world line. The additive property of the action implie
that Eq.~9! is valid for every adjacent pair of segments.

An essentially identical derivation applies to any partic
with one degree of freedom in any potential. For examp
the single anglew tracks the motion of a simple pendulum
so its equation of motion follows from Eq.~9! by replacingx
with w without the need to take vector components.

IV. MOMENTUM AND ENERGY AS CONSTANTS
OF THE MOTION

A. Momentum

We consider the case in which the Lagrangian does
depend explicitly on thex coordinate of the particle~for ex-
ample, the potential is zero or independent of position!. Be-
cause it does not appear in the Lagrangian, thex coordinate
is ‘‘ignorable’’ or ‘‘cyclic.’’ In this case a simple and well-
known conclusion from Lagrange’s equation leads to the m
mentum as a conserved quantity, that is, a constant of
tion. Here we provide an outline of the derivation.

For a Lagrangian that is only a function of the velocit
L5L(v), Lagrange’s equation~9! tells us that the time de
rivative of ]L/]v is zero. From Eq.~1!, we find that
]L/]v5mv, which implies that thex momentum,p5mv, is
a constant of the motion.

This usual consideration can be supplemented or repla
by our approach. If we repeat the derivation in Sec. III w
L5L(v) ~perhaps as a student exercise to reinforce und
standing of the previous derivation!, we obtain from the prin-
ciple of least action

dSAB

dx
505

]LA

]vA

dvA

dx
Dt1

]LB

]vB

dvB

dx
Dt. ~10!

.
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We substitute Eq.~5! into Eq.~10! and rearrange the terms t
find:

]LA

]vA
5

]LB

]vB

or

pA5pB . ~11!

Again we can use the arbitrary location of segmentsA andB
along the world line to conclude that the momentump is a
constant of the motion everywhere on the world line.

B. Energy

Standard texts9 obtain conservation of energy by exami
ing the time derivative of a Lagrangian that does not dep
explicitly on time. As pointed out in Ref. 9, this lack o
dependence of the Lagrangian implies the homogeneity
time: temporal translation has no influence on the form of
Lagrangian. Thus conservation of energy is closely c
nected to the symmetry properties of nature.10 As we will
see, our elementary calculus approach offers an alterna
way11 to derive energy conservation.

Consider a particle in a time-independent potentialV(x).
Now we vary the time of the middle event~Fig. 3!, rather
than its position, requiring that this time be chosen to mi
mize the action.

For simplicity, we choose thex increments to be equa
with the valueDx. We keep the spatial coordinates of a
three events fixed while varying the time coordinate of
middle event and obtain

vA5
Dx

t2t1
, vB5

Dx

t32t
. ~12!

These expressions are functions of the single variablet, with
respect to which we take the derivatives

dvA

dt
52

Dx

~ t2t1!2
52

vA

t2t1
, ~13a!

and

dvB

dt
5

Dx

~ t32t !2
5

vB

t32t
. ~13b!

Fig. 3. A derivation showing that the energy is a constant of the mot
Points 1 and 3 are on the true world line, which is approximated by
straight line segments~as in Figs. 1 and 2!. The arrows show that thet
coordinate of the middle event is varied. All other coordinates are fixed
512 Am. J. Phys., Vol. 72, No. 4, April 2004
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Despite the form of Eq.~13!, the derivatives of velocities are
not accelerations, because thex separations are held consta
while the time is varied.

As before@see Eq.~6!#,

SAB5LA~ t2t1!1LB~ t32t !. ~14!

Note that students sometimes misinterpret the time dif
ences in parentheses in Eq.~14! as arguments ofL.

We find the value of the timet for the action to be a
minimum by setting the derivative ofSAB equal to zero:

dSAB

dt
505

]LA

]vA

dvA

dt
~ t2t1!1LA1

]LB

]vB

dvB

dt
~ t32t !2LB .

~15!

If we substitute Eq.~13! into Eq. ~15! and rearrange the
result, we find

]LA

]vA
vA2LA5

]LB

]vB
vB2LB . ~16!

Because the action is additive, Eq.~16! is valid for every
segment of the world line and identifies the functio
v]L/]v2L as a constant of the motion. By substituting E
~1! for the Lagrangian intov]L/]v2L and carrying out the
partial derivatives, we can show that the constant of the m
tion corresponds to the total energyE5T1V.

V. SUMMARY

Our derivation and the extension to multiple degrees
freedom in the Appendix allow the introduction o
Lagrange’s equations and its connection to the principle
least action without the apparatus of the calculus of va
tions. The derivations also may be employed as a preview
Lagrangian mechanics before its more formal derivation
ing variational calculus.

One of us~ST! has successfully employed these deriv
tions and the resulting Lagrange equations with a sm
group of talented high school students. They used the eq
tions to solve problems presented in the Physics Olymp
The excitement and enthusiasm of these students leads
hope that others will undertake trials with larger numbe
and a greater variety of students.
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APPENDIX: EXTENSION TO MULTIPLE DEGREES
OF FREEDOM

We discuss Lagrange’s equations for a system with m
tiple degrees of freedom, without pausing to discuss
usual conditions assumed in the derivations, because t
can be found in standard advanced mechanics texts.3

Consider a mechanical system described by the follow
Lagrangian:

L5L~q1 ,q2 ,...,qs ,q̇1 ,q̇2 ,...,q̇s ,t !, ~17!

where theq are independent generalized coordinates and
dot overq indicates a derivative with respect to time. Th

.
o
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subscripts indicates the number of degrees of freedom of
system. Note that we have generalized to a Lagrangian th
an explicit function of timet. The specification of all the
values of all the generalized coordinatesqi in Eq. ~17! de-
fines a configuration of the system. The actionSsummarizes
the evolution of the system as a whole from an initial co
figuration to a final configuration, along what might be call
a world line through multidimensional space–time. Symbo
cally we write:

S5Einitial configuration
to final configuration

L~q1 ,q2 ...qs ,q̇1 ,q̇2 ...q̇s ,t !dt.

~18!

The generalized principle of least action requires t
the value ofS be a minimum for the actual evolution o
the system symbolized in Eq.~18!. We make an argu-
ment similar to that in Sec. III for the one-dimension
motion of a particle in a potential. If the principle of lea
action holds for the entire world line through the inte
mediate configurations ofL in Eq. ~18!, it also holds for an
infinitesimal change in configuration anywhere on this wo
line.

Let the system pass through three infinitesimally clo
configurations in the ordered sequence 1, 2, 3 such tha
generalized coordinates remain fixed except for a sin
coordinate q at configuration 2. Then the increment
the action from configuration 1 to configuration 3 can
considered to be a function of the single variableq. As a
consequence, for each of thes degrees of freedom, we
can make an argument formally identical to that carr
out from Eq.~3! through Eq.~9!. Repeateds times, once for
each generalized coordinateqi , this derivation leads tos
scalar Lagrange equations that describe the motion of
system:

]L

]qi
2

d

dt S ]L

]q̇i
D50 ~ i 51,2,3,...,s!. ~19!

The inclusion of time explicitly in the Lagrangian~17! does
not affect these derivations, because the time coordina
held fixed in each equation.

Suppose that the Lagrangian~17! is not a function of a
given coordinateqk . An argument similar to that in Sec
IV A tells us that the corresponding generalized moment
]L/]q̇k is a constant of the motion. As a simple example
such a generalized momentum, we consider the angular
mentum of a particle in a central potential. If we use po
coordinatesr, u to describe the motion of a single particle
the plane, then the Lagrangian has the formL5T2V
5m( ṙ 21r 2u̇2)/22V(r ), and the angular momentum of th
system is represented by]L/]u̇.

If the Lagrangian~17! is not an explicit function of time,
then a derivation formally equivalent to that in Sec. IV
~with time as the single variable! shows that the function
(( q̇1]L/]q̇i)2L, sometimes called12 the energy functionh,
is a constant of the motion of the system, which in the sim
cases we cover13 can be interpreted as the total energyE of
the system.

If the Lagrangian~17! depends explicitly on time, then
this derivation yields the equationdh/dt52]L/]t.
513 Am. J. Phys., Vol. 72, No. 4, April 2004
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1We take ‘‘equations of motion’’ to mean relations between the accele
tions, velocities, and coordinates of a mechanical system. See L. D.
dau and E. M. Lifshitz,Mechanics ~Butterworth-Heinemann, Oxford,
1976!, Chap. 1, Sec. 1.

2Besides its expression in scalar quantities~such as kinetic and potentia
energy!, Lagrangian quantities lead to the reduction of dimensionality o
problem, employ the invariance of the equations under point transfor
tions, and lead directly to constants of the motion using Noether’s th
rem. More detailed explanation of these features, with a compariso
analytical mechanics to vectorial mechanics, can be found in Corne
Lanczos,The Variational Principles of Mechanics~Dover, New York,
1986!, pp. xxi–xxix.

3Chapter 1 in Ref. 1 and Chap. V in Ref. 2; Gerald J. Sussman and
Wisdom,Structure and Interpretation of Classical Mechanics~MIT, Cam-
bridge, 2001!, Chap. 1; Herbert Goldstein, Charles Poole, and John Sa
Classical Mechanics~Addison–Wesley, Reading, MA, 2002!, 3rd ed.,
Chap. 2. An alternative method derives Lagrange’s equations f
D’Alambert principle; see Goldstein, Sec. 1.4.

4Our derivation is a modification of the finite difference technique e
ployed by Euler in his path-breaking 1744 work, ‘‘The method of findi
plane curves that show some property of maximum and minimum.’’ Co
plete references and a description of Euler’s original treatment can
found in Herman H. Goldstine,A History of the Calculus of Variations
from the 17th Through the 19th Century~Springer-Verlag, New York,
1980!, Chap. 2. Cornelius Lanczos~Ref. 2, pp. 49–54! presents an abbre
viated version of Euler’s original derivation using contemporary ma
ematical notation.

5R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures on
Physics~Addison–Wesley, Reading, MA, 1964!, Vol. 2, Chap. 19.

6See Ref. 5, p. 19-8 or in more detail, J. Hanc, S. Tuleja, and M. Hanc
‘‘Simple derivation of Newtonian mechanics from the principle of lea
action,’’ Am. J. Phys.71 ~4!, 386–391~2003!.

7There is no particular reason to use the midpoint of the segment in
Lagrangian of Eq.~2!. In Riemann integrals we can use any point on t
given segment. For example, all our results will be the same if we used
coordinates of either end of each segment instead of the coordinates o
midpoint. The repositioning of this point can be the basis of an exercis
test student understanding of the derivations given here.

8A zero value of the derivative most often leads to the world line of mi
mum action. It is possible also to have a zero derivative at an inflec
point or saddle point in the action~or the multidimensional equivalent in
configuration space!. So the most general term for our basic law is t
principle of stationary action. The conditions that guarantee the existe
of a minimum can be found in I. M. Gelfand and S. V. Fomin,Calculus of
Variations ~Prentice–Hall, Englewood Cliffs, NJ, 1963!.

9Reference 1, Chap. 2 and Ref. 3, Goldsteinet al., Sec. 2.7.
10The most fundamental justification of conservation laws comes from s

metry properties of nature as described by Noether’s theorem. Hence
ergy conservation can be derived from the invariance of the action
temporal translation and conservation of momentum from invariance
der space translation. See N. C. Bobillo-Ares, ‘‘Noether’s theorem in d
crete classical mechanics,’’ Am. J. Phys.56 ~2!, 174–177~1988! or C. M.
Giordano and A. R. Plastino, ‘‘Noether’s theorem, rotating potentials,
Jacobi’s integral of motion,’’ibid. 66 ~11!, 989–995~1998!.

11Our approach also can be related to symmetries and Noether’s theo
which is the main subject of J. Hanc, S. Tuleja, and M. Hancova, ‘‘Sy
metries and conservation laws: Consequences of Noether’s theorem,’’
J. Phys.~to be published!.

12Reference 3, Goldsteinet al., Sec. 2.7.
13For the case of generalized coordinates, the energy functionh is generally

not the same as the total energy. The conditions for conservation o
energy functionh are distinct from those that identifyh as the total energy.
For a detailed discussion see Ref. 12. Pedagogically useful comments
particular example can be found in A. S. de Castro, ‘‘Exploring a rhe
omic system,’’ Eur. J. Phys.21, 23–26 ~2000! and C. Ferrario and A.
Passerini, ‘‘Comment on Exploring a rheonomic system,’’ibid. 22, L11–
L14 ~2001!.
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