Deriving Lagrange’s equations using elementary calculus
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We derive Lagrange’s equations of motion from the principle of least action using elementary
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[. INTRODUCTION The actionS along a world line is defined as
The equations of motidnof a mechanical system can be _ L(x,v)dt @
derived by two different mathematical methods—vectorial N Wamg”tgg ULt

and analytical. Traditionally, introductory mechanics begins
with Newton’s laws of motion which relate the force, mo- The principle of least action requires that between a fixed
mentum, and acceleration vectors. But we frequently need tinitial event and a fixed final event the particle follow a
describe systems, for example, systems subject to constrainirld line such that the actio8is a minimum.
without friction, for which the use of vector forces is cum-  The actionSis an additive scalar quantity, and is the sum
bersome. Analytical mechanics in the form of the Lagrangeof contributionsLAt from each segment along the entire
equations provides an alternative and very powerful tool foworld line between two events fixed in space and time. Be-
obtaining the equations of motion. Lagrange’s equations emeauseSis additive, it follows that the principle of least action
ploy a single scalar function, and there are no annoying veanust hold for each individual infinitesimal segment of the
tor components or associated trigonometric manipulationswvorld line® This property allows us to pass from the integral
Moreover, the analytical approach using Lagrange’s equaequation for the principle of least action, E@2), to
tions provides other capabilitieshat allow us to analyze a Lagrange’s differential equation, valid anywhere along the
wider range of systems than Newton’s second law. world line. It also allows us to use elementary calculus in
The derivation of Lagrange’s equations in advanced methis derivation.
chanics textstypically applies the calculus of variations to  We approximate a small section of the world line by two
the principle of least action. The calculus of variation be-straight-line segments connected in the middiey. 1) and
longs to important branches of mathematics, but is notake the following approximations: The average position
widely taught or used at the college level. Students oftercoordinate in the Lagrangian along a segment is at the mid-
encounter the variational calculus first in an advanced mepoint of the segmerltThe average velocity of the particle is
chanics class, where they struggle to apply a new mathematqual to its displacement across the segment divided by the
cal procedure to a new physical concept. This paper providetime interval of the segment. These approximations applied
a derivation of Lagrange’s equations from the principle ofto segmenf in Fig. 1 yield the average Lagrangian, and
least action using elementary calcufushich may be em-  action S, contributed by this segment:
ployed as an alternative t@r a preview of the more ad-

vanced variational calculus derivation. [ X1EXy X=Xy
In Sec. Il we develop the mathematical background for La=L 2 At ) (3a)
deriving Lagrange's equations from elementary calculus.
Section Il gives the derivation of the equations of motion X1+t Xa Xp—Xyg
for a single particle. Section IV extends our approach to Sa~ LAAt:L( 2 At )A , (3b)

demonstrate that the energy and momentum are constants of

the motion. The Appendix expands Lagrange’s equations twith similar expressions fokg and Sz along segmenB.
multiparticle systems and adds angular momentum as an ex-

ample of generalized momentum.

Ill. DERIVATION OF LAGRANGE'S EQUATION

[I. DIFFERENTIAL APPROXIMATION TO THE

PRINCIPLE OF LEAST ACTION We employ the approximations of Sec. Il to derive

Lagrange’s equations for the special case introduced there.
As shown in Fig. 2, we fix events 1 and 3 and vary the

A particle moves along tha axis with potential energy coordinate of the intermediate event to minimize the action
V(x) which is time independent. For this special case theoetween the outer two events

Lagrange function or Lagrangidnhas the fornt For simplicity, but without loss of generality, we choose

L(x,0)=T—V=3mv?—V(x). (1) the time incrementAt to be the same for each segment,
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’tA SAB: LAAt+ LBAt (6)

The principle of least action requires that the coordinates of
the middle evenk be chosen to yield the smallest value of

the action between the fixed events 1 and 3. If we set the
derivative ofS,g with respect toc equal to zerdand use the
chain rule, we obtain
ds dla dX dLla dv dlg dx
AB:O:_A_A +_A_AAt+_B_BAt
dx IXp dXx dup dXx dxg dx
&LB dUB
5;;”25;At. (ﬂ
—& » X We substitute Eq(5) into Eq.(7), divide through byAt, and
X1 X2 X3 regroup the terms to obtain

()

Fig. 1. An infinitesimal section of the world line approximated by two 1 (9LA+ dLg 1 [dlg dLa|
Xy OXg) At B

straight line segments. 2

To first order, the first term in Ed8) is the average value
which also equals the time between the midpoints of the tw®f JL/Jdx on the two segmenté and B. In the limit At
segments. The average positions and velocities along seg-0, this term approaches the value of the partial derivative
mentsA andB are at x. In the same limit, the second term in E) becomes
the time derivative of the partial derivative of the Lagrangian

&UB aUA

XA:X1+X, UA:X_Xl, (43  with respect to velocityl(JL/dv)/dt. Therefore in the limit
2 At At—0, Eq.(8) becomes the Lagrange equationxin
X+ X3 X3—X JL d(dL
XB:Tv UB:A—I' (4b) 5—m(%>20. 9)

The expressions in Ed4) are all functions of the single \ye did not specify the location of segmemtsand B along
variablex. For later use we take the derivatives of B4)  the world line. The additive property of the action implies

with respect tox: that Eq.(9) is valid for every adjacent pair of segments.
dx, 1 doua 1 ‘An essentially identical derivation applies to any particle
ax 2" dx + At (58  with one degree of freedom in any potential. For example,
the single anglep tracks the motion of a simple pendulum,
dxg 1 duvg 1 so its equation of motion follows from E¢) by replacingx

"2 dx - AU (5b) with ¢ without the need to take vector components.

Let Lo andLg be the values of the Lagrangian on segmentsy, MOMENTUM AND ENERGY AS CONSTANTS

A a_nd B, respectively, using Eq4), anq label the summed OF THE MOTION
action across these two segmentsSas:

A. Momentum

A We consider the case in which the Lagrangian does not
t depend explicitly on the coordinate of the particl€or ex-

3 ample, the potential is zero or independent of posjti@e-

O cause it does not appear in the Lagrangian,xticeordinate

At B is “ignorable” or “cyclic.” In this case a simple and well-
known conclusion from Lagrange’s equation leads to the mo-
mentum as a conserved quantity, that is, a constant of mo-
tion. Here we provide an outline of the derivation.

For a Lagrangian that is only a function of the velocity,
L=L(v), Lagrange’s equatio®) tells us that the time de-
rivative of dL/dv is zero. From Eq.(1), we find that
dL/dv=mu, which implies that thec momentump=mo, is
a constant of the motion.

This usual consideration can be supplemented or replaced

e > by our approach. If we repeat the derivation in Sec. Il with
X1 X X3 L=L(v) (perhaps as a student exercise to reinforce under-

Fig. 2. Derivation of Lagrange’s equations from the principle of least action.SFa‘ndlng of the p_rewous derivatiprwe obtain from the prin-
Points 1 and 3 are on the true world line. The world line between them is,c'pIe of least action

At

|
|
{4
\

approximated by two straight line segmefds in Fig. 2. The arrows show
that thex coordinate of the middle event is varied. All other coordinates are % =0= E % E %AL (10)
fixed. dx dup dx dvg dx
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A Despite the form of Eq13), the derivatives of velocities are

not accelerations, because theeparations are held constant
while the time is varied.
ke £3 As before[see Eq(6)],
* Sag=La(t—t1) +Lg(tz—1). (14
t Note that students sometimes misinterpret the time differ-
A * ences in parentheses in H44) as arguments df.
t We find the value of the timé for the action to be a
1
1 ‘ minimum by setting the derivative @,z equal to zero:
ds JdL, du JdLg du
>~ “dt =07 g ar (LAt G S (a0 L.
X A B
|Ax IAX (15)

Fig. 3. A derivation showing that the energy is a constant of the motion.If we substitute Eq.(13) into Eg. (15 and rearrange the
Points 1 and 3 are on the true world line, which is approximated by tworesult, we find
straight line segment&s in Figs. 1 and 2 The arrows show that the

coordinate of the middle event is varied. All other coordinates are fixed. N dlg
_UA_LA:_UB_LB- (16)
aUA {'}UB
We substitute Eq(5) into Eq.(10) and rearrange the terms to Because the action is additive, EQ.6) is valid for every
find: segment of the world line and identifies the function
vdlL/dv—L as a constant of the motion. By substituting Eq.
E: E (1) for the Lagrangian int@ dL/dv —L and carrying out the
dua dug partial derivatives, we can show that the constant of the mo-
or tion corresponds to the total enerBy=T+V.
Pa~Pe: D\ suMmary
Again we can use the arbitrary location of segmextendB '
along the world line to conclude that the momentpris a Our derivation and the extension to multiple degrees of
constant of the motion everywhere on the world line. freedom in the Appendix allow the introduction of
Lagrange’s equations and its connection to the principle of
B. Energy least action without the apparatus of the calculus of varia-

& . . . tions. The derivations also may be employed as a preview of
_ Standard textSobtain conservation of energy by examin- | aqrangian mechanics before its more formal derivation us-
ing the time derivative of a Lagrangian that does not depen g variational calculus.

explicitly on time. As pointed out in Ref. 9, this lack of ~ “5ne of ys(ST) has successfully employed these deriva-

dependence of the Lagrangian implies the homogeneity &fons and the resulting Lagrange equations with a small
time: temporal translation has no influence on the form of thegroup of talented high school students. They used the equa-
Lagrangian. Thus conservation of energy is closely congions 1o solve problems presented in the Physics Olympiad.

nected to the symmetry properties of nattité\s we will e excitement and enthusiasm of these students leads us to
see, our elementary calculus approach offers an altematiigyne that others will undertake trials with larger numbers
way'! to derive energy conservation. and a greater variety of students.

Consider a particle in a time-independent poteriiéx).
Now we vary the time of the middle eveffig. 3), rather
than its position, requiring that this time be chosen to mini-ACKNOWLEDGMENT

mize the action. )
For simplicity, we choose th& increments to be equal,  he authors would like to express thanks to an anonymous

with the valueAx. We keep the spatial coordinates of all referee for his or her valuable criticisms and suggestions,
three events fixed while varying the time coordinate of theVhich improved this paper.
middle event and obtain

AX AX APPENDIX: EXTENSION TO MULTIPLE DEGREES
AT VBTt (12 OF FREEDOM
1 3
These expressions are functions of the single varigiéth We discuss Lagrange’s equations for a system with mul-
respect to which we take the derivatives tiple degrees of freedom, without pausing to discuss the
usual conditions assumed in the derivations, because these
dva Ax  va can be found in standard advanced mechanics fexts.
—_ = =— , (133 ; ; . .
dt (t—ty)2 t—t, Consider a mechanical system described by the following
Lagrangian:
and .. .
L:L(qliqZ!"'vqqu11q21"'!q3!t)v (17)
%: L __Us ) (13p  Where theq are independent generalized coordinates and the
dt  (t;—t)2 tz—t dot overq indicates a derivative with respect to time. The
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subscripts indicates the number of degrees of freedom of the
system. Note that we have generalized to a Lagrangian that i
an explicit function of timet. The specification of all the
values of all the generalized coordinatgsin Eq. (17) de-
fines a configuration of the system. The act®summarizes
the evolution of the system as a whole from an initial con-
figuration to a final configuration, along what might be called
a world line through multidimensional space—time. Symboli-
cally we write:

S= initial configuration L(ql'qZ'"qS'ql’qZ"'qS't)dt'
to final configuration
(18)

The generalized principle of least action requires that
the value ofS be a minimum for the actual evolution of
the system symbolized in Eq18). We make an argu-
ment similar to that in Sec. Il for the one-dimensional
motion of a particle in a potential. If the principle of least
action holds for the entire world line through the inter-
mediate configurations df in Eq. (18), it also holds for an
infinitesimal change in configuration anywhere on this world
line.

Let the system pass through three infinitesimally close

dElectronic mail: jozef.hanc@tuke.sk
YElectronic mail: eftaylor@mit.edu; http://www.eftaylor.com

Electronic mail: tuleja@stonline.sk
We take “equations of motion” to mean relations between the accelera-
tions, velocities, and coordinates of a mechanical system. See L. D. Lan-
dau and E. M. Lifshitz,Mechanics (Butterworth-Heinemann, Oxford,
1976, Chap. 1, Sec. 1.
2Besides its expression in scalar quantitieach as kinetic and potential
energy, Lagrangian quantities lead to the reduction of dimensionality of a
problem, employ the invariance of the equations under point transforma-
tions, and lead directly to constants of the motion using Noether’s theo-
rem. More detailed explanation of these features, with a comparison of
analytical mechanics to vectorial mechanics, can be found in Cornelius
Lanczos, The Variational Principles of MechanicéDover, New York,
1986, pp. XXi—xXiX.
SChapter 1 in Ref. 1 and Chap. V in Ref. 2; Gerald J. Sussman and Jack
Wisdom, Structure and Interpretation of Classical Mechanid4IT, Cam-
bridge, 200}, Chap. 1; Herbert Goldstein, Charles Poole, and John Safko,
Classical MechanicgAddison—Wesley, Reading, MA, 20023rd ed.,
Chap. 2. An alternative method derives Lagrange’s equations from
D’Alambert principle; see Goldstein, Sec. 1.4.
“Our derivation is a modification of the finite difference technique em-
ployed by Euler in his path-breaking 1744 work, “The method of finding
plane curves that show some property of maximum and minimum.” Com-
plete references and a description of Euler’'s original treatment can be
found in Herman H. GoldstineA History of the Calculus of Variations
from the 17th Through the 19th Centuf$pringer-Verlag, New York,

configurations in the ordered sequence 1, 2, 3 such that all1980, Chap. 2. Cornelius LanczdRef. 2, pp. 49-54presents an abbre-
generalized coordinates remain fixed except for a single viated version of Euler’s original derivation using contemporary math-

coordinate q at configuration 2. Then the increment of
the action from configuration 1 to configuration 3 can be
considered to be a function of the single variagleAs a
consequence, for each of the degrees of freedom, we
can make an argument formally identical to that carried
out from Eq.(3) through Eq.(9). Repeated times, once for
each generalized coordinatg, this derivation leads t®

scalar Lagrange equations that describe the motion of the

system:
L d L —0 (=123 19
a_qi_& (9_q| = (i=1,2,3,..9). (19

The inclusion of time explicitly in the Lagrangidi7) does

ematical notation.

R. P. Feynman, R. B. Leighton, and M. Sandlee Feynman Lectures on
Physics(Addison—Wesley, Reading, MA, 19§4/0l. 2, Chap. 19.

See Ref. 5, p. 19-8 or in more detail, J. Hanc, S. Tuleja, and M. Hancova,
“Simple derivation of Newtonian mechanics from the principle of least
action,” Am. J. Phys71 (4), 386—391(2003.

"There is no particular reason to use the midpoint of the segment in the
Lagrangian of Eq(2). In Riemann integrals we can use any point on the
given segment. For example, all our results will be the same if we used the
coordinates of either end of each segment instead of the coordinates of the
midpoint. The repositioning of this point can be the basis of an exercise to
test student understanding of the derivations given here.

8A zero value of the derivative most often leads to the world line of mini-
mum action. It is possible also to have a zero derivative at an inflection
point or saddle point in the actiofr the multidimensional equivalent in
configuration spade So the most general term for our basic law is the

not affect these derivations, because the time coordinate iyrinciple of stationary action. The conditions that guarantee the existence

held fixed in each equation.
Suppose that the Lagrangidh?) is not a function of a

given coordinateq, . An argument similar to that in Sec. ,

IV A tells us that the corresponding generalized momentum
dL/dq, is a constant of the motion. As a simple example of

of a minimum can be found in I. M. Gelfand and S. V. Fonialculus of
Variations (Prentice—Hall, Englewood Cliffs, NJ, 1963

Reference 1, Chap. 2 and Ref. 3, Goldsteiral, Sec. 2.7.

%The most fundamental justification of conservation laws comes from sym-
metry properties of nature as described by Noether’s theorem. Hence en-
ergy conservation can be derived from the invariance of the action by

such a generalized momentum, we consider the angular mo-+emporal translation and conservation of momentum from invariance un-

mentum of a particle in a central potential. If we use polar
coordinates, 6 to describe the motion of a single particle in
the plane, then the Lagrangian has the fotr=T—-V

=m(F2+r262)/2—V/(r), and the angular momentum of the *

system is represented Iy./76.

If the Lagrangian(17) is not an explicit function of time,
then a derivation formally equivalent to that in Sec.
(with time as the single variableshows that the function
(= q,dL/19G;) — L, sometimes calléd the energy functiot,
is a constant of the motion of the system, which in the simple
cases we covét can be interpreted as the total enefgpf
the system.

If the Lagrangian(17) depends explicitly on time, then
this derivation yields the equatiath/dt= —JL/dt.
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der space translation. See N. C. Bobillo-Ares, “Noether’s theorem in dis-
crete classical mechanics,” Am. J. Phg& (2), 174—-177(1988 or C. M.
Giordano and A. R. Plastino, “Noether’s theorem, rotating potentials, and
Jacobi’s integral of motion,Tbid. 66 (11), 989—-995(1998.

10our approach also can be related to symmetries and Noether’s theorem,
which is the main subject of J. Hanc, S. Tuleja, and M. Hancova, “Sym-
metries and conservation laws: Consequences of Noether’s theorem,” Am.
J. Phys(to be published

IVB 12Reference 3, Goldsteiet al, Sec. 2.7.
BFor the case of generalized coordinates, the energy funktismenerally

not the same as the total energy. The conditions for conservation of the
energy functiorh are distinct from those that identifyas the total energy.

For a detailed discussion see Ref. 12. Pedagogically useful comments on a
particular example can be found in A. S. de Castro, “Exploring a rheon-
omic system,” Eur. J. Phys21, 23-26(2000 and C. Ferrario and A.
Passerini, “Comment on Exploring a rheonomic systeibjtl. 22, L11—

L14 (2009).
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