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We examine the nature of the stationary character of the Hamilton action S for a space-time
trajectory �worldline� x�t� of a single particle moving in one dimension with a general
time-dependent potential energy function U�x , t�. We show that the action is a local minimum for
sufficiently short worldlines for all potentials and for worldlines of any length in some potentials.
For long enough worldlines in most time-independent potentials U�x�, the action is a saddle point,
that is, a minimum with respect to some nearby alternative curves and a maximum with respect to
others. The action is never a true maximum, that is, it is never greater along the actual worldline than
along every nearby alternative curve. We illustrate these results for the harmonic oscillator, two
different nonlinear oscillators, and a scattering system. We also briefly discuss two-dimensional
examples, the Maupertuis action, and newer action principles. © 2007 American Association of Physics
Teachers.
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I. INTRODUCTION

Several authors1–12 have simplified and elaborated the ac-
tion principle and recommended that it be introduced earlier
into the physics curriculum. Their work allows us to see in
outline how to empower students early in their studies with
the fundamental yet simple extensions of Newton’s prin-
ciples of motion made by Maupertuis, Euler, Lagrange, Ja-
cobi, Hamilton, and others. The simplicity of the action prin-
ciple derives from its use of a scalar energy and time. Its
transparency comes from the use of numerical11 and
analytical12 methods of varying a trial worldline to find a
stationary value of the action, skirting not only the equations
of motion but also the advanced formalism of Lagrange and
others characteristic of upper level mechanics texts. The goal
of this paper is to discuss the conditions for which the sta-
tionary value of the action for an actual worldline is a mini-
mum or a saddle point.

For single-particle motion in one dimension �1D�, the
Hamilton action S is defined as the integral along an actual or
trial space-time trajectory �worldline� x�t� connecting two
specified events P and R,

S = �
P

R

L�x, ẋ,t�dt , �1�

where L is the Lagrangian, x is the position, t is the time, and
P�xP , tP� and R�xR , tR� are fixed initial and final space-time
events. A dot, as in ẋ, indicates the time derivative. The
Lagrangian L�x , ẋ , t� depends on t implicitly through x�t� and
may also depend on t explicitly, for example, through a time-
dependent potential. For simplicity we use Cartesian coordi-
nates throughout, but the methods and conclusions apply for
generalized coordinates.

The Hamilton action principle compares the numerical
value of the action S along the actual worldline to its value
along every adjacent curve �trial worldline� anchored to the
same initial and final events. These alternative curves are
arbitrary as long as they are piecewise smooth, have the

same end events, and are adjacent to �near to� a worldline
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that the particle will indeed follow. For example, the adjacent
curves need not conserve the total energy. The Hamilton ac-
tion principle says that with respect to all nearby curves the
action along the actual worldline is stationary, that is, it has
zero variation to first order; formally we write �S=0.
Whether or not this stationary value of the action is a local
minimum is determined by examining �2S and higher order
variations of the action with respect to the nearby curves, as
we will discuss in this paper.

Misconceptions concerning the stationary nature of the ac-
tion abound in the literature. Even Lagrange wrote that the
value of the action can be maximum,13 a common error14 of
which the authors of this paper have been guilty.12,15 Other
authors use extremum or extremal,16 which incorrectly in-
cludes a maximum and formally fails to include a saddle
point. �Mathematicians often use the �correct� term critical
instead of stationary, but because the former term has other
meanings in physics we use the latter.� A similar error mars
treatments of Fermat’s principle of optics, which is errone-
ously said to allow the travel time of a light ray between two
points to be a maximum.17

The present paper has three primary purposes: First it de-
scribes conditions under which the action is a minimum and
different conditions under which it is a saddle point. These
conditions involve second variations of the action. Some pio-
neers of the second variation theory of the calculus of varia-
tions are Legendre, Jacobi, Weierstrass, Kelvin and Tait,
Mayer, and Culverwell.18 Although inspired by the early
work of Culverwell,21 our derivation of these conditions is
new, simpler, and more rigorous; it is also simpler than mod-
ern treatments.24,25 Second, this paper explains the results
with qualitative heuristic descriptions of how a particle re-
sponds to space-varying forces derived from the potential in
which it moves. �Those who prefer immediate immersion in
the formalism can begin with Sec. IV.� Third, it clarifies
these results and illustrates the variety of their consequences
by applying them to the harmonic oscillator, two nonlinear

oscillators, and a scattering system. Criteria used to decide
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the nature of the stationary value of the action are also useful
for other purposes in classical and semiclassical mechanics,28

but are not discussed in this paper.
Appendix A adapts the results to the important Maupertuis

action W. Appendix B gives examples of both Hamilton and
Maupertuis action for two-dimensional motion. Appendix C
discusses open questions on the stationary nature of action
for some newer action principles.

II. KINETIC FOCUS

This section introduces the concept of kinetic focus due to
Jacobi,22 which plays a central role in determining the nature
of the stationary action. We start with an analogous example
taken verbatim from Whittaker,36 an analysis of the relative
length along different paths. Whittaker employs the Mauper-
tuis action principle �discussed in our Appendix A�, which
requires fixed total energy along trial paths, not fixed travel
time as with the Hamilton action principle. In force-free sys-
tems the value of the Maupertuis action is proportional to the
path length. The term kinetic focus is defined formally later
in this section. Figures 1�a� and 1�b� illustrate this example.
Whittaker wrote that “A simple example illustrative of the
results obtained in this article is furnished by the motion of a
particle confined to a smooth sphere under no forces. The
trajectories are great-circles on the sphere and the �Mauper-
tuis� action taken along any path �whether actual or trial� is
proportional to the length of the path. The kinetic focus of
any point A is the diametrically opposite point A� on the
sphere, because any two great circles through A intersect
again �for the first time� at A�. The theorems of this article
amount, therefore in this case to the statement that an arc of
a great circle joining any two points A and B on the sphere is
the shortest distance from A to B when �and only when� the
point A� diametrically opposite to A does not lie on the arc,
that is, when the arc in question is less than half a great-
circle.”

The elaboration of this analogy is discussed in the captions
of Figs. 1�a� and 1�b� using equilibrium lengths of a rubber
band on a slippery spherical surface.

For a contrasting example, we apply a similar analysis to
free-particle motion in a flat plane. In this case the length of
the straight path connecting two points is a minimum no
matter how far apart the endpoints. A rubber band stretched
between the endpoints on a slippery surface will always snap
back when deflected in any manner and released. An alterna-
tive straight path that deviates slightly in direction at the
initial point A continues to diverge and does not cross the
original path again. Therefore no kinetic focus of the initial
point A exists for the original path.

Note that on both the sphere and the flat plane there is no
path of true maximum length between any two separated
points. The length of any path can be increased by adding
wiggles.

How do we find the kinetic focus? In Fig. 1�a� we place
the terminal point C at different points along a great circle
path between A and A�. When C lies between A and A�,
every nearby alternative path such as AEC is not a true path
�a path of minimum length�, because it does not lie along a
great circle. When terminal point C reaches A�, there is sud-
denly more than one alternative great circle path connecting
A and A�. �In this special case an infinite number of alterna-
tive great circle paths connect A and A�.� Any alternative

great circle path between A and A� can be moved sideways to
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coalesce with the original path ABA�. The kinetic focus is
defined by the existence of this coalescing alternative true
path. As the final point C moves away from the initial point
A, the kinetic focus A� is defined as the earliest terminal
point at which two true paths can coalesce.

The term kinetic focus in mechanics derives from an
37

Fig. 1. �a� On a sphere the great circle line ABC starting from the north pole
at A is the shortest distance between two points as long as it does not reach
the south pole at A�. On a slippery sphere a rubber band stretched between
A and C will snap back if displaced either locally, as at D, or by pulling the
entire line aside, as along AEC. The point A� is called the antipode of A or
in general the kinetic focus of A. We say that if a great circle path terminates
before the kinetic focus of its initial point, the length of the great circle path
is a minimum. �b� If the great circle ABA�G passes through antipode A� of
the initial point A, then the resulting line has a minimum length only when
compared with some alternative lines. For example on a slippery sphere a
rubber band stretched along this path will still snap back from local distor-
tion, as at D. However, if the entire rubber band is pulled to one side, as
along AFG, then it will not snap back, but rather slide over to the portion
AHG of a great circle down the backside of the sphere. With respect to paths
like AFG, the length of the great circle line ABA�G is a maximum. With
respect to all possible variations we say that the length of path ABA�G is a
saddle point. If a great circle path terminates beyond the kinetic focus of its
initial point, the length of the great circle path is a saddle point.
analogy to the focus in optics, that point A� at which rays
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emitted from an initial point A converge under some condi-
tions, such as interception by a converging lens.

This paper deals mainly with the action principle for the
Hamilton action S, which determines worldlines in space-
time for fixed end-events �that is, end-positions and travel
time� rather than the action principle for the Maupertuis ac-
tion W �see Appendix A�, which determines spatial orbits �as
well as space-time worldlines� for fixed end-positions and
total energy. The kinetic focus for the Hamilton action has a
use similar to that for the examples of the Maupertuis action
in Figs. 1�a� and 1�b�. We will show that a worldline has a
minimum action S if it terminates before reaching the kinetic
focus of its initial event. In contrast, a worldline that termi-
nates beyond the kinetic focus of the initial event P has an
action that is a saddle point.

We use the label P for the initial event on the worldline 0
�see Fig. 2�, Q for the kinetic focus of P on the worldline,
and R for a fixed but arbitrary event on the worldline that
terminates on worldline 0 and also terminates another true
worldline �#1 in Fig. 2� connecting P to R. For the Hamilton
action S our definition of the kinetic focus of a worldline is
the following. The kinetic focus Q of an earlier event P on a
true worldline is the event closest to P at which a second true
worldline, with slightly different velocity at P, intersects the
first worldline, in the limit for which the two worldlines coa-
lesce as their initial velocities at P are made equal.

The kinetic focus is central to the understanding of the
stationary nature of the action S, but its definition may seem
obscure. To preview the consequences of this definition, we
briefly discuss some examples that we will discuss later in
the paper. Figure 3 shows the true worldlines of the harmonic
oscillator, whose potential energy has the form U�x�
= � 1

2
�kx2. The harmonic oscillator is the single 1D case of the

definition of space-time kinetic focus with the following ex-
ceptional characteristic: every worldline originating at P in
Fig. 3 passes through the same recrossing point. The 2D
spatial paths on the sphere in Figs. 1�a� and 1�b� show the
same characteristic: Every great circle path starting at A
passes through the antipode at A�. In both cases we can find
the kinetic focus without taking the limit for which the ve-
locities at the initial point are equal and the two worldlines
coalesce, but we can take that limit. For the harmonic oscil-
lator this limit occurs when the amplitudes are made equal.
The harmonic oscillator will turn out to be the only excep-

Fig. 2. From the common initial event P we draw a true worldline 0 and a
second true worldline 1 that terminates at some event R on the original
worldline 0. The event nearest to P at which worldline 1 coalesces with
worldline 0 is the kinetic focus Q.
tion to many of the rules for the action.
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A more typical case is the quartic oscillator �see Fig. 4�,
which is described by U�x�=Cx4. In this case alternative
worldlines starting from the initial event P can cross any-
where along the original worldline �some crossing events are
indicated by little squares in Fig. 4�. When the alternative
worldline coalesces with the original worldline, the crossing
point has reached the kinetic focus Q.

Another typical case is the piecewise-linear oscillator
shown in Fig. 5. This oscillator has the potential energy
U�x�=C�x�. For the piecewise-linear oscillator, as for the
quartic oscillator, alternative worldlines starting from P can
cross at various events along the original worldline. Note
that for the piecewise-linear oscillator an alternative world-
line that crosses the original worldline before its kinetic fo-
cus lies below the original worldline instead of above it �as
for the quartic oscillator�. We can equally well use an alter-
native worldline that crosses from below or one that crosses
from above to define the coalescing worldline and kinetic
focus.

Notice the gray line labeled caustic in Figs. 4 and 5, and
also in Fig. 6, which shows the worldlines for a repulsive

Fig. 3. Several true harmonic oscillator worldlines with initial event P
= �0,0� and initial velocity v0�0. Starting at the initial fixed event P at the
origin, all worldlines pass through the same event Q. That is, Q is the kinetic
focus for all worldlines of the family starting at the initial event P= �0,0�.
Worldlines 1 and 0 differ infinitesimally; worldlines 2 and 0 differ by a finite
amount. This oscillator is discussed in detail in Sec. VIII.

Fig. 4. Schematic space-time diagram of a family of true worldlines for the
quartic oscillator �U�x�=Cx4� starting at P= �0,0� with v0�0. The kinetic
focus occurs at a fraction 0.646 of the half-period T0 /2, illustrated here for
worldline 0. The kinetic foci of all worldlines of this family lie along the
heavy gray line, the caustic. Squares indicate recrossing events of worldline
0 with the other two worldlines. This oscillator is discussed in detail in Sec.

IX.
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potential. The caustic is the line along which the kinetic foci
lie for a particular family of worldlines �such as the family of
worldlines that start from P with positive initial velocity in
Figs. 4 and 5�. A caustic is also an envelope to which all
worldlines of a given family are tangent. The caustics in
Figs. 5 and 6 are space-time caustics, envelopes for space-
time trajectories �worldlines�. Figure 7 shows a purely spatial
caustic/envelope for a family of parabolic paths �orbits� in a

Fig. 5. Schematic space-time diagram of a family of true worldlines for a
piecewise-linear oscillator �U�x�=C �x � �, with initial event P= �0,0� and ini-
tial velocity v0�0. The kinetic focus Q0 of worldline 0 occurs at 4

3 of its
half-period T0 /2. Similarly, small circles Q1 and Q2 are the kinetic foci of
worldlines 1 and 2, respectively. The heavy gray curve is the caustic, the
locus of all kinetic foci of different worldlines of this family �originating at
the origin with positive initial velocity�. Squares indicate events at which the
other worldlines recross worldline 0. This oscillator is discussed in detail in
Sec. IX.

Fig. 6. Schematic space-time diagram for the repulsive inverse square po-
tential �U�x�=C /x2�, with a family of worldlines starting at P�xP ,0� with
various initial velocities. Intersections are events where two worldlines
cross. The heavy gray straight line xQ= �� /xP�tQ, where �= �2C /m�1/2, is the
caustic, the locus of kinetic foci Q �open circles� and envelope of the indi-
rect worldlines. Worldline 2, with zero initial velocity, is asymptotic to the
caustic, with kinetic focus Q at infinite space and time coordinates. The
caustic divides space-time: each final event above the caustic can be reached
by two worldlines of this family of worldlines, each final event on the
caustic by one worldline of the family, and each final event below the
caustic by no worldline of the family. This system is discussed in detail in

Sec. X.
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linear gravitational potential. The word caustic is derived
from optics37 �along with the word focus�. When a cup of
coffee is illuminated at an angle, a bright curved line with a
cusp appears on the surface of the coffee �see Fig. 8�. Each
point on this spatial optical caustic or ray envelope is the
focus of light rays reflected from a small portion of the cir-
cular inner surface of the cup.

In Figs. 4–7 the caustic for a family of worldlines �or
paths� represents a limit for those worldlines �or paths�. No

Fig. 7. For the Maupertuis action, the heavy line envelope �the “parabola of
safety”� is the locus of spatial kinetic foci �xQ ,yQ�, or spatial caustic, of the
family of parabolic orbits of energy E originating from the origin
O�xP ,yP�= �0,0� with various directions of the initial velocity v0. The po-
tential is U�x ,y�=mgy. The horizontal and vertical axes are x and y, respec-
tively, and the caustic/envelope equation is y=v0

2 /2g−gx2 /2v0
2, found by

Johann Bernoulli in 1692. The caustic divides space. Each final point
�xR ,yR� inside the caustic can be reached from initial point �xP ,yP� by two
orbits of the family, each final point on the caustic by one orbit of the family,
and each point outside the caustic by no orbit of the family. Y is the vertex
�highest reachable point y=v0

2 /2g� of the caustic and X1, X2 denote the
maximum range points �x= ±v0

2 /g�. This system is discussed in detail in
Appendix B. �Figure adapted from Ref. 43.�

Fig. 8. The coffee-cup optical caustic. The caustic shape in panel �b� �a

nephroid� was derived by Johann Bernoulli in 1692 �Ref. 44�.
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worldline of that family exists for final events outside the
caustic. At least one worldline can pass through any event
inside the caustic. Exactly one worldline can pass through an
event on the caustic, and this event is the worldline’s kinetic
focus. This observation is consistent with the definition of
the kinetic focus as an event at which two separate world-
lines coalesce.

At the kinetic focus the worldline is tangent to the caustic.
When two curves touch but do not cross and have equal
slope at the point where they touch, the curves are said to
osculate or kiss, which leads to a summary preview of the
results of this paper:

When a worldline terminates before it kisses the
caustic, the action is minimum; when the worldline
terminates after it kisses the caustic, the action is a
saddle point.

One consequence is that when we use a computer to plot a
family of worldlines �by whatever means�, we can eyeball
the envelope/caustic and locate the kinetic focus of each
worldline visually.

This summary covers every case but one, because when
no kinetic focus exists, there is no caustic so a worldline of
any length has the minimum action. The one case not cov-
ered by this rule is the harmonic oscillator. For the harmonic
oscillator and also for the sphere geodesics of Fig. 1, the
caustic collapses to a single point at the kinetic focus. In this
case there is no caustic curve; only one caustic point �a focal
point� exists. A corresponding optical case is a concave re-
flecting parabolic surface of revolution illuminated with in-
coming light rays parallel to its axis; the optical caustic col-
lapses into a single point at the focus �focal point� of the
parabolic mirror. When the optical caustic reduces to a point
for a lens or mirror system, the resulting images have mini-
mum distortion �minimum aberration�.

For the quartic and the piecewise-linear oscillators �and
the harmonic oscillator� subsequent crossing points exist at
which two worldlines can coalesce. We have defined the ki-
netic focus as the first of these, the one nearest the initial
event P. The procedure for locating the subsequent kinetic
foci is identical to that for locating the first one and is dis-
cussed briefly in the examples of Secs. VIII and IX. For 1D
potentials subsequent kinetic foci45 exist for the bound
worldlines but not for the scattering worldlines, for example,
those in Fig. 6. We shall not be concerned with subsequent
kinetic foci; when we refer to the kinetic focus we mean the
first one, as we have defined it. We shall show in what fol-
lows that for a few potentials �for example, U�x�=C and
U�x�=Cx� kinetic foci do not exist, because true worldlines
beginning at a common initial event P do not cross again.

The definition of kinetic focus in terms of coalescing
worldlines provides a practical way to find the kinetic focus.
In Fig. 2 note the slopes of nearby worldlines 1 and 0 at the
initial event P. The initial slope of curve 1 is only slightly
different from that of worldline 0; as that difference ap-
proaches zero, the crossing event approaches the kinetic fo-
cus Q. The slope of a worldline at any point measures the
velocity of the particle at that point. This coalescence of two
worldliness as their initial velocities approach each other
leads to a method for finding the kinetic focus: Launch an
identical second particle from event P �simultaneously with

the original launch� but with a slightly different initial veloc-
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ity, that is, with a slightly different slope of the worldline.
Worldline number 1 is also a true worldline. In the limiting
case of a vanishing difference in the initial velocities at event
P �vanishing angle between the initial slopes�, the two
worldlines will cross again, and the two particles collide at
the kinetic focus event Q.

We can convert this practical �actually heuristic� idea into
an analytical method, often easily applied when we have an
analytic expression for the worldline. Let the original world-
line be described by the function x�t ,v0�, where v0 is the
initial velocity. Then the second worldline is the same func-
tion with incrementally increased initial velocity x�t ,v0

+�v0�. We form the expansion in �v0

x�t,v0 + �v0� = x�t,v0� +
�x

�v0
�v0 + O��v0

2� . �2�

At an intersection point R we have x�tR ,v0+�v0�=x�tR ,v0�.
For intersection point R near Q we therefore have

�x

�v0
�v0 + O��v0

2� = 0, �3�

which implies that for R→Q when �v0→0, we have

�x

�v0
= 0. �4�

Equation �4� is an analytic condition for the incrementally
different worldline that crosses the original worldline at the
kinetic focus, and hence it locates the kinetic focus Q. Sec-
tions VIII and IX discuss applications of this method.

III. WHY WORLDLINES CROSS

Section II defines the kinetic focus in terms of recrossing
worldlines. The burden of this paper is to show that when a
kinetic focus exists, the action along a worldline is a mini-
mum if it terminates before the kinetic focus Q of the initial
event P, whereas the action is a saddle point when the world-
line terminates beyond the kinetic focus. In this section we
consider only actual worldlines and describe qualitatively
why two worldlines originating at the same initial event
cross again at a later event. We also examine the special
initial conditions at P under which the coalescing worldlines
determine the position of the kinetic focus Q. The key pa-
rameter turns out to be the second spatial derivative U�
��2U /�x2 of the potential energy function U. Sufficiently
long worldlines can cross again only if they traverse a space
in which U��0. For simplicity we restrict our discussion
here to time-independent potentials U�x�, but continue to use
partial derivatives of U with respect to x to remind ourselves
of this restriction. Features that can arise for time-dependent
potentials U�x , t� are discussed in Sec. XI.

Think of two identical particles that leave initial event P
with different velocities and hence different slopes of their
space-time worldlines, so that their worldlines diverge. The
following description is valid whether the difference in the
initial slopes is small or large. Figures 3–5 illustrate the fol-
lowing narrative. At every event on its worldline each par-
ticle experiences the force F=−U�=−�U /�x evaluated at that
location. For a short time after the two particles leave P they
are at essentially the same displacement x, so they feel nearly
the same force −U�. Hence the space-time curvature of the

two worldlines �the acceleration� is nearly the same. There-
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fore the two worldlines will initially curve in concert while
their initial relative velocity carries them apart; at the begin-
ning their worldlines steadily diverge from one another. As
time goes by, this divergence carries one particle, call it II,
into a region in which the second spatial derivative U� is �let
us say� positive. Then particle II feels more force than par-
ticle I �but still in the same x direction as the force on it�. As
a result the worldline of II will head back toward particle I,
leading to converging worldlines. As the two particles draw
near again, they are once more in a region of almost equal U�
and therefore experience nearly equal acceleration, so their
relative velocity remains nearly constant until the worldlines
intersect, at which event the two particles collide.

Note the crucial role played by the positive value of U� in
the relative space-time curvatures of worldlines I and II nec-
essary for them to recross. Suppose instead that U��0. Then
as II moves away from I, it enters a region of smaller slope
U� and hence smaller force than that on particle I. Hence the
two worldlines will diverge even more than they did origi-
nally; the more they separate, the greater will be their rate of
divergence. As long as both particles move in a region where
U��0, the two worldlines will never recross. �If U�=0, the
two worldlines continue indefinitely to diverge at the initial
rate.�

As a special case let the relative velocity of the two par-
ticles at launch be only incrementally different from one an-
other �Fig. 2� for motion in potentials with U��0, and let
this difference of initial velocities approach zero. In this limit
the particles will by definition collide at the kinetic focus Q
of the initial event P. It may seem strange that an incremen-
tal relative velocity at P results in a recrossing at Q at a
significant distance along the worldline from P. We might
think that as this difference in slope increases from zero, the
recrossing event would start at P and move smoothly away
from it along worldline I, not “snap” all the way to Q. The
source of the snap lies in the first and second spatial deriva-
tives of U. When both particles start from the same initial
event, the first derivative at essentially the same displace-
ment leads to nearly the same force −U� on both particles, so
that any difference in the initial velocity, no matter how
small, continues increasing the separation. It is only with
greater relative displacement over time that the difference in
these forces, quantified by U��0, deflects the two world-
lines back toward one another, leading to eventual recross-
ing. No alternative true worldline starting at P and with neg-
ligibly different initial velocity crosses the original worldline
earlier than its kinetic focus �though widely divergent world-
lines may cross sooner, as shown in Figs. 4 and 5�. One
consequence of this result is that a worldline terminating
before its kinetic focus has minimum action, as shown ana-
lytically in Sec. VI.

In other words, potentials with U��x��0 are stabilizing,
that is, they bring together neighboring trajectories that ini-
tially slightly diverge. Potentials with U��x��0 are destabi-
lizing, that is, they push further apart neighboring trajectories
that initially slightly diverge. It is thus not surprising that
trajectory stability is closely related to the character of the
stationary trajectory action �saddle point or minimum�.23,29–31

Planetary orbits also exhibit crossing points distant from
the location of a disturbance; an incremental change in the
velocity at one point in the orbit leads to initial and contin-
ued divergence of the two orbits which, for certain potential

functions, reverses to bring them together again at a distant
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point. This later crossing point is defined as the kinetic focus
for the Maupertuis action W applied to spatial orbits �see
Appendix B�. This reconvergence has important conse-
quences for the stability of orbits and the continuing survival
of life on Earth as our planet experiences small nudges from
the solar wind, meteor impacts, and shifting gravitational
forces from other planets.

IV. VARIATION OF ACTION FOR AN ADJACENT
CURVE

“…another feature in classical mechanics that
seemed to be taboo in the discussion of the varia-
tional principle of classical mechanics by physi-
cists: the second variation…” Martin Gutzwiller46

The action principle says that the worldline that a particle
follows between two given fixed events P and R has a sta-
tionary action with respect to every possible alternative ad-
jacent curve between those two events �Fig. 9�. Thus the
action principle employs not only actual worldlines, but also
freely imagined and constructed curves adjacent to the origi-
nal worldline, curves that are not necessarily worldlines
themselves. In this paper the word worldline �or for empha-
sis true worldline� refers to a space-time trajectory that a
particle might follow in a given potential. The word curve
means an arbitrarily constructed trajectory that may or may
not be a worldline. To study the action we need curves as
well as worldlines. �In the literature the terms actual, true,
and real trajectory are used synonymously with our term
worldline; the terms virtual and trial trajectory are used for
our use of the term curve.�

In this section we investigate the variational characteristics
of the action S of a worldline in order to determine whether
S is a local minimum or a saddle point with respect to arbi-
trary nearby curves between the same fixed events. In Fig. 9
a true worldline labeled 0 and described by the function x0�t�
starts at initial event P. We construct a closely adjacent ar-
bitrary curve, labeled 1 and described by the function x�t�,
which starts at the same initial event P and terminates at a
later event R on the original worldline. To compare the ac-
tion along P0R on the worldline x0�t� with the action along
P1R on the arbitrary adjacent curve x�t�, let

x�t� = x0�t� + ���t� , �5�

Fig. 9. An original true worldline, labeled 0, starts at initial event P. We
draw an arbitrary adjacent curve, labeled 1, anchored at two ends on P and
a later event R on the original worldline. The variational function �� is
chosen to vanish at the two ends P and R.
and take the time derivative,
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ẋ�t� = ẋ0�t� + ��̇�t� . �6�

In Eqs. �5� and �6� � is a real numerical constant of small
absolute value and ��t� is an arbitrary real function of time
that goes to zero at both P and R. The action principle says
that action in Eq. �1� along x0�t� is stationary with respect to
the action along x�t� for small values of �. To simplify the
analysis we restrict ��t� to be a continuous function with at
most a finite number of discontinuities of the first derivative;
that is, all curves x�t� are assumed to be at least piecewise
smooth.47 Within this limitation x�t� represents all possible
curves adjacent to x0�t�, not only any actual nearby world-
lines. From Eqs. �5� and �6� the Lagrangian L�x , ẋ , t� can be
regarded as a function of � and hence expanded in powers of
� for small �,

L = L0 + �
dL

d�
+

�2

2

d2L

d�2 +
�3

6

d3L

d�3 + ¯ , �7�

where L0=L�x0 , ẋ0 , t� and the derivatives are evaluated at �
=0, that is, along the original worldline x0�t�. We apply Eqs.
�5� and �6� to the first derivative in Eq. �7�,

dL

d�
=

�L

�x

dx

d�
+

�L

�ẋ

dẋ

d�
= �

�L

�x
+ �̇

�L

�ẋ
, �8�

so that we can write in operator form

d

d�
= �

�

�x
+ �̇

�

�ẋ
, �9�

and apply it twice in succession to yield

d2L

d�2 = ��
�

�x
+ �̇

�

�ẋ
	��

�L

�x
+ �̇

�L

�ẋ
	

= �2�2L

�x2 + 2��̇
�2L

�x�ẋ
+ �̇2�2L

�ẋ2 . �10�

We consider the most common case in which the Lagrang-
ian L is equal to the difference between the kinetic and po-
tential energy:

L = K − U = 1
2mẋ2 − U�x,t� , �11�

where U may be time dependent. Then L has the partial
derivatives

�L

�x
= −

�U

�x
,

�L

�ẋ
= mẋ , �12�

�2L

�x2 = −
�2U

�x2 ,
�2L

�x�ẋ
= 0,

�2L

�ẋ2 = m , �13�

�3L

�x3 = −
�3U

�x3 ,
�3L

�ẋ3 = 0. �14�

Hence the second � derivative of L reduces to

d2L

d�2 = − �2�2U

�x2 + m�̇2. �15�

We apply Eq. �9� to Eq. �15� to obtain the third derivative

of L for this case:
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d3L

d�3 = − �3�3U

�x3 . �16�

The expansion �7� for L defined by Eq. �11� now becomes

L = L0 + ��− �
�U

�x
+ mẋ0�̇	 +

�2

2
�− �2�2U

�x2 + m�̇2	
+

�3

6
�− �3�3U

�x3 	 + ¯ , �17�

where the U derivatives are evaluated along x0�t�. If we sub-
stitute Eq. �17� into the action integral �1�, we obtain an
expansion of S in powers of �:

S = S0 + �S0 + �2S0 + �3S0 + ¯ . �18�

The standard result of the action principle48 is that along a
true worldline the action is stationary; that is, the term �S0 in
Eq. �18�, called the first order variation �or simply the first
variation�, is zero for all variations around an actual world-
line x0�t�. �This condition is necessary and sufficient for the
validity of Lagrange’s equation of motion for x0�t�.� We will
need the higher-order variations �2S0 and �3S0 for an actual
worldline. From Eqs. �17� and �18� they take the forms

�2S =
�2

2
�

P

R �− �2�2U

�x2 + m�̇2	 dt , �19�

and

�3S = −
�3

6
�

P

R

�3�3U

�x3 dt , �20�

where the derivatives of U are evaluated along x0�t�. In Eqs.
�19� and �20� and for most of what follows we use the com-
pact standard notations �2S=�2S0 and �3S=�3S0 �as well as
�S=�S0�.

In the remainder of this article we use Eqs. �19� and �20�
to determine when the action is greater or less for a particular
adjacent curve than for the original worldline, paying pri-
mary attention to the second order variation �2S. When the
action is greater for all adjacent curves than for the world-
line, �2S�0 and the action along the worldline is a true
minimum. The phrase “for all adjacent curves” means that
the value of �2S in Eq. �19� is positive for all possible varia-
tions ���t�. Equation �19� shows immediately that when
�2U /�x2 is zero or negative along the entire worldline, then
the integrand is everywhere positive, leading to �2S�0.
Hence, if �2U /�x2�0 everywhere, a worldline of any length
has minimum action. This result was previewed in the quali-
tative argument of Sec. III.

The outcome is more complicated when �2U /�x2 is neither
zero nor negative everywhere along the worldline. We show
in Sec. V that even in this case we have �2S�0 for suffi-
ciently short worldlines, so that the action is still a minimum.
Later sections show that “sufficiently short” means a world-
line terminated before the kinetic focus. For a worldline ter-
minated beyond the kinetic focus, the action is smaller
��2S�0� for at least one adjacent curve and greater ��2S
�0� for all other adjacent curves, a condition called a saddle
point in the action. When the action is a saddle point, the
value of �2S in Eq. �19� is negative for at least one variation

���t� and positive for all other variations ���t�.
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When �2S=0 for one or more adjacent curves, as happens
at a kinetic focus,49 we need to examine the higher-order
variations to see whether S−S0 is positive, negative, or zero
for these particular adjacent curves.

There is no worldline whose action is a true maximum,
that is, for which �2S�0 or more generally for which S
−S0�0 for every adjacent curve. The following intuitive
proof by contradiction was given briefly by Jacobi22 and in
more detail by Morin50 for the Lagrangian L=K−U with K
positive as in Eq. �11�. Consider an actual worldline for
which it is claimed that S in Eq. �1� is a true maximum. Now
modify this worldline by adding wiggles somewhere in the
middle. These wiggles are to be of very high frequency and
very small amplitude so that they increase the kinetic energy
K compared to that along the original worldline with only a
small change in the corresponding potential energy U. The
Lagrangian L=K−U for the region of wiggles is larger for
the new curve and so is the overall time integral S. The new
worldline has greater action than the original worldline,
which we claimed to have maximum action. Therefore S
cannot be a true maximum for any actual worldline.

V. WHEN THE ACTION IS A MINIMUM

We now employ the formalism of Sec. IV to analyze the
action along a worldline that begins at initial event P and
terminates at various final events R that lie along the world-
line farther and farther from P. In this section we show that
the action is a minimum for a sufficiently short worldline PR
in all potentials, and we give a rough estimate of what suf-
ficiently short means. �We showed in Sec. IV that the action
is a minimum for all worldlines in some potentials.� In Sec.
VI we show that sufficiently short means before the terminal
event reaches the event R at which �2S first vanishes for a
particular, unique variation. We also will show that this R is
Q, the kinetic focus of the worldline. In Sec. VII we show
that conversely �2S must vanish at the kinetic focus, and that
when final event R is beyond Q, the action along PR is a
saddle point.

In considering different locations of the terminal event R
along the worldline, it is important to recognize that the set
of incremental functions � that go to zero at P and at R will
be different for each terminal position R. Particular functions
may have similar forms for all R; for example, assuming tP
=0 for simplicity, we might have �=A�t / tR��1− t / tR� or �
=A sin�	t / tR�. However, � need not be so restricted; the
only restrictions are that � go to zero at both P and R and be
piecewise smooth. Statements about the value of �2S for
each different terminal event R are taken to be true for all
possible � for the particular R that satisfy these conditions.

For a sufficiently short worldline the action is always a
minimum compared with that of adjacent curves, as men-
tioned in Sec. III. The formalism developed in Sec. IV con-
firms this result as follows. �Here we follow and elaborate
Whittaker,36 apart from a qualification given in the follow-
ing.� We rewrite Eq. �19� using U��x�:

�2S = −
�2

2
�

P

R

�2U� dt +
�2

2
�

P

R

m�̇2 dt . �21�
Because �=0 at P, we can write
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��t� = �
P

t

�̇�t��dt� � �t − tP��̇max � T�̇max, �22�

where T= tR− tP, and �̇max is the maximum value between P
and R. With this substitution the magnitude of the first inte-
gral in Eq. �21� for �2S can be bounded:


�
P

R

�− �2U��dt
�T3�̇max
2 �Umax� � . �23�

The second integral in Eq. �21� can be rewritten as

�
P

R

m�̇2 dt = mT��̇2� , �24�

where ��̇2� is the mean square of �̇ over the time interval T.

Compare Eqs. �23� and �24� and note that �̇max
2 and ��̇2� have

the same order of magnitude for all values of T; the reader
can check the special case ��t�=A sin�n	�t− tP� /T�, where n
is any nonzero integer. Here we assume for simplicity that
��t� is smooth and is nonzero for all times t in the range T
except possibly at discrete points; a similar argument can be
given if this condition is violated. Also note that �Umax� � will
not increase as R becomes closer to P. Thus if the range is
sufficiently small, the most important term in �2S is the one
that contains �̇. In this limit Eq. �21� reduces to

�2S →
1

2
�2m�

P

R

�̇2dt

� 0 for sufficiently short worldlines. �25�

This quantity is positive because m, �2, and �̇2 are all
positive.51 Therefore �2S adds to the action, which demon-
strates that the action is always a true minimum along a
sufficiently short worldline. We shall use this result repeat-
edly in the remainder of this paper.

We can give a rough estimate55 of the largest possible
value of T such that �2S�0 for all variations �the exact value
is given in Sec. VI�. If we use Eqs. �23� and �24� in Eq. �21�,
we see that

�2S �
�2

2
�mT��̇2� − �̇max

2 �Umax� �T3� , �26�

so that �2S�0 if

mT��̇2� � �̇max
2 �Umax� �T3, �27�

or

T �
�̇rms

�̇max

T0

2	
, �28�

where T0 /2	= �m / �Umax� ��1/2 and �̇rms���̇2�1/2 is the root-

mean-square value of �̇.
For the harmonic oscillator T0 is exactly equal to the pe-

riod, and for a general oscillator T0 is a time of the order of
the period. Assume for simplicity that ��t� is smooth and is
nonvanishing over the whole range T with exceptions only at
discrete points, for example, ��t�=A sin�n	�t− tP� /T�; a
similar argument can be constructed if this condition is vio-

˙ ˙
lated. The ratio �rms/�max is then of order unity; for ex-
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ample, for the latter form of ��t� we have �̇rms/ �̇max

=1/
2. Thus for times T less than about �1/	�T0 /2 we have
�2S�0. For the various oscillators studied in Secs. VIII and
IX we will see that the half-period is a better estimate of the
time limit for which �2S�0. For example, for the harmonic
oscillator we show that for all times up to exactly one half-
period, �2S�0, so that the action is a minimum for times
less than a half-period. We show in Sec. VI that for any
system the precise time limit for which �2S�0 for all varia-
tions is tQ− tP, the time to reach the kinetic focus.

Because the location of the initial event P is arbitrary, it
follows that the action is a minimum on a short segment
anywhere along a true worldline. It is not difficult to show
that a necessary and sufficient condition for a curve to be a
true worldline is that all short segments have minimum ac-
tion. This result is valid irrespective of whether the action for
the complete worldline is a minimum or a saddle point.

As discussed in Sec. IV, if U��x� is zero or negative at
every x along the worldline, then �2S in Eq. �19� is always
positive, with the result that worldlines of every length have
minimum action for particles in these potentials. For ex-
ample, the gravitational potential energy functions U1 for
vertical motion near Earth’s surface and U2 for radial motion
above the Earth �radius rE� have the standard forms

U1�x� = mgx �0 � x 
 rE� , �29�

U2�x� = − �GMm�/�rE + x� �0 � x� . �30�

In both cases U��x� is zero or negative everywhere, so that
Eq. �19� tells us that worldlines of any length have minimum
action. �Further discussion of the nature of the stationary
action for trajectories in these gravitational potentials ap-
pears in Appendix B; differences arise when we examine
two-dimensional trajectories and when we compare the
Hamilton action S with the Maupertuis action W.�

There are an infinite number of potential energy functions
with the property U��x��0 everywhere �another example is
U�x�=−Cx2�, leading to minimum action along worldlines of
any length. Nevertheless, the class of such functions is small
compared with the class of potential energy functions for
which U��x��0 everywhere �such as the harmonic oscillator
potential U�x�=kx2 /2�, or for which U��x� is positive for
some locations and zero or negative for other locations �such
as the Lennard-Jones potential U�x�=C12/x12−C6 /x6�. For
this larger class of potentials the particular choice of world-
line �length and location� determines whether the action has
a minimum or whether it falls into the class for which the
action is a saddle point.

VI. MINIMUM ACTION WHEN WORLDLINE
TERMINATES BEFORE KINETIC FOCUS

The central result of this section is that the event along a
worldline nearest to initial event P at which �2S goes to zero
is the kinetic focus Q. The key idea is that a unique true
worldline connects P to Q, a worldline that coalesces with
the original worldline and thus satisfies the definition of the
kinetic focus in Sec. II. The primary outcome of this proof is
that the action is a minimum if a worldline terminates before
reaching its kinetic focus.

Our discussion is inspired by the classic work of
21
Culverwell �see Ref. 52 for a textbook discussion�. Culver-
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well and Whittaker focus on the Maupertuis action W. We
adapt their work to the Hamilton action S, extend and sim-
plify it, and show that their argument is incomplete.

Consider a true worldline x0�t�, labeled 0 in Fig. 10. As we
have seen in Sec. V, the action S0 along a sufficiently short
segment PR� of worldline 0 is a minimum, which leads to
�2S�0 for all variations. We imagine terminal event R� lo-
cated at later and later positions along the worldline until it
reaches R, the event at which, by hypothesis, �2S→0 for the
first time for some variation; that is, the integral in Eq. �19�
defining �2S vanishes for some choice of �. We shall find
that the earliest event at which �2S vanishes is connected to
the initial event P by a unique type of variation, namely a
true worldline that coalesces with the original worldline in
the limit for which their initial velocities at P coincide.
Hence the earliest event at which �2S vanishes satisfies the
definition of the kinetic focus Q.

As we assumed, �2S�0 for all R� up to R�=R, the first
event for which �2S=0 for a particular variation ��. To
prove that R is the kinetic focus Q, we need to consider small
variations because Q involves a coalescing second worldline.
In the typical case the integral in Eq. �20� defining �3S does
not vanish, but letting �→0 will ensure �3S �proportional to
�3� does not exceed �2S �proportional to �2� for R� ap-
proaching R.56 The fact that �3S does not exceed �2S keeps
S−S0�0 �not just �2S�0� for R� up to R. �The untypical
case, in which the integral in Eq. �20� vanishes, is discussed
in the following.� In the limit R�→R, we let �→0 so that
the varied curve x1�t�=x0�t�+���t� coalesces with the true
worldline x0�t�, and S−S0=0 at R�=R.

To satisfy the definition of the kinetic focus, we need to
show that x1�t� is a true worldline just short of the limit �
→0 �just short of the limit R�→R�, not just at the limit �
=0. We will prove this result by contradiction: assume curve
x1�t� �curve 1 in Fig. 10� is not a true worldline. Consider the
arbitrary comparison curve 2 in Fig. 10, which differs from 1
by the arbitrary variation �2�2, with �2 small. Assume
�wrongly� that curve 1 is not a true worldline, so that the
first-order variation �S in S between curves 1 and 2 is non-
zero for arbitrary �2�2, and the sign of �2 can be chosen to
make S2�S1. But because S1=S0 to second order, we must
have S2�S0, which is a contradiction; R is the earliest zero

Fig. 10. Let R be the earliest event along the true worldline x0�t�, labeled 0,
such that �2S=0 for worldline PR along x0�t�. The unique variational func-
tion achieving �2S=0 for worldline 0 corresponds to a varied curve labeled
1. We show that for this location of R, curve 1 is a true worldline and R is
the kinetic focus Q. The arbitrary curve 2 is used to verify that curve 1 is a
true worldline.
of S−S0 for any small variation, so that small variations giv-
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ing S−S0�0 are impossible. To avoid the contradiction,
curve 1 must be a true worldline. Thus we have proven that
the unique variation �� that connects P and R=Q when �2S
goes to zero for the first time corresponds to a true worldline.

This argument covers the typical case, where the integral
in Eq. �20� defining �3S does not vanish. The only common
untypical case49,57 is the harmonic oscillator, which we will
discuss in Sec. VIII. The harmonic oscillator potential U
=kx2 /2, for which �3U /�x3 in Eq. �20� vanishes, so that
�3S=0 identically. Similarly, the variation �4S and higher
variations all vanish because �4U /�x4 and higher potential
derivatives vanish. Thus for the harmonic oscillator �2S=S
−S0 and S−S0 remains positive up to R�=R for arbitrary �
�not just small ��. The preceding argument with �→0 is
valid also for the harmonic oscillator, so that the coalescing
true worldline at R again shows that R is the kinetic focus Q.
However, it is not necessary here to take the limit �→0.
Figure 3 for the harmonic oscillator shows that all true
worldlines beginning at P intersect again where �2S first van-
ishes, which is the kinetic focus Q. By varying the amplitude
of the alternative true worldlines for the harmonic oscillator,
we can find one that coalesces with the original worldline
and thus satisfies the definition of the kinetic focus. The ar-
gument for other untypical cases49 is similar to that for the
typical case.

In summary we have shown that as terminal event R takes
up positions along the worldline farther away from the initial
point P, the special varied curve that leads to the earliest
vanishing of �2S is typically a unique49,58 true worldline that
can coalesce with the original worldline. This R satisfies the
definition of the kinetic focus Q. Because the varied world-
line for which �2S=0 for the first time is unique, it follows
that all other curves PQ adjacent to the original worldline
have �2S�0.

For bound motion in a time-independent potential, world-
lines that can coalesce will typically cross more than once. In
the literature all of these sequential limiting crossings are
called kinetic foci. The above argument is valid only for the
first such crossing, which we refer to as the kinetic focus.

As we have shown, a sufficient condition for the kinetic
focus Q is that it is the earliest terminal event R for which
�2S=0. In the following section we show the converse nec-
essary condition: Given the definition of the kinetic focus Q
as the first event at which a second true worldline can coa-
lesce with PQ, the necessary consequence is that �2S=0 for
worldline PQ for the variation leading to coalescence. Taken
together, the arguments in these two sections prove the fol-
lowing theorem, which is the fundamental analytical result of
our paper:

A necessary and sufficient condition for Q to be a
kinetic focus of worldline PQ is that Q is the ear-
liest event on the worldline for which �2S=0.

This earliest vanishing of �2S occurs for one special type of
variation �� �which turns out to correspond to a true world-
line�, with � unique �up to a factor� and typically �→0; for
all other variations �2S remains positive at the kinetic focus.
The Culverwell-Whittaker argument �more complicated than
that just given� is incomplete in that it addresses only the
sufficiency part of the theorem �the necessary part given in
Sec. VII is new�, and it overlooks the usual case where the

limit �→0 is necessary to locate the kinetic focus.
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A simple topological picture of the action landscape in
function space is emerging �see Fig. 11�. For a short world-
line PR, the action S is a minimum: the action increases in
all directions away from the stationary point in function
space �panel �a� in Fig. 11�. For longer PR, we may reach a
kinetic focus R=Q for which S is trough-shaped, that is, flat
in one special direction and increasing in all other directions
away from the stationary point �panel �b� in Fig. 11�. �The
trough is completely flat for the harmonic oscillator, and flat
to at least second order49 for all other systems.� As we shall
see in Sec. VII, as R moves beyond Q, the trough bends
downward, placing the action at a saddle point; that is, S
decreases in one direction in function space and increases in
all other directions away from the stationary point �panel �c�
in Fig. 11�. Although not discussed in this paper, the pattern
may continue as R moves still further beyond the kinetic
focus Q. If R reaches a second event Q2 at which �2S=0
�called the second kinetic focus in the literature�, a trough
again develops for one special variational function � �differ-
ent from the first special ��; at Q2 the action is flat in one
direction in function space, decreases in one direction, and
increases in all other directions. Beyond Q2 the trough be-
comes a maximum, and we have a saddle point that is a
maximum in two directions and a minimum in all others.
Similar topological changes occur if we reach still later ki-
netic foci events Q3, Q4, and so forth, a result in agreement
with Morse’s theorem,34 which states that the number of di-
rections n in function space for which the action is a maxi-
mum at a saddle point for worldline PR is equal to the num-
ber n of kinetic foci between the end events P and R of the

Fig. 11. Schematic illustration of the topological evolution of the minimum
A→ trough B→saddle C of the action S for two “directions” in function
space as the final time tR increases from tR� tQ to tR= tQ to tR� tQ, respec-
tively, where tQ is the kinetic focus time. �Figure adapted from Ref. 59.�
worldline.
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VII. SADDLE POINT IN ACTION WHEN
WORLDLINE TERMINATES BEYOND KINETIC
FOCUS

In Sec. VI we showed that a sufficient condition for the
earliest event to be the kinetic focus Q is that the earliest
event at which �2S=0 is connected to the initial event P by a
unique true coalescing worldline. All alternative curves PQ
lead to �2S�0. In this section we demonstrate the corre-
sponding necessary condition, namely, given an alternative
true worldline between P and R that coalesces with the origi-
nal worldline as R→Q and therefore defines Q as the kinetic
focus, we have �2S=0 for this worldline. By using an exten-
sion of this analysis, we also show that when R lies beyond
the kinetic focus Q the action of worldline PQR is a saddle
point.

The essence of the proof of the first statement is outlined
in the following heuristic argument by Routh.29 Consider two
intersecting true worldlines P→R connecting P to R. As-
sume R is close to the kinetic focus Q so that the two world-
lines differ infinitesimally, as required in the definition of Q.
Let the action along the two worldlines be S and S+�S,
respectively. Because both are true worldlines, the first-order
variation of each is equal to zero, �S=0 and ��S+�S�=0.
The difference of these two relations gives �2S=0 for R near
Q and hence �2S=0 for R=Q. In the following we show that
this argument is correct in the sense that �2S vanishes not
only at R=Q, but also vanishes to O��2� for R near Q, dif-
fering from zero by O��3� for R near Q.

To make Routh’s argument rigorous, consider the two al-
ternative true worldlines x0�t� and x1�t� in Fig. 12 that con-
nect the initial event P to the terminal event R, where R is
close to the kinetic focus Q of x0�t�. When R reaches Q, the
two worldlines coalesce according to the definition of the
kinetic focus Q. For definiteness, take x1�t� to be the top
worldline in Fig. 12, which is closely adjacent to the true
worldline x0�t�. Hence, it is a member of the set of adjacent
curves used for the variation in Sec. IV, and therefore we can

Fig. 12. By definition the kinetic focus Q of the initial event P is the first
event at which two adjacent true worldlines x0�t� and x1�t� coalesce. We
show that �2S=0 at the kinetic focus Q for this variational function � in the
limit R1→Q, and that the action is a saddle point when the terminal event
R2 lies anywhere on the worldline beyond the kinetic focus Q. �The lower
�� has the opposite sign from the upper ��, and the upper and lower
functions � are slightly different due to the end-events R1 and R1� being
slightly different.�
employ the formalism of that section. Conversely, we can
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regard x0�t� as a varied curve of x1�t�, because it is closely
adjacent to the other true worldline x1�t�. Equations similar
to Eqs. �5� and �6� are

x1�t� = x0�t� + ���t�, x0�t� = x1�t� − ���t� , �31�

and

ẋ1�t� = ẋ0�t� + ��̇�t�, ẋ0�t� = ẋ1�t� − ��̇�t� . �32�

We have

S1 = S0 + �S0 + �2S0 + �3S0 + ¯ . �33�

In this case both x0�t� and x1�t� are true worldlines, so that
we can also write the inverse expression

S0 = S1 + �S1 + �2S1 + �3S1 + ¯ . �34�

We subtract Eq. �34� from Eq. �33� and use �S0=0 and �S1
=0, because both x0�t� and x1�t� are true worldlines. The
result is

2�S1 − S0� = ��2S0 − �2S1� + ��3S0 − �3S1� + ¯ . �35�

We then find expressions for �2S from Eq. �19�:

�2S0 =
�2

2
�

P

R

�− �2U��x0� + m�̇2�dt , �36a�

�2S1 =
�2

2
�

P

R

�− �2U��x1� + m�̇2�dt . �36b�

The first parenthesis on the right side of Eq. �35� has the
form

�2S0 − �2S1 =
�2

2
�

P

R

dt�U��x1� − U��x0���2, �37�

where terms in �̇ have cancelled. We expand U��x1� to first
order in �:

U��x1� � U��x0� + U��x0��x1 − x0� = U��x0� + U��x0��� .

�38�

If Eq. �38� is substituted into Eq. �37�, the resulting integral
contributes a further factor of �, yielding a result of O��3�:

�2S0 − �2S1 �
�3

2
�

P

R

dtU��x0��3. �39�

The fact that the right-hand side of Eq. �39� is proportional
to �3 means that in Eq. �35� we cannot neglect terms in �3S
that are also proportional to �3. �Later terms are proportional
to �4 or higher.� From Eq. �20� and the signs of � in Eq.
�31�, we have

�3S0 = −
�3

6
�

P

R

�3U��x0�dt , �40a�

�3S1 = +
�3

6
�

P

R

�3U��x1�dt , �40b�

and hence the second term on the right-hand side of Eq. �35�

becomes
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�3S0 − �3S1 = −
�3

6
�

P

R

�U��x1� + U��x0���3 dt

� −
�3

3
�

P

R

U��x0��3 dt , �41�

where we have set U��x1��U��x0�, which is correct to
O��3� in Eq. �41�.

The substitution of Eqs. �39� and �41� in Eq. �35� gives

S1 − S0 �
�3

12
�

P

R

U��x0��3 dt for R near Q to O��3� .

�42�

Equation �42� makes precise the earlier heuristic argument
due to Routh. We see that S1−S0 is O��3� for R near Q and
therefore vanishes for R→Q. If we compare Eqs. �42� and
�33� �with �S0=0� and note that the coefficient �3 /12 in Eq.
�42� differs from the coefficient −�3 /6 in Eq. �40a� for �3S0,
we see that not only is ��2S0−�2S1���3, but �2S0 is also
O��3�. In Ref. 60 we show that �2S0 is O��3� more directly
but less elegantly �using equations of motion rather than
purely variational arguments�. The result is that S1−S0 is
O��3� and hence vanishes for R→Q, which yields the de-
sired necessary condition: Given the definition of Q, which
involves two true worldlines coalescing as R→Q, we have
�2S=0 for worldline PQ for the special variation leading to
the coalescence that defines the kinetic focus Q.

Next we extend our results to show that when R lies im-
mediately beyond the kinetic focus Q, the action of worldline
PQR is a saddle point. For a saddle point to occur the sign of
S1−S0 in Eq. �42� must change from positive to negative as R
passes through the kinetic focus Q. To interpret the sign in
Eq. �42� consider the worldline x1�t�, the uppermost world-
line in Fig. 12, which crosses the original worldline x0�t� at
R1 slightly earlier than the kinetic focus Q of worldline x0�t�.
We have seen that �2S0�0 for all variations for short PR
along x0�t� and that �2S0 does not vanish until R reaches Q.
Thus �2S0 and S1−S0 are positive for R1 slightly earlier than
Q. Figure 12 shows and Eq. �42� makes quantitative that as R
takes positions from R1 to Q and then positions at Q and
beyond Q to R1�, the variational function �� vanishes, and
then changes sign to become negative. From Eq. �42� we see
that when the variation of x0�t� is the adjacent true worldline
x1��t�, we have S1�−S0�0 for R1� slightly later than Q, so
that S�P1�R1���S�P0R1��. However, there are other variations
in x0�t� that generate S1�−S0�0, such as displacing or add-
ing wiggles to a short segment �recall the discussion at the
end of Sec. IV�. Thus when R1� is just beyond Q we can
increase or decrease the action compared to S0, depending on
which variation we choose, which is the definition of a
saddle point: for worldline x0�t� or P0R1�, the action S0 is a
saddle point for R1� just beyond Q.

We now demonstrate that worldline x0�t� has a saddle
point in the action not only for R1� just beyond Q, but also for
all terminal events on the worldline beyond Q, no matter
how far beyond Q they lie. Imagine a point R2 further along
x0�t� from R1� by an arbitrary amount, so that the true world-
line in Fig. 12 is now P0R1�R2. Use the bottom worldline
P1�R1� in Fig. 12 to construct the comparison curve P1�R1�R2,

which is not a true worldline due to the kink at R1�. Because
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P0R1�R2 and P1�R1�R2 have the segment R1�R2 in common,
and because S�P1�R1���S�P0R1�� as shown previously, we
have S�P1�R1�R2��S�P0R1�R2�. Hence we have found a
variation P1�R1�R2 with a smaller action than the original
worldline P0R1�R2. But we know it is easy to find other varia-
tions giving a larger action �just add wiggles somewhere�.
Thus P0R1�R2 has a saddle point61 in the action for all R2
later than the kinetic focus Q.

These demonstrations are valid for the typical case ��3S
�0 for the special variation ��. The most common atypical
case is the harmonic oscillator ��kS=0 for all k for the spe-
cial variation ��; proofs of the previous points are given
explicitly in Sec. VIII for this system. Other atypical cases,49

for example, when �3S=0 and �4S�0 for the special varia-
tion �, so that S1−S0�O��4� for R near Q in place of Eq.
�42�, require an extension of the previous argument.

We have established, for the typical case and the most
common atypical case, the two central results of our paper:
�1� The worldline PR has the minimum action if the terminal
event R is earlier than the kinetic focus event Q of the initial
event P. �2� The worldline PQR has a saddle point in the
action when the terminal event R lies beyond the kinetic
focus event Q of initial event P.62 These results are correct
wherever on the worldline we freely choose to place the
initial event P with respect to which the later kinetic focus
event Q of P is established. Note that a true maximum of the
action for worldline PR is never found, in agreement with
the result of the intuitive argument at the end of Sec. IV. In
the literature26 these results are often expressed as follows:
For Lagrangians of type �11� having �2L /�ẋ2�0, Jacobi’s
necessary and sufficient condition for a weak47 local mini-
mum of the stationary action is that a kinetic focus does not
occur between the end events P and R.

VIII. HARMONIC OSCILLATOR

For the harmonic oscillator it is particularly easy to use
Fourier series to compare the action along a worldline with
the action along every �at least every piecewise-smooth�
curve alternative to the worldline.65 The harmonic oscillator
Lagrangian has the form

L = K − U = 1
2mẋ2 − 1

2kx2, �43�

so that Eq. �19� becomes

�2S =
�2

2
�

P

R

�− k�2 + m�̇2�dt =
�2m

2
�

P

R

��̇2 − �0
2�2�dt ,

�44�

where

�0 = � k

m
	1/2

=
2	

T0
, �45�

and T0 is the natural period. All third and higher partial de-
rivatives of L with respect to x and ẋ are zero, so that there
are only second-order variations in S due to � �see Eq. �20��.
Therefore we have

S − S0 = �2S for the harmonic oscillator. �46�

We set P= �xP ,0� and R= �xR , tR� and express the variational

function ��t� using a Fourier series:
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��t� = �
n=1




an sin�n�t

2
	 , �47�

where �=2	 / tR. The function ��t� automatically goes to
zero at the initial and final events P and R, respectively. The
constants an can be chosen arbitrarily, corresponding to our
free choice of ��t�. Because of the completeness of the Fou-
rier series, the an can represent every possible piecewise-
smooth trial curve alternative to any true worldline. We sub-
stitute Eq. �47� into Eq. �44�. The squares of �̇ and � lead to
double summations:

�2S =
�2m

2 �
n=1




�
n�=1




anan��
0

tR �nn��2

4
cos�n�t

2
	cos�n��t

2
	

− �0
2 sin�n�t

2
	sin�n��t

2
	�dt . �48�

As t goes from zero to tR, the arguments of the harmonic
functions go from zero to n	 or n�	, both of which represent
an integer number of half-cycles. Because the different har-
monics are orthogonal, terms with n��n integrate to zero for
any number of complete half-cycles. Hence Eq. �48� simpli-
fies to

�2S =
�2m

2 �
n=1




an
2�

0

tR ��n�

2
	2

cos2�n�t

2
	

− �0
2 sin2�n�t

2
	�dt . �49�

The integrals from t=0 to t= tR in Eq. �49� are over n half-
cycles. For any integer number of half-cycles the average
cosine squared and the average sine squared are both equal to
1/2. Therefore we have

�2S =
�2mtR

4 �
n=1




an
2��n�

2
	2

− �0
2� , �50�

where � and �0 are defined in Eq. �45� and below Eq. �47�.
The harmonic oscillator is atypical in that the period does not
depend on amplitude, so that all worldlines that start at the
same initial event recross at the same kinetic focus, as shown
in Fig. 3.

We now use Eq. �50� to give examples and verify, for the
atypical case of the harmonic oscillator, the results derived
for the typical case in earlier sections of this paper.

Case I, tR�T0 /2, the final time is less than one half-period
�� /2=	 / tR��0=2	 /T0�. In this case �2S�0 for all
choices of an and hence for every adjacent curve. For final
times less than T0 /2 �that is, for worldlines that terminate
before they reach the kinetic focus of the initial event� the
action along the worldline is a minimum with respect to
every adjacent curve.

Case II, tR=T0 /2, the final time is equal to one half-period
�� /2=	 / tR=�0=2	 /T0�. In this case the final event is the
kinetic focus of the initial event, where �see Eq. �46�� S
−S0=�2S goes to zero for the first time for a special type of
variation. Choose a1=A and an=0 for n�1, giving �2S=0 in
Eq. �50�; examples are trial curves 1 and 2 in Fig. 3, which
here are also true worldlines. If we take the limit �→0 �or
the zero displacement limit A→0�, the true worldline 1 coa-

lesces with true worldline 0. �All half-period harmonic oscil-
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lator worldlines starting from P pass through the same ki-
netic focus, Fig. 3�. For all other choices of the an �for
example, a2=A, all other an=0�, we have S−S0=�2S�0 in
Eq. �50�, a result established for the typical case in Sec. VI.

Think of each choice of all the coefficients a1 ,a2 ,a3 , . . . as
a point in function space. Then we see that at the kinetic
focus the action is a minimum for all “directions” in function
space except for the direction with a1�0, all other an=0, for
which S−S0=�2S=0. If we think of each an as plotted along
a different direction in function space, we can picture this
exceptional stationary S case at the kinetic focus as an action
trough in function space; that is, flat in one special direction,
increasing in all others. �In the typical case49 the trough is
flat only to second order.� In contrast, for case I where tR
�T0 /2, �2S�0 along every direction in function space.

Case III, tR�T0 /2, the final time is greater than one half-
period �� /2=	 / tR��0=2	 /T0�. In this case we can choose
an to find adjacent curves with action either greater or less
than the action along the original worldline. For a1=A and
all other an=0, �2S�0, so the action for the worldline is
greater than that for the adjacent curve. In contrast, if we
choose an=A for any term n=N for which �N� /2�2��0

2 and
all other an=0, then �2S�0 and the action for the worldline
is smaller than for the curve. In brief, for a final time greater
than half a period of the harmonic oscillator, the action for
the worldline is neither a true maximum nor a true minimum;
it is a saddle point. The corresponding result was shown for
the typical case in Sec. VII. Figure 11 shows schematically
the evolution of S from case I to case II to case III as tR
increases.

All three cases apply to the second variation �2S for all
harmonic oscillator true worldlines x0�t�, for example, those
that do not start from �xP , tP�= �0,0�, such as x0�t�
=A0 sin��0t+�0�, and include the no-excursion or equilib-
rium worldline x0�t�=0. In all cases, for actual worldlines S
is a minimum �or a trough as in case II� or a saddle point,
never a true maximum, in agreement with the general theory.

For the harmonic oscillator all worldlines starting at initial
event P= �0,0� as in Fig. 3, for example, converge next at
event Q= �0,T0 /2�, which is therefore the kinetic focus of P.
We verify this result analytically using the general method of
Sec. II. For the harmonic oscillator with P= �0,0�, we ex-
press the amplitude of displacement in terms of the initial
velocity v0:

x =
v0

�0
sin �0t , �51�

where �0 is independent of v0 for the harmonic oscillator.
According to Eq. �4�, the time tQ of the kinetic focus is found
by taking the partial derivative of Eq. �51� with respect to v0
and setting the result equal to zero:

�x

�v0
=

1

�0
sin �0tQ = 0. �52�

Therefore the kinetic focus of the initial event P= �0,0� oc-
curs at the time when �0tQ=	 or tQ=T0 /2. �What the
literature27,32 calls the “later kinetic foci” occur for �0t
=2	 ,3	 , . . ., but we limit the term kinetic focus to the first
of these.� A similar calculation with P� �0,0� gives the same
result, that is, tQ− tP=T0 /2. The fact that tQ− tP is indepen-

dent of the initial event P holds only for the harmonic oscil-
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lator and does not hold for nonlinear oscillators. In Appendix
B we discuss the location of the kinetic focus for the trajec-
tories of two-dimensional harmonic oscillators.

In summary, four characteristics of the harmonic oscillator
worldlines are exceptional; these characteristics are not true
for worldlines in most potential energy functions. For an
arbitrary initial event P, �1� all worldlines from P pass
through the same point �the kinetic focus�; �2� the time of the
kinetic focus Q of P is half a period T0 /2 later; �3� the time
interval is T0 /2 between all successive kinetic foci; and �4�
when the final event R is not a kinetic focus, only one true
worldline connects it to P. Underlying these four character-
istics is the exceptional property of the harmonic oscillator:
the frequency is independent of amplitude, which reflects the
linearity of the system.

IX. NONLINEAR OSCILLATORS

We could analyze the action S for the worldlines of an
arbitrary oscillator with potential U�x� by methods similar to
those used for the harmonic oscillator in Sec. VIII. The sec-
ond order variation �2S from the value S0 for a worldline
x0�t� is given by Eq. �19�:

�2S =
�2

2
�

P

R

�m�̇�t�2 − U��x0�t����t�2�dt , �53�

where ���t� is an arbitrary variation from x0�t� that vanishes
at the end-events P and R. The analysis is complicated66 for
arbitrary U�x�; it is more instructive to consider instead the
piecewise-linear oscillator with the potential U�x�=C �x� and
the quartic oscillator with a U-shaped potential U�x�=Cx4.
Figure 5 illustrates that the piecewise linear oscillator is rep-
resentative of the class whose period increases with increas-
ing amplitude. Figure 4 illustrates that the period of the quar-
tic oscillator decreases with increasing amplitude.

A. Piecewise-linear oscillator

As an example of a piecewise-linear oscillator, consider a
star that oscillates back and forth through the plane of the
galaxy and perpendicular to it.67 We approximate the galaxy
as a �freely penetrable� sheet of zero thickness and uniform
mass density and express the gravitational potential energy
of this configuration as U�x�=mg�x�, with the value of g
=C /m calculated from the mass density per unit area of the
galaxy surface. On the Earth a piecewise-linear potential of
the form68,69 U�x�=C �x� with C�g models the horizontal
component of the oscillations of a particle sliding without
friction between two equal-angle inclined planes that meet at
the origin. The same form of the potential roughly models
the interaction between two quarks with x their separation.
The classical, semiclassical, and quantum motion of three
quarks on a line interacting with mutual piecewise-linear po-
tentials have been studied by variational methods �see Ref.
73 and references therein�.

From these possible examples of piecewise-linear oscilla-
tors, we choose to analyze the star oscillating back and forth
perpendicular to the galaxy. We know that the solution to the
star’s oscillation on either side of the galaxy from elementary
analysis of the vertical motion near the surface of the Earth.
With the initial event chosen as P�xP , tP�= �0,0� and v0�0
as in Fig. 5, the first half-cycle follows the parabolic world-

line
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x = v0t − 1
2gt2 �t � T0/2� , �54�

where the numerical value of g for galactic oscillation de-
rives from the surface mass density of the galaxy sheet. The
time T0 /2 of the first half cycle is the time to return to x
=0:

T0

2
=

2v0

g
. �55�

After crossing into negative values of x, the worldline
equation has a form similar to Eq. �54�:

x = − v0�t −
2v0

g
	 +

1

2
g�t −

2v0

g
	2

�T0/2 � t � T0� .

�56�

If we were considering motion in the region of positive x �or
negative x� alone, there would be no kinetic focus because
U� is zero in either region, leading to a positive second order
variation in the action derived from Eq. �53� as discussed in
Sec. V. It is the infinite second derivative U� at the origin of
the potential U�x�=C �x� that creates the kinetic focus for the
piecewise-linear oscillator. The second derivative U��x� of
this potential is

U��x� = 2C��x� , �57�

where ��x� is the Dirac delta function.
Now consider the second order variation �2S for a world-

line with �xP , tP�= �0,0� and the time tR of the terminal point
R in the range T0 /2� tR�T0. As our variational function we
choose

��t� = a0 sin�n�t

2
	 , �58�

where �=2	 / tR and a0 is arbitrary. The variational function
��t� vanishes at the end-points P and R, as it should, and is
a slowly oscillating variation for n=1 and a rapidly oscillat-
ing variation for n large. We substitute Eqs. �58� and �57� in
Eq. �53�. The integration over ��x� is most easily done by
changing the integration variable from t to x using dt=dx / ẋ.
The other integration follows the same pattern as in Sec.
VIII. We find

�2S =
1

4
�2ma0

2tR��n�

2
	2

−
4

	2

T0

tR
�0

2 sin2�n�T0

4
	� , �59�

where �0=2	 /T0 and T0 is given by Eq. �55�. For suffi-
ciently short tR �that is, sufficiently large �=2	 / tR�, the
positive �n� /2�2 term in Eq. �59� will dominate for any n, so
that �2S�0. The action S is therefore a minimum for a
worldline with sufficiently short tR. For large tR �� small�,
the �n� /2�2 term will again dominate for a variation with
sufficiently large n. In this case we again have �2S�0. But
for the n=1 variation the negative term in Eq. �59� dominates
for sufficiently small � �tR sufficiently large�. In this case we
have �2S�0. Thus for sufficiently large tR the action is a
saddle point. These results are consistent with the general
theorems derived earlier.

The dividing line between small and large tR in the pre-
ceding paragraph is the time of the kinetic focus. To find the
time tQ at the kinetic focus Q of the initial event P �see Fig.

5�, we use the method developed in Sec. II. Because the
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oscillator frequency decreases with increasing amplitude, we
know that the kinetic focus time tQ will exceed T0 /2. We
apply condition Eq. �4� to Eq. �56�, giving

�x

�v0
= 0 = − �tQ −

2v0

g
	 +

2v0

g
+ g�tQ −

2v0

g
	�−

2

g
	 ,

�60�

which yields

tQ =
8v0

3g
=

2T0

3
=

4

3
�T0

2
	 . �61�

Thus the kinetic focus is later than the half-period by a factor
of 4

3 , as shown in Fig. 5.
The spatial location xQ of the kinetic focus Q of a particu-

lar worldline is found from tQ using Eq. �56�:

xQ = − v0�tQ −
2v0

g
	 +

1

2
g�tQ −

2v0

g
	2

. �62�

The locus of the various kinetic foci Q of the family of
worldlines in Fig. 5 is the caustic or envelope and can be
found by relating v0 to tQ. From Eq. �61� we have

2v0

g
=

3

4
tQ. �63�

If we substitute Eq. �63� into Eq. �62�, we obtain the relation
for the caustic of the family of piecewise-linear oscillator
worldlines with P= �0,0� and v0�0:

xQ = − 1
16gtQ

2 . �64�

This caustic is a parabola, shown as the heavy gray line in
Fig. 5. It divides space-time. Each final event �xR , tR� above
the caustic can be reached by one or more worldlines of this
family of worldlines; each final event on the caustic can be
reached by just one worldline of the family; and each final
event below the caustic can be reached by no worldline of
the family. For the harmonic oscillator all kinetic foci for a
given initial event P fall at the same point �a focal point37�,
the limiting case of a caustic. Caustics for other systems are
discussed in Secs. IX B and X and Appendix B.

Unlike the harmonic oscillator, the time tQ− tP for the
piecewise-linear oscillator to reach a kinetic focus depends
on the coordinates �xP , tP� of the initial event P. For ex-
ample, we have shown that tQ− tP= � 4

3
�T0 /2 for xP=0. If xP

�0 but still small, we find that tQ− tP� � 4
3

�T0 /2 by approxi-
mately �8xP /gT0

2�T0 /2.

B. Quartic oscillator

Pure quartic potentials are rare in nature,74 but a mechani-
cal model is easily constructed.79 A particle is linked by har-
monic springs on both sides along the y axis. The equilib-
rium position is y=0 and both springs are assumed to be
relaxed in this position. Oscillations along the y axis are
harmonic, but for small transverse oscillations in the x direc-
tion the potential has the form U�x�=Cx4+O�x6�.

Figure 4 shows a family of worldlines for the quartic os-
cillator. The second order variation of the action for a world-

line x0�t� is given from Eq. �53� as
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�2S =
�2

2
�

0

tR

�m�̇�t�2 − 12Cx0�t�2��t�2�dt , �65�

where we have taken tP=0 and ��t� is an arbitrary varia-
tional function. An exact analysis for a general worldline
x0�t� is complicated. We therefore analyze an approximate
worldline that brings out the salient points.

Consider a periodic worldline x0�t� that starts from P
= �0,0� with v0�0, as in Fig. 4. For a given energy or am-
plitude of motion the worldline can be approximated by12,73

x0�t� � A0 sin��0t� . �66�

Unlike the harmonic oscillator, the frequency �0 depends on
the amplitude A0. Action principles can be used in the direct
�Rayleigh-Ritz� mode12,73 to estimate �0, giving

�0 =
2	

T0
� � 3C

4m
	1/2

A0. �67�

As discussed in Ref. 12, the variational result �67� is accurate
to better than 1%; Eqs. �66� and �67� can both be improved
systematically with the direct variational method if required.
�A direct variational method finds true trajectories from a
variational principle �here an action principle� without use of
the equations of motion.�

We can analyze �2S for the quartic oscillator in the same
manner as for the piecewise-linear oscillator. We substitute
Eqs. �58� and �66� into Eq. �65� and perform the integrations.
The results are similar and we omit the details.

As we have discussed, the cut-off time for minimum ac-
tion trajectories is the kinetic focus time tQ; beyond this time
the action is a saddle point. We recall �see Eq. �4� and the
argument there� that for a family of worldlines x�t ,v0� all
starting at event P with differing initial velocity v0, the ki-
netic focus of the worldline with initial velocity v0 occurs
when �x�t ,v0� /�v0=0. To apply this condition to the world-
line in Eq. �66�, we first express A0 and �0 in Eq. �66� in
terms of v0. For brevity we write Eq. �67� as �0=�A0, where
�= �3C /4m�1/2. We also have v0=�0A0 from differentiation
with respect to time of Eq. �66�. From these two relations we
obtain A0=�−1/2v0

1/2 and �0=�1/2v0
1/2. The condition for the

kinetic focus is then

�

�v0
��−1/2v0

1/2 sin��1/2v0
1/2t�� = 0 �68�

or
1
2�−1/2v0

−1/2 sin��1/2v0
1/2t� + �−1/2v0

1/2 cos��1/2v0
1/2t�

�� 1
2��1/2v0

−1/2t = 0. �69�

We let �1/2v0
1/2=�0 and obtain

tan��0t� = − �0t . �70�

Equation �70� is satisfied for t= tQ �and for times of later
kinetic foci�. The smallest positive root �Q of tan �=−� is
�Q�0.646	. The time of the kinetic focus is then given by
�0tQ�0.646	 or tQ�0.646�T0 /2� for worldline 0 in Fig.
4; the same fraction of the half-period for the other world-
lines is shown there. Because the worldline Eq. �66� is
approximate, the location of the kinetic focus is also ap-
proximate. Note that tQ is earlier than the half-period T0 /2

for the quartic oscillator.
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The location xQ of the kinetic focus Q�xQ , tQ� of a particu-
lar worldline is found from tQ using Eq. �66�:

xQ = A0 sin��0tQ� = A0 sin �Q, �71�

where �Q=0.646	 and A0 is the amplitude of the particular
worldline. The locus of the various kinetic foci Q�xQ , tQ�
of the family of worldlines in Fig. 4 or caustic can be
found by relating A0 to tQ. From Eq. �67� we have A0
=�0 /�, where �= �3C /4m�1/2 and �0tQ=�Q. Thus we find

xQ =
B

tQ
, �72�

where B=�Q sin �Q /�=1.82�4m /3C�1/2. This caustic in Fig.
4 is a simple hyperbola and it too divides space-time �see
the discussion of the piecewise-linear oscillator caustic�.

We have seen examples for which the kinetic focus time is
earlier than, equal to, and later than the half-period, corre-
sponding, respectively, to oscillators whose frequency in-
creases with amplitude, is independent of amplitude, and de-
creases with amplitude.

X. REPULSIVE INVERSE SQUARE POTENTIAL

The previous examples were systems with exclusively
bound motions. We now show the corresponding results for a
system whose unbound worldlines describe scattering from
the potential

U�x� =
C

x2 , �73�

with C�0. It might seem surprising that a worldline in a
scattering potential, where motion is unbound, can have a
kinetic focus, because there is no kinetic focus for free par-
ticle worldlines or for worldlines in the scattering potentials
U�x�=Cx and U�x�=−Cx2. The difference is due to the cur-
vatures of the potentials: the inverse square potential �73� has
U��x��0, whereas the other potentials have U��x��0. As
discussed qualitatively in Sec. III, potentials with U��0 are
stabilizing/focusing, which can lead to a kinetic focus.

For a given initial position xP and final position xR in the
potential �73�, a worldline may be direct �direct motion from
xP to xR� or indirect �backward motion from xP to a turning
point xT followed by forward motion from xT to xR�. For
indirect worldlines the turning point �xT , tT� occurs where the
kinetic energy is equal to zero, so that the total energy E is
equal to the potential energy �73�, yielding

xT
2 =

C

E
. �74�

The worldlines x�t� for the potential �73� are calculated by
integrating the energy conservation relation. We assume
�xP , tP�= �xP ,0� and find

x2 = xT
2 +

2E

m
�t ± tT�2, �75�

where � apply to the direct/indirect worldline, respectively.
For an indirect worldline with the initial event P�xP ,0�, Eq.
�75� can be solved for the turn-around time tT:

tT = � m 	1/2

�xP
2 − xT

2�1/2. �76�

2E
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Some typical worldlines with P�xP ,0� are shown in Fig. 6.
A direct worldline of arbitrary length has minimum action
�no kinetic focus�. For indirect worldlines the kinetic foci Q
are not the minimum x turning points, but rather the tangent
points to the straight-line caustic given by

xQ = �2C

m
	1/2 tQ

xP
. �77�

The derivation and discussion of �2S for comparison curves
are similar to those given for the piecewise-linear oscillator
in Sec. IX.

The derivation of the kinetic foci �xQ , tQ� and the caustic
equation �77� by our standard method is cumbersome for this
potential, so we use an alternative argument �cf. Ref. 54�. We
can eliminate tT and xT from Eq. �75� using Eqs. �74� and
�76� and obtain a relation involving x, t, and the �conserved�
energy E. By doing some routine algebra, we can solve for
E:

�2t2/m�E = x2 + xP
2 ± 2xxP�1 −

2C

m

t2

x2xP
2 �1/2

. �78�

The � signs refer either to an indirect/direct pair of world-
lines or to two indirect worldlines; both situations are pos-
sible as seen in Fig. 6. A kinetic focus arises here when two
indirect worldlines coalesce into one; the locus of kinetic
foci forms the caustic or envelope in Fig. 6. When the tra-
jectories coalesce, their energies coincide. From Eq. �78� we
see that the condition for coinciding energies is the vanishing
of the term in square brackets. The caustic relation is thus
found to be Eq. �77�.

Equation �77� for the caustic is seen to be plausible by the
following argument. From Fig. 6, worldline 2, which starts
from rest �v0=0 or zero initial slope�, has the caustic as its
asymptote. The equation for this asymptote is easily calcu-
lated from Eq. �75� by setting tT=0 and E=C /xP

2 and taking
t large.

As we have seen, the indirect worldlines each have a ki-
netic focus. In contrast to the oscillator systems studied ear-
lier, subsequent kinetic foci do not exist for this system.

XI. GENERALIZATIONS

Extensions of the results of this paper to two- and three-
dimensional motion and multiparticle systems are straight-
forward, primarily because the action and energy are scalars;
adding dimensions or particles sums the corresponding scalar
quantities. We let xi denote the coordinates, for example,
�x1 ,x2�= �x ,y� for motion of a single particle in two dimen-
sions; �x1 ,x2 ,x3�= �x ,y ,z� for motion of a single particle in
three dimensions; and �x1 , . . . ,x6� for two particles in three
dimensions, where �x1 ,x2 ,x3�= �x ,y ,z� for particle one and
�x4 ,x5 ,x6�= �x ,y ,z� for particle two. Equation �5� generalizes
to

xi = xi
�0� + ��i, �79�

where xi
�0� and xi are the coordinates of a point on the actual

worldline and varied curve, respectively. This formalism
leads to obvious generalizations of the equations of Sec. IV.
In particular, for one or more particles of mass m, the La-

grangian is
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L = �
i

1

2
mẋi

2 − U , �80�

where U can be a function of all the xi and time. Equation
�19� generalizes to

�2S =
�2

2
�

P

R �− �
ij

�i� j
�2U

�xi�xj
+ �

i

m�̇i
2�dt . �81�

The kinetic energy in Eq. �80� is quadratic in the velocities
and thus positive, which leads to S having a minimum or a
saddle point �never a maximum� for true worldlines �see the
argument at the end of Sec. IV�. It would be interesting to
investigate the possible extension of this result and the cor-
responding result for the Maupertuis action W �see Appendix
A� to more general Lagrangians, including relativistic
Lagrangians and Lagrangians containing terms linear in the
velocities �for example, magnetic field terms, gyroscopic
terms�.

Appendix B describes the 2D motion of a particle in two
types of gravitational potentials and in harmonic oscillator
potentials. The criteria for the minimum action and location
of kinetic foci80 are similar, but, unlike one dimension, two
trajectories connecting P to R can both have minimum action
for the attractive 1/r potential. The analysis generalizes eas-
ily to other dimensions and multi-particle systems, but the
calculations are more complicated for complex worldlines,
for example, when the motion is chaotic. For many-particle
systems it is unlikely that we will want to specify in advance
the complete final as well as initial configuration, because a
major goal of mechanics is to find the final configuration.81

In such cases these powerful deterministic tools may be less
useful than modern statistical mechanical methods, although
Helmholtz, Boltzmann, Planck, and others have attempted to
base the second law of thermodynamics on action principles
for the molecular motions.73

We have been careful to use partial derivatives of the po-
tential function with respect to position, because the potential
energy U�x , t� can be an explicit function of time. The results
of this paper can be applied in principle to motion in time-
dependent potentials, in which the energy of the particle may
not be a constant of the motion. New qualitative features
may arise if U is explicitly time dependent; for example, we
expect that �2S can remain positive for some long worldlines
in potentials with U��0.84 As an example, consider the
quartic oscillator with the time-dependent external forcing
F�t�. The potential becomes

U�x,t� = Cx4 − xF�t� �82�

and has U��0 for all x except x=0. A common choice is
F�t�=F0 cos �t, but other choices are also of interest, for
example, quasiperiodic forcing F�t�=F1 cos �1t+F2 cos �2t,
with �2 /�1 irrational. Alternatively, we can introduce para-
metric forcing by modulating C. The unforced oscillator has
only equilibrium and periodic worldlines, which are stable.
Depending on the initial conditions and potential parameters,
the forced oscillator can also have unstable periodic
worldlines,30 quasiperiodic worldlines,87,88 and chaotic �ape-
riodic, bounded, exponentially unstable� worldlines.90 Simi-
larly the potential U�x�=C �x� can be made time dependent.91

Second variations and kinetic foci have been studied for

some worldlines of various oscillators with time dependent
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potentials,92–94 but as far as we know not for chaotic world-
lines in particular.

Chaotic behavior can arise in higher dimensions even
without explicitly time-dependent potentials. As an example,
the worldlines for the Henon-Heiles oscillator

U�x,y� = 1
2k�x2 + y2� + �x2y − 1

3�y3 �83�

are chaotic for certain values of the initial conditions and
parameters.95 Some studies of �2S and kinetic foci have been
done on periodic worldlines for this system,93 but we are not
aware of any studies for chaotic worldlines.

It would be interesting and challenging to study �2S for
chaotic worldlines.96 We hypothesize that kinetic foci will
not exist if the worldline is sufficiently chaotic. In such cases
worldlines with incremental difference in velocity at initial
event P may recross pseudorandomly in time, but the severe
instability may prevent the two worldlines from smoothly
coalescing, as required for the existence of a kinetic focus Q.
Worldlines PR lacking kinetic foci have �2S�0 for arbitrary
final events R, so that the action is expected to remain a
minimum in such cases, even for long worldlines in poten-
tials having U��0, such as Eq. �82�.

XII. SUMMARY

We have investigated the nature of the stationary value of
the Hamilton action S for the worldlines of a single particle
in one dimension with potential energy function U�x�. We
showed that when no kinetic focus exists, the action is a
minimum for worldlines of arbitrary length. When a kinetic
focus exists, and when a worldline terminates before reach-
ing its kinetic focus, the action is still a minimum. In con-
trast, when a worldline terminates beyond its kinetic focus,
its action is a saddle point. The value of the action S is never
a true maximum for a true worldline. These results were
illustrated for the harmonic oscillator, two anharmonic oscil-
lators, and a scattering system. Extensions to time-dependent
1D potentials and to multidimensional potentials were dis-
cussed briefly. The appendices supply parallel results for spa-
tial orbits described by Maupertuis’ action W and give ex-
amples for 2D motion for both S and W. Corresponding
results for some newer action principles have not yet been
derived, and open questions about these newer action prin-
ciples are sketched in Appendix C.
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APPENDIX A: THE MAUPERTUIS ACTION
PRINCIPLE

There are two major versions of the action and two corre-
sponding action principles. The Hamilton or time-dependent
action S and the corresponding Hamilton action principle
were introduced in Sec. I. The Maupertuis or time-
independent action W is defined along an arbitrary trial tra-
jectory connecting P�xP , tP� to R�xR , tR� by

W = �
xP

xR

p dx = �
tP

tR

mẋ
dx

dt
dt = �

tP

tR

2K dt , �A1�

where the first �time-independent� form is the general defi-
nition with p=�L /�ẋ the canonical momentum, and the last
�time-dependent� form is valid generally for normal
systems73 in which the kinetic energy K is quadratic in the
velocity components. For normal systems W is positive for
all trajectories in all potentials �unlike S�. The Maupertuis
action principle states that in conservative systems W is sta-
tionary ��W=0� for an actual trajectory when comparing trial
trajectories all with the same fixed energy E and the same
fixed start and end positions xP and xR. Note that in Mauper-
tuis’ principle the energy E is fixed and the duration T= �tR

− tP� is not, the opposite conditions of those in Hamilton’s
principle. The constraint of fixed end positions xP and xR is
common to both principles. Hamilton’s principle is valid for
both conservative systems and nonconservative systems with
U=U�x , t�. The conventional Maupertuis principle is valid
only for conservative systems; the extension to nonconserva-
tive systems is discussed in Ref. 73. Maupertuis’ principle
can be used in its time-independent form to find spatial orbits
�for example, �xP ,yP�→ �xR ,yR�� and in its time-dependent
form to find space-time trajectories or worldlines, for ex-
ample, �xP ,yP , tP�→ �xR ,yR , tR�.

The Hamilton and Maupertuis action principles can be
stated73 succinctly in terms of constrained variations as
��S�T=0 and ��W�E=0, respectively, where the constraints of
fixed T and fixed E are denoted explicitly as subscripts, and
the constraint of fixed end positions xP and xR is implicit.
Along an arbitrary trial trajectory P→R, S and W are
related73 by a Legendre transformation, that is,

S = W − ĒT , �A2�

where Ē=�tP
tRH dt /T is the mean energy along the arbitrary

trajectory, T= �tR− tP� is the duration, and H is the Hamil-
tonian. Equation �A2� follows by integrating over time from
tP to tR along the arbitrary trajectory the corresponding Leg-
endre transform L= pẋ−H and deserves to be better known.
Along an actual trajectory of a conservative system, Eq. �A2�
reduces to the well-known relation97 S=W−ET, where E is
the constant energy of the actual trajectory. Using Eq. �A2�
enables us to relate the Hamilton and Maupertuis
principles.73

Parallel yet distinct discussions have been developed for
the second variations of S and W because the kinetic foci,
which play such an important role in determining the second
variation, can differ for the two actions.30,98,99

An intuitive argument why W can never be a true maxi-
mum for actual paths was given in Ref. 100 for normal sys-
tems. Consider an actual path xP→A→B→xR that makes

the first form of W in Eq. �A1� stationary. Here A and B are
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two arbitrary intermediate positions between xP and xR. Con-
sider a second trial path xP→A→B→A→B→xR that has
an extra “loop” inserted, with the momentum p reversed at
every point along B→A compared to A→B. This compari-
son path satisfies the constraint of having the same energy as
the actual path, but has a larger action because pdx is always
positive. Thus W for the actual path cannot be a true maxi-
mum.

APPENDIX B: TWO-DIMENSIONAL
TRAJECTORIES

1. Gravitational fields

We have shown that the Hamilton action S is a minimum
for all radial/vertical trajectories in the 1/r and linear gravi-
tational potentials discussed in Sec. V. This minimum action
property may not hold for 2D trajectories, as we shall dis-
cuss. A possible nonminimum in the action is more evident
for the Maupertuis action W, Eq. �A1�, for which the true
trajectories are defined by giving the two end positions
�xP ,yP� and �xR ,yR� and the energy E; we therefore discuss
2D orbits for W first. We choose the x and y axes in the plane
of the orbit.

For U�x ,y�=mgy, with y the vertical direction and x the
horizontal, it is well known that two actual spatial orbits
�parabolas� with the same energy E can connect two given
positions, the origin �xP ,yP�= �0,0� say, and the final posi-
tion �xR ,yR�, provided that �xR ,yR� lies within the “parabola
of safety”—the envelope43,101 of the parabolic orbits of en-
ergy E originating at �0,0� �see Fig. 7�. If �xR ,yR� lies on the
parabola of safety, which is the locus of the spatial kinetic
foci �xQ ,yQ� or caustic, there is one actual orbit between the
fixed end positions. If �xR ,yR� lies outside the parabola of
safety, no orbit of energy E can connect it to the origin.
These conclusions are evident in Fig. 7. As we have seen in
Sec. II, the intersection of two paths implies the existence of
a �different� kinetic focus for each of the paths. W is a mini-
mum for the path for which �xR ,yR� precedes its kinetic fo-
cus, and is a saddle point for the path for which �xR ,yR� lies
beyond its kinetic focus.

Similarly, as first shown by Jacobi,22 typically102 two
given positions �xP ,yP� and �xR ,yR� in the gravitational po-
tential �1/r� can be connected by two actual orbits �ellipses�
�and therefore four paths of less than one revolution� of the
same energy E. Again, the fact that more than one true path
can connect the two end positions leads to a nonminimum in
the action W for actual paths connecting �xP ,yP� to �xR ,yR�
when �xR ,yR� lies beyond the kinetic focus. An example is
shown in Fig. 13. The intersection points of the orbits show
two ellipses connecting point P to other points. The outer
curve is the envelope/caustic, which is also elliptical with
foci at P and the force center. The spatial kinetic foci for
action W lie on this outer ellipse. The second spatial kinetic
focus occurs at P itself, following one revolution. There is no
envelope for the hyperbolic scattering orbits for the attractive
1/r potential.104 Methods of determining spatial caustics are
similar to those for determining space-time caustics and are
discussed in Ref. 105.

To discuss 2D space-time worldlines for the Hamilton ac-
tion S, which depend on the two end positions and the time
interval that now specify a worldline, note that for the 1/r

potential, typically two actual worldlines can connect two
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given positions �xP ,yP� and �xR ,yR� in the given time interval
�tR− tP�.107 The fact that two actual worldlines exist here is
illustrated in Fig. 14, which shows two elliptical trajectories
that connect the initial and final points in the same time.
Choose tP=0 for simplicity. The kinetic focus time tQ for S is
the period T0 as is clear intuitively from Fig. 13, which
shows a family of trajectories leaving point P and converg-
ing back on P in the same time T0. A rigorous proof that
tQ=T0 can also be given.110 The space-time kinetic focus
here is of the focal point type, as in Fig. 1 for the sphere
geodesics and in Fig. 3 for the harmonic oscillator world-
lines. As seen in Fig. 14, if two trajectories connect P to R in
time �tR− tP��T0, both have the minimum action; the fact
that both trajectories have minimum action is in contrast to
one dimension, where we have seen in general that when two
space-time paths exist, one of them has a saddle point in the

Fig. 13. A family of elliptical trajectories starting at P with the same speed
�v0� �the directions �0 of v0 differ�, and hence the same energy E, the same
major axis 2a, and the same period T0, in a 1/r gravitational potential. The
value of v0 exceeds that necessary to generate a circular orbit. The center of
force is the Earth �heavy circle�. The dashed circle gives the locus of the
second focus of the ellipses �a circle centered at P�. The outer ellipse, with
foci at P and the Earth, is the envelope of the family of ellipses and the
locus of the spatial kinetic foci relevant for action W. The space-time kinetic
foci of the family, relevant for action S, all occur at time tQ=T0. �Figure
adapted from Butikov, Ref. 101.�

Fig. 14. Two different elliptical trajectories typically can connect P
= �rP , tP� to R= �rR , tR� in the same time �tR− tP� for the attractive 1/r poten-

tial. �Adapted from Bate et al., Ref. 108.�
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action. For this particular potential, only one space-time path
exists for one dimension, which therefore has minimum ac-
tion S �see Sec. V�.

For the potential U�x ,y�=mgy, only one 2D �parabolic-
shaped� actual worldline can connect two given positions
�xP ,yP� and �xR ,yR� in the given time �tR− tP�. Kinetic foci
for the space-time trajectories therefore cannot arise, and
hence S is always a minimum for actual worldlines for this
potential.112 The fact that for this potential only one true
worldline can connect two points in a given time is in con-
trast with the Maupertuis action W for which we have seen
that some pairs of positions �xP ,yP� and �xR ,yR� can be con-
nected by more than one path of a given energy E so that
kinetic foci can exist for the spatial orbits. This contrast be-
tween S and W also holds for the vertical 1D paths in the
potential U=mgy. For S only one actual 1D worldline can
connect a given yP to a given yR in the given time �tR− tP�,
which leads to the conclusion that all 1D actual worldlines
minimize S �see Sec. V�. For W typically two actual 1D
paths of given energy E can connect yP to yR, which leads to
the conclusion that not all 1D actual paths minimize W
�some are saddle points�. For the potential U�x ,y�=mgy
there is always one actual worldline that can connect two
given spatial points in a given time, for both 2D and 1D
worldlines �S is always a minimum for these worldlines�. In
contrast, there may be no actual path that connects two given
spatial points for a given energy, for both one and two di-
mensions. Figure 7 shows examples �final points outside the
caustic� of this nonexistence of actual paths.

2. Harmonic oscillators

The potential for a 2D isotropic harmonic oscillator is
U�x ,y�= 1

2k�x2+y2�� 1
2kr2. The spatial orbits are ellipses

with the force center �r=0� at the center of the ellipse. A
family of ellipses launched from P in Fig. 15, with equal
values of �v0� �and hence equal energies E� and various di-
rections of v0, has an envelope/caustic that is also
elliptical.101 The envelope is the outer ellipse �heavy line� in
Fig. 15. The spatial kinetic foci for the action W lie on the
caustic. Reference 105 gives methods for deriving the spatial
caustic.

To locate the space-time kinetic focus, which is relevant
for the action S, we apply the relation given in Ref. 80 for 2D

Fig. 15. An elliptical orbit �tilted ellipse� in a 2D isotropic harmonic oscil-
lator potential U�r�= � 1

2
�kr2 with force center at O. A family of trajectories is

launched from P with equal initial speeds �v0� and various directions �0. One
member of the family is shown. The envelope of the family is the outer
ellipse �heavy line�, with foci at P and Q �coordinates xQ=−xP, yQ=yP=0�.
Points on the envelope are the kinetic foci for the spatial orbits. Point Q,
occurring at time tQ=T0 /2, where T0 is the period, is the kinetic focus for
the space-time trajectories �worldlines�. �Figure adapted from French, Ref.
101.�
trajectories x�t ,v0�. The matrix �xi /�v0j is diagonal, so that
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the determinant condition reduces to ��x /�v0x���y /�v0y�=0,
and we obtain separate 1D conditions for the x and y mo-
tions, that is, �x /�v0x=0 or �y /�v0y =0. Choose tP=0 for
simplicity. We showed in Sec. VIII that the kinetic focus
time tQ for the 1D harmonic oscillator is T0 /2, where T0
=2	 /�0 and �0= �k /m�1/2. Thus we have tQ=T0 /2 for the
isotropic 2D harmonic oscillator.

The space-time kinetic focus for the trajectories of the 2D
anisotropic harmonic oscillator with the potential U�x ,y�
= 1

2k1x2+ 1
2k2y2 and k1�k2 can be derived similarly. The or-

bits are Lissajous figures, closed �periodic� for rational ratios
�1 /�2 as in Fig. 16, and open �quasiperiodic� for �1 /�2
irrational as in Fig. 17, where �i= �ki /m�1/2. The problem is
again separable into x and y motions, and the method of Ref.
80 yields for the kinetic focus time tQ the value T0 /2, where
T0 is the smaller of T1 and T2 and Ti=2	 /�i. The determi-
nation of the spatial kinetic foci, relevant for W, is more
complicated.105

Fig. 16. A periodic orbit of a 2D anisotropic harmonic oscillator with com-
mensurate frequencies �here �1 /�2=2� �Ref. 113�. The space-time kinetic
focus occurs at time tQ=T1 /2, where T1 is the period for x-motion, for any
initial event �xP ,yP , tP=0� �see text�, and the spatial kinetic focus for initial
position �xP ,yP�= �0,0� is located on a parabolic spatial caustic �see Ref.
105�.

Fig. 17. A quasiperiodic orbit of a 2D anisotropic harmonic oscillator with
incommensurate frequencies. The outer ellipse is the equipotential contour
U�x ,y�=E. The rectangle delimits the region of x-y space actually reached
by the particular orbit �Ref. 114�. The space-time kinetic focus occurs at
time tQ=T2 /2, where T2 is the period for y-motion, for any initial event

�xP ,yP , tP=0�.
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APPENDIX C: OPEN QUESTIONS FOR SOME
NEWER ACTION PRINCIPLES

Culverwell and Whittaker �see Sec. VI� framed their
analysis in terms of the Maupertuis action W. For sufficiently
short trajectories �the final position occurs before the kinetic
focus� W is always a minimum, and for longer trajectories W
is a saddle point. W is never a true maximum. In this paper
we amended the Culverwell-Whittaker analysis and adapted
it to the Hamilton action S. For times less than the kinetic
focus time tQ, the action S is always a minimum. For longer
times S is a saddle point. S is never a true maximum. We
refer to these results for W and S as “no-max” theorems.

It may be possible to extend the theorems to several newer
action principles.73,115 To state the newer principles, we first
recall the notation for the Hamilton principle and the Mau-
pertuis principle given in Appendix A:

��S�T = 0 �Hamilton principle� , �C1�

��W�E = 0 �Maupertuis principle� , �C2�

where T= tR− tP �the duration� and E �the energy� denote the
constraints. The additional constraints of fixed end positions
xP and xR are implicit in Eqs. �C1� and �C2� and are under-
stood to hold here and in all the action principles discussed
in the following.

In recent years the Maupertuis principle �C2� has been
extended to a generalized Maupertuis principle,73,115

��W�Ē = 0 �generalized Maupertuis principle� , �C3�

where Ē=�0
TH dt /T is the mean energy along the arbitrary

trial trajectory, with H the Hamiltonian, and where for sim-
plicity we choose tP=0 and tR=T. The constraint of fixed E
in Eq. �C2� has been weakened to one of fixed mean energy

Ē in Eq. �C3�. Conservation of energy for actual trajectories
is now a consequence of the principle �C3�, rather than an
assumption as in the original principle �C2�.

Both the generalized Maupertuis principle �C3� and
Hamilton principle �C1� have associated reciprocal
principles:73,115

��Ē�W = 0 �reciprocal Maupertuis principle� , �C4�

��T�S = 0 �reciprocal Hamilton principle� . �C5�

The newer principles in Eqs. �C3�–�C5� have several advan-
tageous features, computational and conceptual, as discussed
in Refs. 12, 73, and 115. Additionally, the reciprocal Mau-
pertuis principle �C4� is the direct classical analogue115,116

�the classical �→0 limit� of the well known Schrödinger
quantum variational principle involving the mean energy.117

It would be of interest to prove the existence or nonexist-
ence of a no-max or no-min theorem for these newer action
principles. A Routh-type argument �see Appendix A� sug-
gests that the generalized Maupertuis principle �C3� obeys a
no-max theorem, but the examples worked out to date12,73,115

provide no compelling evidence one way or the other for the
other principles.

Other newer action principles are discussed in Refs. 73
and 115. We can completely relax the constraints of fixed T

in Eq. �C1� and fixed Ē in Eq. �C3� with the help of Lagrange
multipliers and obtain an unconstrained Hamilton principle,

�S=−E�T, and an unconstrained Maupertuis principle, �W
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=T�Ē, where �for conservative systems� the Lagrange mul-
tipliers E and T are the energy and duration of the actual
trajectory, respectively. The unconstrained Hamilton prin-
ciple and unconstrained Maupertuis principle can also be
written in the more suggestive forms ��S+�T�=0 and ��W
+�Ē�=0, respectively, where �=E or �=−T is the corre-
sponding constant Lagrange multiplier. These unconstrained
principles still have the constraint of fixed end positions xP
and xR; these constraints can be relaxed by introducing addi-
tional Lagrange multipliers.73 It would also be of interest to
prove the existence or nonexistence of no-max or no-min
theorems for these various principles.
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can apply the equation of motion mẍ+U��x�=0 to both. We then subtract
these two equations of motion and expand U��x0+��� as U��x0�
+U��x0���+ � 1

2
�U��x0�����2+O��3�, giving m�̈+U��x0��

=−� 1
2

�U��x0���2+O��2�. �If the �2, etc., nonlinear terms on the right-
hand side are neglected in the last equation, it becomes the Jacobi-
Poincaré linear variation equation used in stability studies.� If we use this
result in the previous expression for �2S0, we find to lowest nonvanishing
order �2S0= ��3 /4��P

RdtU��x0��3, which is O��3�. This result and Eq.
�40a� for �3S0 give the desired result �42� for S1−S0.

61If we use arguments similar to those of this section and Sec. VI, we can
show that �2S vanishes again at the second kinetic focus Q2, and that for
R beyond Q2 the wordline PR has a second, independent variation lead-
ing to �2S�0, in agreement with Morse’s general theory �Ref. 34�.
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tions �xP , ẋP�. It can also be formulated as a boundary value problem; for
example, find x�t� from Hamilton’s principle with boundary conditions
�xP , tP� and �xR , tR�. Solving a boundary value problem with initial value
problem methods �for example, the shooting method� is standard �Ref.
82�. Solving an initial value problem with boundary value problem meth-
ods is much less common �Ref. 83�. For an example of a boundary value
problem with mixed conditions �prescribed initial velocities and final
positions� for about 107 particles, see A. Nusser and E. Branchini, “On
the least action principle in cosmology,” Mon. Not. R. Astron. Soc. 313,
587–595 �2000�.

82See, for example, W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
P. Flannery, Numerical Recipes in Fortran, 2nd ed. �Cambridge U. P.,
Cambridge, 1992�, p. 749.

83H. R. Lewis and P. J. Kostelec, “The use of Hamilton’s principle to derive
time-advance algorithms for ordinary differential equations,” Computer
Phys. Commun. 96, 129–151 �1996�; D. Greenspan, “Approximate solu-
tion of initial value problems for ordinary differential equations by
boundary value techniques,” J. Math. Phys. Sci. 15, 261–274 �1967�.

84The converse effect cannot occur: a time-dependent potential U�x , t� with
U��0 at all times always has �2S�0 as seen from Eq. �19�. If U�x , t� is
such that U� alternates in sign with time, kinetic foci �and hence trajec-
tory stability� may occur. An example is a pendulum with a rapidly ver-
tically oscillating support point. In effect the gravitational field is oscil-
lating. The pendulum can oscillate stably about the �normally unstable�
upward vertical direction �Ref. 85�. Two- and three-dimensional ex-
amples of this type are Paul traps �Ref. 86� and quadrupole mass filters
�Ref. 85�, which use oscillating quadrupole electric fields to trap ions.
The equilibrium trajectory x�t�=0 at the center of the trap is unstable for
purely electrostatic fields but is stabilized by using time-dependent elec-

tric fields. Focusing by alternating-gradients �also known as strong focus-

456C. G. Gray and E. F. Taylor



ing� in particle accelerators and storage rings is based on the same idea
�Ref. 42�.

85M. H. Friedman, J. E. Campana, L. Kelner, E. H. Seeliger, and A. L.
Yergey, “The inverted pendulum: A mechanical analog of the quadrupole
mass filter,” Am. J. Phys. 50, 924–931 �1982�.

86P. K. Gosh, Ion Traps �Oxford U. P., Oxford, 1995�, p. 7.
87J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems

�Wiley, New York, 1950�, p. 112. Stoker’s statements on series conver-
gence need amendment in light of the Kolmogorov-Arnold-Moser
�KAM� theory �Ref. 89�. See J. Moser, “Combination tones for Duffing’s
equation,” Commun. Pure Appl. Math. 18, 167–181 �1965�; T. Kapita-
niak, J. Awrejcewicz and W.-H. Steeb, “Chaotic behaviour in an anhar-
monic oscillator with almost periodic excitation,” J. Phys. A 20, L355–
L358 �1987�; A. H. Nayfeh, Introduction to Perturbation Techniques
�Wiley, New York, 1981�, p. 216; A. H. Nayfeh and B. Balachandran,
Applied Nonlinear Dynamics �Wiley, New York, 1995�, p. 234; S. Wig-
gins, “Chaos in the quasiperiodically forced Duffing oscillator,” Phys.
Lett. A 124, 138–142 �1987�.

88G. Seifert, “On almost periodic solutions for undamped systems with
almost periodic forcing,” Proc. Am. Math. Soc. 31, 104–108 �1972�; J.
Moser, “Perturbation theory of quasiperiodic solutions and differential
equations,” in Bifurcation Theory and Nonlinear Eigenvalue Problems,
edited by J. B. Keller and S. Antman �Benjamin, New York, 1969�, pp.
283–308; J. Moser, “Perturbation theory for almost periodic solutions for
undamped nonlinear differential equations,” in International Symposium
on Nonlinear Differential Equations and Nonlinear Mechanics, edited by
J. P. Lasalle and S. Lefschetz �Academic, New York, 1963�, pp. 71–79;
M. S. Berger, “Two new approaches to large amplitude quasi-periodic
motions of certain nonlinear Hamiltonian systems,” Contemp. Math.
108, 11–18 �1990�.

89G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov,
Weak Chaos and QuasiRegular Patterns �Cambridge U. P., Cambridge,
1991�, p. 30.

90See, for example, M. Tabor, Chaos and Integrability in Nonlinear Dy-
namics �Wiley, New York, 1989�, p. 35; J. M. T. Thompson and H. B.
Stewart, Nonlinear Dynamics and Chaos, 2nd ed. �Wiley, Chichester,
2002�, pp. 310.

91For example, the equilibrium position can be modulated. A somewhat
similar system is a ball bouncing on a vertically oscillating table. The
motion can be chaotic. See, for example, J. Guckenheimer and P. Holmes,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector
Fields �Springer, New York, 1983�, p. 102; N. B. Tufillaro, T. Abbott, and
J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos
�Addison-Wesley, Redwood City, CA, 1992�, p. 23; A. B. Pippard, The
Physics of Vibration �Cambridge U. P., Cambridge, 1978�, Vol. 1, pp.
253, 271.

92
The forced Duffing oscillator with U�x , t�= � 1

2
�kx2+Cx4−xF0 cos �t is

studied in Ref. 30. For k=0 the Duffing oscillator reduces to the quartic
oscillator.

93R. H. G. Helleman, “Variational solutions of non-integrable systems,” in
Topics in Nonlinear Dynamics, edited by S. Jorna �AIP, New York, 1978�,
pp. 264–285. This author studies the forced Duffing oscillator with
U�x , t�= � 1

2
�kx2−Cx4−xF0 cos �t �note the sign change in C compared to

Ref. 92�, and the Henon-Heiles oscillator with the potential in Eq. �83�.
94

In Ref. 54 the harmonic potential U�x , t�= � 1
2

�k�x−xc�t��2 with an oscillat-
ing equilibrium position xc�t� is studied. The worldlines for this system
are all nonchaotic.

95M. Henon and C. Heiles, “The applicability of the third integral of the
motion: Some numerical experiments,” Astron. J. 69, 73–79 �1964�.

96There have been a few formal studies of action for chaotic systems, but
few concrete examples seem to be available. See, for example, S. Bolotin,
“Variational criteria for nonintegrability and chaos in Hamiltonian sys-
tems,” in Hamiltonian Mechanics, edited by J. Seimenis �Plenum, New
York, 1994�, pp. 173–179.

97Reference 48, p. 434.
98H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste �Gauthier-

Villars, Paris, 1899�, Vol. 3; New Methods of Celestial Mechanics �AIP,
New York, 1993�, Part 3, p. 958.

99The situation is complicated because, as Eq. �A1� shows, there are two
forms for W, that is, the time-independent �first� form and the time-
dependent �last� form. Spatial kinetic foci �discussed in Appendix B�
occur for the time-independent form of W. Space-time kinetic foci occur

for the time-dependent form of W, as for S. Typically the kinetic foci for

457 Am. J. Phys., Vol. 75, No. 5, May 2007
the two forms for W differ from each other �Refs. 30 and 98� and from
those for S.

100E. J. Routh, A Treatise on Dynamics of a Particle �Cambridge U. P.,
Cambridge, 1898�, reprinted �Dover, New York, 1960�, p. 400.

101A. P. French, “The envelopes of some families of fixed-energy trajecto-
ries,” Am. J. Phys. 61, 805–811 �1993�; E. I. Butikov, “Families of
Keplerian orbits,” Eur. J. Phys. 24, 175–183 �2003�.

102We assume that we are dealing with bound orbits. Similar comments
apply to scattering orbits �hyperbolas�. Just as for the orbits in the linear
gravitational potential discussed in the preceding paragraph, here too
there are restrictions and special cases �Ref. 19, p. 164; Ref. 103, p. 122�.
If the second point �xR ,yR� lies within the “ellipse of safety” �the enve-
lope �French, Ref. 101�� of the elliptical trajectories of energy E originat-
ing at �xP ,yP�, then two ellipses with energy E can connect �xP ,yP� to
�xR ,yR�. If �xR ,yR� lies on the ellipse of safety, then one ellipse of energy
E can connect �xP ,yP� to �xR ,yR�, and if �xR ,yR� lies outside the ellipse of
safety, then no ellipse of energy E can connect the two points. Usually the
initial and final points �xP ,yP� and �xR ,yR� together with the center of
force at �0,0� �one focus of the elliptical path� define the plane of the
orbit. If �xP ,yP�, �xR ,yR�, and �0,0� lie on a straight line, the plane of the
orbit is not uniquely defined, and there is almost always an infinite num-
ber of paths of energy E in three dimensions that can connect
�xP ,yP ,zP=0� to �xR ,yR ,zR=0�. A particular case of the latter is a periodic
orbit where �xR ,yR�= �xP ,yP�. Because the orbit can now be brought into
coalescence with an alternative true orbit by a rotation around the line
joining �xP ,yP� to �0,0�, a third kinetic focus arises for elliptical periodic
orbits in three dimensions �see Ref. 33, p. 29�.

103N. G. Chetaev, Theoretical Mechanics �Springer, Berlin, 1989�.
104For the repulsive 1/r potential, the hyperbolic spatial orbits have a �para-

bolic shaped� caustic/envelope �French, Ref. 101�.
105If the orbit equation has the explicit form y=y�x ,�0�, or the implicit form

f�x ,y ,�0�=0, the spatial kinetic focus is found from �y /��0=0 or
�f /��0=0, respectively. Here �0 is the launch angle at �xP ,yP� �see Fig.
15 for an example�. The derivation of these spatial kinetic focus condi-
tions is similar to the derivation of the space-time kinetic focus condition
of Eq. �4� �see Ref. 106, p. 59�. In contrast, if the orbit equation is defined
parametrically by the trajectory equations x=x�t ,�0� and y=y�t ,�0�, the
spatial kinetic focus condition is ��x ,y� /��t ,�0�=0. This Jacobian deter-
minant condition is similar to that of Ref. 80 for the space-time kinetic
focus �see Ref. 106, p. 73 for a derivation�. As an example, consider a
family of figure-eight-like harmonic oscillator orbits of Fig. 16, launched
from the origin �xP ,yP�= �0,0� at time tP=0, all with speed v0 �and there-
fore the same energy E�, at various angles �0. The trajectory equations are
x= �v0 /�1�cos �0 sin �1t and y= �v0 /�2�sin �0 sin �2t, where �1=2�2.
The determinant condition for the spatial kinetic focus reduces to
cos �0 tan �2t=1, which locates the kinetic focus �in time� for the orbit
with launch angle �0. Elimination of �0 and t from these three equations
leads to the locus of the �first� spatial kinetic foci, the spatial caustic/
envelope equation y2= �v0 /�2�2−2�v0 /�2� �x�, which is a parabolic
shaped curve with two cusps on the y-axis.

106R. H. Fowler, The Elementary Differential Geometry of Plane Curves
�Cambridge U. P., Cambridge, 1920�.

107The finding of the two elliptical �or hyperbolic or parabolic� shaped tra-
jectories from observations giving the two end-positions and the time
interval is a famous problem of astronomy and celestial mechanics,
solved by Lambert �1761�, Gauss �1801–1809�, and others �Ref. 108�.

108R. R. Bate, D. D. Mueller, and J. E. White, Fundamentals of Astrody-
namics �Dover, New York, 1971�, p. 227; H. Pollard, Celestial Mechanics
�Mathematical Association of America, Washington, 1976�, p. 28; P. R.
Escobal, Methods of Orbit Determination �Wiley, New York, 1965�, p.
187. For the elliptical orbits, more than two trajectories typically become
possible at sufficiently large time intervals; these additional trajectories
correspond to more than one complete revolution along the orbit �Ref.
109�.

109R. H. Gooding, “A procedure for the solution of Lambert’s orbital
boundary-value problem,” Celest. Mech. Dyn. Astron. 48, 145–165
�1990�.

110 It is clear from Fig. 13 that a kinetic focus occurs after time T0. To show
rigorously that this focus is the first kinetic focus �unlike for W where it
is the second�, we can use a result of Gordon �Ref. 111� that the action S
is a minimum for time t=T0. If one revolution corresponds to the second
kinetic focus, the trajectory P→P would correspond to a saddle point.
The result tQ=T0 can also be obtained algebraically by applying the gen-

eral relation �4� to the relation r=r�t ,L� for the radial distance, where we

457C. G. Gray and E. F. Taylor



use angular momentum L as the parameter labeling the various members
of the family in Fig. 13. We obtain tQ from ��r /�L�t=0. The latter equa-
tion implies that ��t /�L�r=0, because ��r /�L�t=−��r /�t�L��t /�L�r. At
fixed energy E �or fixed major axis 2a�, the period T0 is independent of L
for the attractive 1/r potential, so that the solution of ��t /�L�r=0 occurs
for t=T0, which is therefore the kinetic focus time tQ.

111 W. B. Gordon, “A minimizing property of Keplerian orbits,” Am. J.
Math. 99, 961–971 �1977�.

112 Note that for the actual 2D trajectories in the potential U�x ,y�=mgy,
kinetic foci exist for the spatial paths of the Maupertuis action W, but do
not exist for the space-time trajectories of the Hamilton action S. This
result illustrates the general result stated in Appendix A that the kinetic
foci for W and S differ in general.

113
 A. P. French, Vibrations and Waves �Norton, New York, 1966�, p. 36.

458 Am. J. Phys., Vol. 75, No. 5, May 2007
114 J. C. Slater and N. H. Frank, Introduction to Theoretical Physics
�McGraw Hill, New York, 1933�, p. 85.

115 C. G. Gray, G. Karl, and V. A. Novikov, “The four variational principles
of mechanics,” Ann. Phys. �N.Y.� 251, 1–25 �1996�.

116 C. G. Gray, G. Karl, and V. A. Novikov, “From Maupertuis to
Schrödinger. Quantization of classical variational principles,” Am. J.
Phys. 67, 959–961 �1999�.

117 E. Schrödinger, “Quantisierung als eigenwert problem I,” Ann. Phys. 79,
361–376 �1926�, translated in E. Schrödinger, Collected Papers on Wave
Mechanics �Blackie, London, 1928�, Chelsea reprint 1982. For modern
discussions and applications, see, for example, E. Merzbacher, Quantum
Mechanics, 3rd ed. �Wiley, New York, 1998�, p. 135; S. T. Epstein, The
Variation Method in Quantum Chemistry �Academic, New York, 1974�.
458C. G. Gray and E. F. Taylor


