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Derivation of Lagrange's Equation from F = ma
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Here is a quick derivation of Lagrange's equation from Newton's second law for motion in one

dimension, adapted from a similar derivation by Zeldovich and Myskis.
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For one-dimensional motion in a conservative potential V(x), the force can be written:

F =−
dV

dx
(1)

Then Newton's second law F = ma becomes

  
−

dV

dx
= m

d2x

dt 2 (2)

or, after a simple rearrangement:

  

d −V( )
dx

−
d

dt
m ˙ x ( ) = 0 (3)

where ˙ x  is the time derivative of x.  After further arrangement we have
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Now add, under the derivative signs, terms whose derivatives are equal to zero, converting to
partial derivatives in the process:
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which is the same as the Lagrange equations:
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where

  
L ≡

m ˙ x 2
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Equation (6) is Lagrange's equation in one dimension.

Of course, the sequence of steps above that lead from F = ma to Lagrange's equation can be
reversed to lead from Lagrange's equation to F = ma.
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