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ABSTRACT 
This paper examines the nature of the stationary character of the Hamilton action S for a space-
time trajectory (worldline) of a single particle moving in one dimension with general (time-
dependent) potential energy function U x, t( ) . We show that the action is a local minimum for 
sufficiently short worldlines in all potentials and for worldlines of any length in some 
potentials. For long enough worldlines in a majority of time-independent potentials )(xU , 
however, the action is a saddle point, i.e. a minimum with respect to some nearby alternative 
curves and a maximum with respect to others. The action is never a true maximum, that is 
never greater along the actual worldline than along every nearby alternative curve. We illustrate 
these results with the harmonic oscillator, two different nonlinear oscillators, and a scattering 
system.  Appendices briefly discuss the Maupertuis action W, two-dimensional examples, and 
newer forms of action principles. 
 
I. INTRODUCTION 

A number of authors1-12 have simplified and elaborated the action principle and 
recommended that it be introduced earlier into the physics curriculum. Their work allows us to 
see in outline how to empower students early in their study with the fundamental yet simple 
extensions of Newton's principles of motion made by Maupertuis, Euler, Lagrange, Jacobi, 
Hamilton and others. The simplicity of the action principle derives from its use of scalars energy 
and time to predict motion. Its transparency comes from the use of computer11 and analytic12 
procedures to vary a candidate worldline to find a stationary value of the action, skirting not 
only equations of motion but also the advanced formalism of Lagrange and others characteristic 
of upper level mechanics texts. We intend the present paper to contribute to this development 
by providing background for instructors and advanced students on conditions under which the 
stationary value of the action for an actual worldline is a minimum and those under which it is a 
saddle point (neither a true maximum nor a true minimum).  
 
 For single-particle motion in one dimension (1D), the Hamilton action S is defined as an 
integral along an actual or trial space-time trajectory (worldline) connecting two given events P 
and R, 
 

( ) ,,, dttxxLS
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P

&  (I-1) 

 
where L is the Lagrangian, x the position, t the time, and P(xP, tP) and R(xR, tR) are fixed initial 
and final space-time events. A dot over a symbol, as in x& , indicates the time derivative. The 
Lagrangian ( )txxL ,, &  depends on t implicitly through x(t) and )(tx&  and may also depend on t 
explicitly, for example through a time-dependent potential. For simplicity we use Cartesian co-
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ordinates throughout, but the methods and conclusions apply using generalized coordinates. 
The Hamilton action principle compares the numerical value of the action S along the actual 
worldline to its value along every adjacent curve (trial worldline) anchored to the same fixed 
initial and final events. We can freely imagine and construct these adjacent curves; they include, 
but are not limited to, nearby worldlines which the particle can actually follow. The Hamilton 
action principle says that with respect to all nearby curves the action along the actual worldline 
is stationary, that is it has zero variation to first order; formally we write S = 0. Whether or not 
this stationary value of the action is a local minimum is determined by examining second ( S

2 ) 
and higher order variations of the action (defined below) with respect to the nearby curves, as 
we do in this paper.  
 

Errors concerning the stationary nature of the action abound in the literature. Even the 
great Lagrange says that the value of the action can be maximum,13 a common error14 of which 
the authors of this paper have themselves been guilty12,15. Other authors use the terms extremum 
or extremal,16 which incorrectly include a maximum and formally fail to include a saddle point.  
(Mathematicians often use the (correct) term critical instead of stationary, but since the former 
term has other meanings in physics we use the latter term.)  A similar error mars treatments of 
Fermat’s Principle of optics, which is erroneously said to allow the travel time of a light ray 
between two points to be a maximum.17   

 
 The present paper has three primary purposes: First it describes conditions under which 
the action is a minimum and different conditions under which it is a saddle point. Some 
pioneers18of this theory are Legendre, Jacobi, Weierstrass, Kelvin and Tait, Mayer, and 
Culverwell. Although inspired by the early work of Culverwell19, our derivation of these 
conditions is new, simpler, and more rigorous; it is also simpler than modern treatments.23. 
Second, this paper "explains" the results with qualitative heuristic descriptions of how a particle 
responds to space-varying forces derived from the potential in which it moves. (Those who 
prefer immediate immersion in the formalism can begin with Sec. IV.) Third it clarifies these 
results and illustrates the variety of their consequences by applying them to the harmonic 
oscillator, two nonlinear oscillators, and a scattering system. Criteria used to decide the nature 
of the stationary value of the action are also useful for other purposes in classical and 
semiclassical mechanics,27 but are not discussed in the present paper.  
 

Appendix A adapts the results to the important Maupertuis action W. Appendix B gives 
examples of both Hamilton and Maupertuis action for two dimensional motion. Appendix C 
discusses open questions on the stationary nature of action for some newer action principles. 

 
II. KINETIC FOCUS  

This section introduces the concept of kinetic focus, due to Jacobi21, which plays a central 
role in determining the nature of the stationary action. We start with an analogous example 
taken verbatim from Whittaker35, an analysis of the relative length along different paths. 
Whittaker employs the Maupertuis action principle (discussed in our Appendix A), which 
requires fixed total energy along trial paths, not fixed travel time as with the Hamilton action 
principle. In force-free systems the value of the Maupertuis action is proportional to the path 
length. The term kinetic focus is defined formally later in this section. Figure 1 illustrates this 
example. Whittaker says: 

 
A simple example illustrative of the results obtained in this article is furnished by the 
motion of a particle confined to a smooth sphere under no forces. The trajectories are 
great-circles on the sphere and the [Maupertuis] action taken along any path (whether 
actual or trial) is proportional to the length of the path. The kinetic focus of any point A 
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is the diametrically opposite point A' on the sphere, since any two great circles through 
A intersect again (for the first time) at A'. The theorems of this article amount, therefore 
in this case to the statement that an arc of a great circle joining any two points A and B 
on the sphere is the shortest distance from A to B when (and only when) the point A' 
diametrically opposite to A does not lie on the arc, i.e. when the arc in question is less 
than half a great-circle. 
 

The elaboration of this analogy is carried out in the captions of Fig. 1 using equilibrium lengths 
of a rubber band on a slippery spherical surface. 
 

For a contrasting example, apply a similar analysis to free-particle motion on a flat plane. 
In this case the straight path connecting two points has minimum length no matter how far 
apart these endpoints are. A rubber band stretched between endpoints on a slippery surface will 
always snap back when deflected in any manner and released. An alternative second straight 
path that deviates slightly in direction at the initial point A continues to diverge and does not 
cross the original path again. Therefore no kinetic focus of event A exists for the original path.  
 
 Finally note that on both the sphere and the flat plane there is no path of true maximum 
length between any two separated points. The length of any path can be increased by adding 
wiggles. 
 

How do we find the kinetic focus?  In Fig. 1a we place terminal point C at different points 
along a great circle path between A and A'. When C lies between A and A', every nearby 
alternative path such as AEC is not a true path (a path of minimum length), because it does not 
lie along a great circle. However, when terminal point C reaches A', there is suddenly more than 
one alternative great circle path connecting A and A' (in this special case an infinite number of 
alternative great circle paths connecting A and A'). Any alternative great circle path between A 
and A' can be moved sideways to coalesce with the original path ABA'. The kinetic focus is 
defined by the existence of this coalescing alternative true path:  As final point C moves away 
from initial point A, the kinetic focus A' is defined as the earliest terminal point at which two true paths 
can coalesce. 
 

The term kinetic focus in mechanics derives from an analogy36 to the focus in optics, that 
point A  at which rays emitted from an initial point A converge under some conditions, such as 
interception by a converging lens. 

 
 The present paper deals with the action principle for Hamilton action S, which 

determines worldlines in space-time by fixing the end-events and the travel time—rather than 
the action principle for Maupertuis action W (Appendix A), which determines spatial orbits (as 
well as space-time worldlines) by fixing the end-positions plus the total energy. The kinetic focus 
for Hamilton action has a use similar to that for the Fig. 1 example of Maupertuis action: We 
will show later in the paper that a worldline has minimum action S if it terminates before 
reaching the kinetic focus of its initial event. In contrast, a worldline that terminates beyond the 
kinetic focus of its initial event P has action that is a saddle point. 
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Figure 1a. On a sphere the great circle line ABC starting from the north pole at A is the shortest distance between 
two points as long as it does not reach the south pole at A'. On a slippery sphere a rubber band stretched between 
A and C will snap back if displaced either locally, as at D, or by pulling the entire line aside, as along AEC. The 
point A' is called the antipode of A or in general the kinetic focus of A. In tech-speak we say: If a great circle path 
terminates before the kinetic focus of its initial point, the length of the great circle path is a minimum. 

 
 
Figure 1b. If the great circle ABA'G passes through antipode A' of the initial point A, then the resulting line has a 
minimum length only when compared with some alternative lines. For example on a slippery sphere the rubber 
band stretched along this path will still snap back from local distortion, as at D. However if the entire rubber band is 
pulled to one side, as along AFG, then it will not snap back but rather slide over to the portion AHG of a great circle 
down the backside of the sphere. With respect to paths like AFG, the length of the great circle line ABA'G is a 
maximum. With respect to all possible variations we say that the length of path ABA'G is a saddle point. In tech-
speak: If a great circle path terminates beyond the kinetic focus of its initial point, the length of the great circle path 
is a saddle point. 
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Figure 2. From the common initial event P we draw a true worldline 0 and a 
second true worldline 1 that terminates at some event R on the original worldline 
0. The event nearest to P at which worldline 1 coalesces with worldline 0 is the 
kinetic focus Q.  

 
We use the label P for the initial event on the worldline 0 (Fig. 2), Q for the kinetic focus 

of P on the worldline, and R for a fixed but arbitrary event on the worldline that terminates on 
worldline 0 and also terminates another true worldline (#1 in Fig. 2) connecting P to R.  For 
Hamilton action S our definition of kinetic focus of a worldline is: 
 

The kinetic focus Q of an earlier event P on a true worldline is the event closest 
to P at which a second true worldline, with slightly different velocity at P, 
intersects the first worldline—in the limit at which the two worldlines coalesce as 
their initial velocities at P are made equal. 

 
The kinetic focus is central to an understanding of the stationary nature of action S, but 

its definition may seem a bit obscure. To preview consequences of this definition, look at some 
later examples in this paper. Figure 8 shows true worldlines of the harmonic oscillator, whose 
potential energy has the form ( ) 2

21)( kxxU = . The harmonic oscillator is the single 1D special 
case of the definition of space-time kinetic focus. Notice that every worldline originating at P in 
Fig. 8 passes through the same crossing point. This is similar to the 2D spatial paths on the 
sphere; in Fig. 1 every great circle path starting at A passes through the antipode at A'. In both 
cases we can find the kinetic focus without taking the limit in which the velocities at the initial 
point are equal and the two worldlines coalesce—but we can take that limit. For the harmonic 
oscillator this occurs when the amplitudes are made equal. The harmonic oscillator will turn out 
to be the single exception to many of our rules for action. 

 
A more typical case is the quartic oscillator (Fig. 10) which moves with potential energy 

proportional to the fourth power of its displacement: 4
)( CxxU = .  In this case alternative 

worldlines starting from initial event P can cross anywhere along the original worldline (some 
crossing events indicated by little squares in Fig. 10). When the alternative worldline coalesces 
with the original worldline, the crossing point has reached the kinetic focus Q.  
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Another typical case is the piecewise-linear oscillator, Fig. 9. This oscillator has a V-

shaped potential energy xCxU =)( . For the piecewise-linear oscillator, as for the quartic 
oscillator, alternative worldlines starting from P can cross at various events along the original 
worldline. Note that for the piecewise-linear oscillator an alternative worldline that crosses the 
original worldline before its kinetic focus lies below the original worldline instead of above it (as 
for the quartic oscillator). This makes no difference in the definition of the kinetic focus as the 
event nearest to P at which two worldlines from P coalesce.  In all cases we can equally well use 
an alternative worldline which crosses from below or one which crosses from above to define 
the coalescing worldline and kinetic focus. 
 

Notice the gray line labeled caustic in Figs. 9 and 10, and also in Fig. 11 which shows 
worldlines for a repulsive potential. The caustic is the line along which the kinetic foci lie for a 
particular family of worldlines (such as the family of worldlines that start from P with positive 
initial velocity in Fig. 9 and Fig. 10). A caustic is also an envelope to which all worldlines of a 
given family are tangent. The caustics in Figs. 9 to 11 are space-time caustics, envelopes for 
space-time trajectories (worldlines).  Figure 12 shows a purely spatial caustic/envelope for a 
family of parabolic paths (orbits) in a linear gravitational potential. The word caustic is derived 
from optics36 (along with the word focus). When your cup of coffee is illuminated at an angle, a 
bright curved line with a cusp appears on the surface of the coffee (Fig. 3). Each point on this 
spatial optical caustic or ray envelope is the focus of light rays reflected from a small portion of the 
circular inner surface of the cup.  
 

In Figs. 9 through 12 the caustic for a family of worldlines (or paths) represents a limit for 
those worldlines (or paths). No worldline of that family exists for final events outside the 
caustic. At least one worldline can pass through any event inside the caustic. Exactly one 
worldline can pass through an event on the caustic, and that event is the worldline's kinetic 
focus. This observation is consistent with the definition of the kinetic focus as an event at which 
two separate worldlines become one (coalesce). 

 
At the kinetic focus the worldline is tangent to the caustic. When two curves touch but do 

not cross and have equal slope at the point where they touch, the curves are said to osculate or 
kiss, which leads to a summary preview of the results of this paper: 

 
When a worldline terminates before it kisses the caustic, the action is minimum; when the 
worldline terminates after it kisses the caustic, the action is a saddle point. 

 
This means that when you use a computer to plot a family of worldlines (by whatever means), 
you can eyeball the envelope/caustic and locate the kinetic focus of each worldline visually. 
 

This summary covers every case (but one), because when no kinetic focus exists, there is 
no caustic so a worldline of any length has minimum action. The one case not covered by this 
rule is the harmonic oscillator; for the harmonic oscillator (and also for the sphere geodesics of 
Fig. 1), the caustic collapses to a single point at the kinetic focus. In this case there is no caustic 
curve; only one caustic point (a focal point) exists. A corresponding optical case is a concave 
reflecting parabolic surface of revolution illuminated with incoming light rays parallel to its 
axis; the optical caustic collapses into a single point at the focus (focal point) of the parabolic 
mirror. When the optical caustic reduces to a point for a lens or mirror system, the resulting 
images have minimum distortion ("minimum aberration"). 
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Figure 3. The coffee-cup optical caustic.  The caustic shape (a nephroid) was 
derived by Johan Bernoulli in 1698. (from ref. 42) 

 
For the quartic oscillator and the piecewise-linear oscillator (and the harmonic oscillator) 

subsequent crossing points exist at which two worldlines can coalesce. We have defined the 
kinetic focus as the first of these, the one nearest initial event P. The procedure for locating the 
subsequent kinetic foci is identical to that for locating the first one, and is discussed briefly in 
the examples of Secs. VIII and IX. For 1D potentials )(xU , subsequent kinetic foci43 exist for the 
bound worldlines but not for the scattering worldlines, for example those in Fig. 11. We shall 
not be much concerned with subsequent kinetic foci; when we refer to the kinetic focus we mean 
the first one, as we have defined it. We shall show in what follows that for a few potentials 

)(xU arising in practice (e.g., ))(,)( CxxUCxU ==  kinetic foci do not exist, because true 
worldlines beginning at a common initial event P do not cross again. 

 
The definition of kinetic focus in terms of coalescing worldlines provides a "practical" 

way to find the kinetic focus. In Fig. 2 look at the slopes of nearby worldlines 1 and 0 at the 
initial event P. The initial slope of curve 1 is only slightly different from that of worldline 0; as 
that difference approaches zero the crossing event approaches the kinetic focus Q. The slope of a 
worldline at any point measures the velocity of the particle at that point. This leads to a method 
for finding the kinetic focus: Launch an identical second particle from event P (therefore 



 8 

simultaneously with the original launch) but with a slightly different initial velocity (that is with 
a slightly different slope of the worldline). Worldline number 1 is also a true worldline. Then in 
the limiting case of vanishing difference in initial velocities at event P (vanishing angle between 
the initial slopes) the two worldlines will cross again, and the two particles collide, at the kinetic 
focus event Q.  
 

Convert this "practical" (actually heuristic) idea into an analytical method, often easily 
applied when we have an analytic expression for the worldline. Let the original worldline be 
described by the function ( )

0
,vtx , where v0 is the initial velocity. Then the second worldline is 

the same function with incrementally increased initial velocity ( )
00

, vvtx + . Form the expansion 
in   vo  
 

( ) ,)(),(,
2

00

0

000
vOv

v

x
vtxvvtx ++=+   (II-1) 

 
where 

    
O vo

2( ) means "terms of order     vo
2 ." At an intersection point R we have 

),(),(
000

vtxvvtx
RR

=+ . For intersection point R near Q we therefore have  
 
  0)(

2

00

0

=+ vOv
v

x      ,  (II-2) 

 
which implies that for R  Q when 

0
v   0  we have     

 

     0

0

=
v

x
 .      (II-3) 

 
Equation (II-3) is an analytic condition for the incrementally different worldline that crosses the 
original worldline at the kinetic focus, so it locates the kinetic focus Q. Sections VIII and IX 
contain applications of this method.  
 
III. WHY WORLDLINES CROSS 

Section II defines the kinetic focus in terms of recrossing worldlines. The burden of this 
paper is that when a kinetic focus exists, the action along a worldline is a minimum if it 
terminates before the kinetic focus Q of the initial event P, whereas the action is a saddle point 
when the worldline terminates beyond the kinetic focus. In the present section we consider only 
actual worldlines and describe qualitatively why two worldlines originating at the same initial 
event cross again at a later event. We also examine the special initial conditions at P under 
which the coalescing worldlines determine the position of the kinetic focus Q. The key 
parameter turns out to be the second spatial derivative ''

22

UxU  of the potential energy 
function U . Sufficiently long worldlines can cross again only if they traverse a space in which 

''U is positive. For simplicity we restrict the discussion here to time-independent potentials 
)(xU , but continue to use partial derivatives of U  with respect to x to remind ourselves of this 

restriction. New features which can arise for time-dependent potentials ),( txU are discussed in 
Sec. XI. 
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Think of two identical particles that leave initial event P with different velocities and 
hence different slopes of their space-time worldlines, so that their worldlines diverge. The 
following description is valid whether the difference in initial slopes is small or large. (Figures 8 
through 10 illustrate the following narrative.) At every event on its worldline each particle 
experiences the force xUUF ==  evaluated at that location. For a short time after the two 
particles leave P they are at essentially the same displacement x, so they feel nearly the same 
force U  at that common displacement. Hence the space-time curvature of the two worldlines 
(the acceleration, proportional to the force) is nearly the same. Therefore the two worldlines will 
initially curve in concert while their initial relative velocity carries them apart; at the beginning 
their worldlines steadily diverge from one another. As time goes by, this divergence carries one 
particle, call it II, into a region in which the second spatial derivative   U = U ' x =

2U x 2  is (let 
us say) positive. Then diverging particle II feels more force than (but still in the same x-direction 
as the force on) particle I. As a result the worldline of II will head back toward particle I, leading 
to converging worldlines. As the two particles draw close again they are once more in a region 
of almost equal 'U  and therefore experience nearly equal acceleration, so their relative velocity 
of convergence remains nearly constant until the worldlines intersect, at which event the two 
particles collide. 
 

Notice the crucial role played by the positive value of the second derivative ''U  in the 
relative space-time curvatures of worldlines I and II necessary for them to recross. Suppose 
instead that the second spatial derivative "U  is negative. Then as II moves away from I it enters a 
region of smaller slope U ' and hence smaller force than that on particle I. Hence the two 
worldlines will diverge even more than they did originally, and the more they separate the 
greater will be their rate of divergence. As long as both particles move in a region where "U is 
negative the two worldlines will never recross. (If "U  is zero, the two worldlines continue 
indefinitely to diverge at the initial rate.) 

 
As a special case let the relative velocity of the two particles at launch be only 

incrementally different from one another (Fig. 2) for motion in potentials with positive values of 
''U , and let this difference of initial velocity approach zero. In this limit, by definition (Sec. II), 

the particles will collide at the kinetic focus Q of the initial event P. It may seem strange that an 
incremental relative velocity at P results in a recrossing at Q at a significant distance along the 
worldline from P. One might think that as this difference in slope increases from zero the 
recrossing event would start at P and move smoothly away from it along worldline I, not "snap" 
all the way to Q. The source of the "snap" lies in the first and second spatial derivatives of U . 
When both particles start from the initial event, the first derivative at essentially the same 
displacement leads to nearly the same force U  on particles I and II, so that any difference in 
the initial velocity, no matter how small, continues, increasing the separation. It is only with 
greater relative displacement over time that the difference in these forces, quantified by the 
positive second derivative ''U , deflects the two worldlines back toward one another, leading to 
eventual recrossing. No alternative true worldline starting at P and with negligibly different 
initial velocity crosses the original worldline earlier than its kinetic focus (though widely 
divergent worldlines may cross sooner, as shown in Figs. 8 and 9). One consequence of this 
result will be that a worldline terminating before its kinetic focus has minimum action, as 
shown analytically in Sec. VI.  

 
In other words, potentials with 0)(" >xU  (positive spatial curvature) are stabilizing, that 

is, bring back together neighboring trajectories that initially slightly diverge. Potentials with 
0)(" <xU  (negative spatial curvature) are destabilizing, i.e. push further apart neighboring 
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trajectories that initially slightly diverge. It is thus not surprising that the question of trajectory 
stability (stable vs. unstable) is closely related to the stationary character of the trajectory action 
(saddle point vs. minimum)22,28-30. 

 
Planetary orbits also exhibit crossing points distant from the location of a disturbance; an 

incremental change in velocity at one point in the orbit leads to initial and continued divergence 
of the two orbits which, for certain potential functions, reverses to bring them together again at 
a distant point. This later crossing point is defined as the kinetic focus for the Maupertuis action 
W applied to spatial orbits (Appendix B). This reconvergence has important consequences for 
the stability of orbits and the continuing survival of life on earth as our planet experiences small 
nudges from solar wind, meteor impacts, and shifting gravitational pulls from other planets.  
 
IV. VARIATION OF ACTION FOR AN ADJACENT CURVE 

...another feature in classical mechanics that seemed to be taboo in the discussion of the variational 
principle of classical mechanics by physicists: the second variation.... 

 
                                                                 — Martin Gutzwiller 

 
The action principle says that the worldline that a particle follows between two given 

fixed events P and R has stationary action with respect to every possible alternative adjacent curve 
between those two events (Fig. 4). Thus the action principle employs not only actual worldlines 
but also freely constructed curves adjacent to the original worldline, curves that are not 
necessarily worldlines themselves. In this paper the word worldline (or for emphasis true 
worldline) refers to a space-time trajectory that a particle might follow in a given potential. The 
word curve means an arbitrarily constructed trajectory that may or may not turn out to be a 
worldline. To study action we need curves as well as worldlines. (In the literature the terms actual, 
true, and real trajectory are used synonymously with our term worldline; the terms virtual and 
trial trajectory are used for our term curve.) 

 
In the present section we set up formalism to investigate the variational characteristics of 

the action S of a worldline in order to determine whether S is a local minimum or a saddle point 
with respect to arbitrary nearby curves between the same fixed events. In Fig. 4 a true worldline 
labeled 0 described by the function x0(t) starts at initial event P. We construct a closely adjacent 
arbitrary curve, labeled 1 and described by the function x(t), which starts at the same initial 
event P and terminates at a later event R on the original worldline. To compare the action along 
P0R on the worldline x0(t) with action along P1R on the arbitrary adjacent curve x(t), let 
 

x t( ) = x0 t( ) + t( ) ,     (IV-1a) 
 
and take the time derivative, indicated by a dot over the symbol: 
 

( ) ( ) ( )ttxtx &&& +=
0

 .     (IV-1b) 
 
In these equations  is a real numerical constant of small absolute value and (t) is an 

arbitrary real function of time that goes to zero at both fixed end-events P and R. The action 
principle says that action (I-1) along x0(t) is stationary with respect to action along x(t) for small 
values of the parameter . To simplify the analysis we restrict (t) to be a continuous function 
with at most a finite number of discontinuities of the first derivative; that is, all curves x(t) are 
assumed to be at least piecewise smooth44. Within this limitation x(t) represents all possible curves  
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Figure 4. An original true worldline, labeled 0, starts at initial event P. We draw an 
arbitrary adjacent curve, labeled 1, anchored at two ends on P and a later event R 
on the original worldline. The variational function  is chosen to vanish at the two 
ends P and R.   

 
adjacent to x0(t), not only any actual nearby worldlines. From (IV-1) the Lagrangian ( )txxL ,, &  can 
be regarded as a function of , and hence expanded in powers of  for small , i.e., 
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worldline x0(t). Apply (IV-1 a, b) to the first derivative in (IV-2): 
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so that we can write in operator form 
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and apply it twice in succession to yield a second derivative: 
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In this paper we consider the most common case, in which the Lagrangian L is equal to 

the difference between kinetic and potential energy: 
  

( ),,
2

1 2
txUxmUKL == &      (IV-6) 
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where U may be time-dependent. Then L has the partial derivatives 
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Hence the second derivative of L reduces to 
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Apply (IV-4) to (IV-8) and use (IV-7) to obtain the third derivative of L for this case: 
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Expansion (IV-2) for L defined by (IV-6) now becomes 
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++++++=

x

U
m

x

U
xm

x

U
LL &&&    , (IV-10) 

 
where the U  derivatives are evaluated along the original worldline x0(t). Inserting (IV-10) into 
the action integral (I-1) results in an expansion of the action S in powers of  with terms for 
which we define the following symbols: 
 

   ...
0

3

0

2

00
++++= SSSSS  .   (IV-11) 

 
The standard result of the action principle45 is that along a true worldline the action is 

stationary. By this we mean that the term 
0

S  in  (IV-11), called the first order variation (linear in 
), has value zero for all variations around an actual worldline x0(t). (This is the necessary and 

sufficient condition for the validity of Lagrange's equation of motion for x0(t).) We will need the 
higher-order variations 

0

2
S and 

0

3
S  from an actual worldline, called the second and third 

order variations respectively. From (IV-10) and (IV-11) they take the forms 
 

    +=

R

P

dtm

x

U
S

2

2

2

2

2

2

2

&  ,   (IV-12) 

 
and 
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    =

R

P

dt

x

U
S

3

3

3

3

3

6
 ,    (IV-13) 

 
where the derivatives of U are evaluated along the actual worldline x0(t). Higher-order 
variations (such as S

4 , S
5 ,  . . .) differ from (IV-13) in higher powers of , higher partial 

derivatives of U (such as 44
xU , 55

xU , . . .) and higher powers of  (such as   4 ,   5 . . .).  
In (IV-12) and (IV-13) and for most of what follows we use the briefer standard notations 

0

22
SS  and 

0

33
SS  (as well as 

0
SS ).  

 
In the remainder of this article we use (IV-12) and (IV-13) to determine when the action is 

greater or less for a particular adjacent curve than for the original worldline, paying primary 
attention to the second order variation S

2 . When the action is greater for all adjacent curves 
than for the worldline, then 0

2
>S  and the action along the worldline is a true minimum. The 

phrase "for all adjacent curves" means that the value of S
2  in (IV-12) is positive for all possible 

variations )(t . Equation (IV-12) shows immediately that when 22
xU  is zero or negative 

along the entire worldline then the integrand is everywhere positive, leading to 0
2

>S  so that 
when 0

22
xU  a worldline of any length has minimum action. This result was previewed in 

the qualitative argument of Sec. III. 
 

The outcome is more complicated when 22
xU  is neither zero nor negative 

everywhere along the worldline. We show in Sec. V that even in this case we have 0
2
>S  for 

sufficiently short worldlines, so that action is a still a minimum. Later sections show that 
"sufficiently short" means a worldline terminated before the kinetic focus; for a worldline 
terminated beyond the kinetic focus the action is greater )0(

2
>S  for some adjacent curves and 

smaller )0(
2

<S  for other adjacent curves. This is called a saddle point in the action: the value of 
S

2  in (IV-12) is positive for some variations )(t and negative for other variations )(t . 
 
When S

2 = 0 for one or more adjacent curves, as happens at a kinetic focus46, we need to 
examine the higher-order variations to see whether S – S0  is positive, negative, or zero for these 
particular adjacent curves.  
 

There is no worldline whose action is a true maximum, that is for which 2S < 0  or 
more generally for which 0

0
<SS  for every adjacent curve. The following intuitive proof 

by contradiction was given briefly by Jacobi21 in his seminal paper, and in more detail by 
Morin47 for a Lagrangian L that is the difference between kinetic and potential energies, 

UKL = with K positive as in (IV-6). Consider an actual worldline for which it is claimed 
that S in (I-1) is a true maximum. Now modify this worldline by adding wiggles 
somewhere in the middle. These wiggles are to be of very high frequency and very small 
amplitude so that they increase the kinetic energy K compared to that along the original 
worldline with only a small change in the corresponding potential energy .U  The 
Lagrangian UKL = for the region of wiggles is larger for the new curve and so is the 
overall time integral S. The new worldline has greater action than the original worldline, 
which we claimed to have maximum action. Therefore S cannot be a true maximum for 
any actual worldline. 
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V. WHEN ACTION IS A MINIMUM 

We now employ the formalism of Sec. IV to analyze action along a worldline that begins 
at initial event P and terminates at various final events R that lie along the worldline farther and 
farther from P. In the present section we show that the action is a minimum for a "sufficiently 
short" worldline PR in all potentials, and we give a rough estimate of what “sufficiently short” 
means. (We showed in Sec. IV that the action is a minimum for all worldlines in some 
potentials.) In Sec. VI we show that “sufficiently short” means precisely “before the terminal 
event reaches the event R at which S

2  first vanishes” for a particular, unique variation. We 
also show there that this R is Q, the kinetic focus of the worldline, defined in Sec. II. In Sec. VII 
we show that conversely S

2 must vanish at the kinetic focus, and that when final event R is 
beyond Q the action along PR is a saddle point. 

 
In considering different locations of the terminal event R along the worldline it is 

important to recognize that the set of incremental functions  that go to zero at P and at R will 
be different for each terminal position R. Particular functions may have similar form for all R; 
for example, assuming tP = 0 for simplicity we might have ( )( )

RR
ttttA= 1  or ( )

R
ttA /sin= . 

However  need not be so restricted; the only restrictions are that  go to zero at both P and R 
and be piecewise smooth. Statements about the value of S

2  for each different terminal event R 
are taken to be true for all possible  for that particular R that satisfy these conditions. 

 
For a sufficiently short worldline the action is always a minimum compared with that of 

adjacent curves, as mentioned in Sec. III. The formalism developed in Sec IV confirms this result 
as follows (here we follow and elaborate Whittaker35 , apart from a qualification stated below). 
Rewrite (IV-12) using 22

/)( xUxU : 
 

     dtmdtUS

R

P

R

P

+=
2

2

2

2

2

22

&  .   (V-1) 

 
Because  = 0 at P, we can write 
 

     ( )
maxmax

)()( &&& Ttttdtt
P

t

P

<=  ,     (V-2) 

 
where t' is a dummy variable of integration, 

PR
ttT = , and 

max
& is the maximum value between 

P and R. With this substitution the magnitude of the first integral in (V-1) for 2S  can be 
bounded: 
 

     ( )
max

2

max

32
UTdtU

R

P

< &  .    (V-3) 

 
The second integral in (V-1) can be rewritten as 
 

     ,
22 && mTdtm

R

P

=       (V-4) 
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where 2&  is the mean square of &  over the time interval T.  Compare (V-3) and (V-4) and note 

that 2

max
&  and 2&  have the same order of magnitude for all values of T; the reader can check the 

special case ( )( )TttnAt
P

/sin)( = , where n is any nonzero integer.  Here we assume for 
simplicity that (t) is nonzero for all times t in the range ( )

PR
ttT =  except possibly at discrete 

points; a similar argument can be given if this condition is violated.  Also note that 
max

U will not 
increase as R takes positions closer to P.  Thus if the range is sufficiently small the most 
important term in 2S  is the one that contains & . In this limit (V-1) reduces to 
 

dlinesshort worlly sufficientfor   , 0
2

1 222
>

R

P

dtmS & .   (V-5) 

 
This quantity has a positive value since m, 2, and 2&  are all positive. (See footnote 48 for a more 
careful statement of this result.) Therefore the second order variation 2S  adds to the action, 
which demonstrates that the action is always a true minimum along a sufficiently short 
worldline. We shall use this result repeatedly in the remainder of this paper. 
 
 We can give a rough estimate52 of the largest possible value of T such that 2S > 0 (the 
exact value is given in Sec. VI).  Using (V-3) and (V-4) in (V-1) we see that 
 

 [ ] ,
2

3

max

2

max

2

2

2
TUmTS > &&      (V-6) 

 
so that we will have 2S > 0 if 
 
    ,

3

max

2

max

2
TUmT > &&  

 
or 

    ,
2

0

max

T
T

rms

&

&

<        (V-7) 

 

where     To 2 = m U"max( )
1/2

 and 
2/1

2&&
rms

 is the root-mean-square value of & .  For the 
harmonic oscillator T0 is exactly equal to the period, and for a general oscillator T0 is a time of 
the order of the period.  Assume for simplicity that (t) is nonvanishing over the whole range T 
with exceptions only at discrete points, e.g. ( )( )TttnAt

P
/sin)( = ; a similar argument can be 

constructed if this condition is violated.  The ratio 
max

/ &&
rms

 is then of order unity; for example, 

for (t) of the form ( )( )TttnA
P

/sin  we have 2/1/
max

=&&
rms

.  Thus for times T less than about 

( ) 2//1
0

T we have 2S > 0.  For the various oscillators studied quantitatively in Secs. VIII and IX 
we will see that T0/2 is a better estimate for the time limit for which 2S > 0.  For example, for 
the harmonic oscillator we show that for all times up to T0/2 exactly, we have 2S > 0, so that 
action is a minimum for times less than a half-period.  We show in Sec. VI that the precise time 
limit for which 2S > 0 is ( )

PQ
tt , the time to reach the kinetic focus. 



 16

 
 Since the location of initial event P is arbitrary, it follows that the action is a minimum on 
a short segment anywhere along a true worldline. It is not difficult to show that a necessary and 
sufficient condition for a curve to be a true worldline is that all short segments have minimum 
action. This result, central to some computer programs for finding some true worldlines, is valid 
irrespective of whether the action for the total worldline is minimum or a saddle point. 
 

As already discussed in Sec. IV, if 22
/)( xUxU  has zero or negative value at every x 

along the worldline, then S
2  in (IV-12) is always positive, with the result that worldlines of 

every length have minimum action for particles moving in these potentials. For example the 
gravitational potential energy functions 

1
U  for vertical motion near Earth's surface and 

2
U  for 

radial motion above the Earth (radius rE) have the standard forms 
 

   

.0             ,    )(

,<<0                          ,  )(

2

1

x
xr

GMm
xU

rxmgxxU

E

E

+
=

=

    (V-8) 

 
In both cases )(xU has zero or negative value everywhere, so that (IV-12) tells us that 
worldlines of any length have minimum action. (Further discussion of the nature of the 
stationary action for trajectories in these gravitational potentials appears in Appendix B; 
differences arise when we examine two-dimensional trajectories and when we compare the 
Hamilton action S with the Maupertuis action W.) 
 

There is an infinite number of potential energy functions with the property 0)('' xU  
everywhere (another example is the parabolic barrier 2

)( CxxU = ), leading to minimum action 
along worldlines of any length. Nevertheless the class of such functions is small compared with 
the class of potential energy functions for which   U (x) > 0  everywhere (such as the harmonic 
oscillator potential 2/)(

2
kxxU = ) or for which )(xU is positive for some locations and zero or 

negative for other locations (such as the Lennard-Jones potential 6

6

12

12
//)( xCxCxU = ). For 

this larger class of potentials the particular choice of worldline (length and location) determines 
whether the action has a minimum or whether it falls into the class for which action is a saddle 
point. 

 
In the present section we have shown with some degree of formality that (1) in all 

potentials, action is a minimum for sufficiently short worldlines, and (2) in some potentials the 
action is a minimum for worldlines of any length. The following section shows that "sufficiently 
short" means precisely "before the terminal event R reaches the kinetic focus Q of initial event P" 
defined in Sec. II.  
 
VI. MINIMUM ACTION WHEN WORLDLINE TERMINATES BEFORE KINETIC FOCUS 

The central result of the present section is that the event along a worldline nearest to 
initial event P at which S

2  goes to zero is kinetic focus Q. The key idea in this proof is that a 
unique true worldline connects P to Q, a worldline that coalesces with the original worldline 
and thus satisfies the definition of the kinetic focus in Sec. II. The primary outcome of this proof 
is that the action is a minimum if a worldline terminates before reaching its kinetic focus.  
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The discussion here is inspired by the classic work of Culverwell19 (see Whittaker49 for a 
textbook discussion). Culverwell and Whittaker focus on Maupertuis action W. We adapt their 
work to the Hamilton action S, extend and simplify it, and finally show that their argument is 
incomplete. 

 
Figure 5. Let R be the earliest event along true worldline     x0 (t) , labeled 0, such 

that 0
2

=S for worldline PR along x0(t). The unique variational function which 
accomplishes this is labeled 1. We show that for this location of R, curve 1 is a 
true worldline and R is the kinetic focus Q. Arbitrary curve 2 is used to verify that 
curve 1 is a true worldline. 

 
Consider a true worldline     x0 (t) , labeled 0 in Fig. 5. As we have seen in Sec. V, the action 

S0 along a sufficiently short segment PR’ of worldline 0 is a minimum, which leads to 0
2
>S  

for all variations. We imagine terminal event R  located at later and later positions along the 
worldline until it reaches R, the event at which, by hypothesis, S

2  0 for the first time for 
some variation; i.e. the integral in (IV-12) defining 2S vanishes for some choice of . We shall 
find that the earliest event at which S

2 vanishes is connected to the initial event P by a unique 
type of variation, namely a true worldline which coalesces with the original worldline in the 
limit at which their initial velocities at P coincide. Hence the earliest event at which S

2  
vanishes satisfies the definition of the kinetic focus Q in Sec. II.  
 
 As stated above, we assume that 2S > 0 for all R  up to R  = R, the first event for which 

2S = 0 for a particular variation .  To prove R is the kinetic focus Q, we need to consider small 
variations (   0) since Q involves a coalescing second worldline.  In the typical case, the 
integral in (IV-13) defining 3S does not vanish, but letting   0 will ensure 3S (proportional 
to 3) does not exceed 2S (proportional to 2) for R  approaching R.  This keeps S – S0 > 0 (not 
just 2S > 0) for R  up to R. (The untypical case, in which the integral in (IV-13) vanishes, is 
discussed below.)  In the limit R   R, we let   0 so that the varied curve x1(t) = x0(t) + (t) 
coalesces with true worldline x0(t), and S – S0 = 0 at R  = R.   
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To satisfy the definition of the kinetic focus, we need to show that x1(t) is a true worldline 
just short of the limit   0 (i.e. just short of the limit    R R), not just at the limit  = 0.  Prove 
this by contradiction: assume curve x1(t) (curve 1 in Fig. 5) is not a true worldline.  Consider the 
arbitrary comparison curve 2 in Fig. 5, which differs from 1 by the arbitrary variation 2 2, with 

2 small.  Assume (wrongly) that curve 1 is not a true worldline, so that the first-order 
variation S  in S between curves 1 and 2 is nonzero for arbitrary 2 2, and the sign of 2 can be 
chosen to make   S2 < S1.  But since S1 = S0 to second-order, we must have S2 < S0, which is a 
contradiction; R is the earliest zero of S – S0 for any small variation, so that small variations 
giving S – S0 < 0 are impossible.  To avoid the contradiction, curve 1 must be a true worldline. 
Thus we have proved that the unique variation  that connects P and R = Q when 2S goes to 
zero for the first time corresponds to a true worldline.  
 
 The above argument covers the typical case, where the integral in (IV-13) defining 3S 
does not vanish.  It turns out that the only untypical case53 is the harmonic oscillator, to be 
discussed in Sec. VIII. The harmonic oscillator has the potential U = kx2/2, for which 3U/ x3 in 
(IV-13) vanishes, so that 3S = 0 identically.  Similarly variation 4S and higher variations all 
vanish since 4U/ x4 and higher potential derivatives vanish.  Thus for the harmonic oscillator 

2S = S – S0 and S – S0 remains positive up to R  = R for arbitrary  (not just small ).  The above 
argument with   0 is valid also for the harmonic oscillator, so that the coalescing true 
worldline at R again shows that R is the kinetic focus Q.  However, it is not necessary here to 
take the limit   0.  Figure 7 for the harmonic oscillator shows that all true worldlines 
beginning at P intersect again where 2S first vanishes which is the kinetic focus Q.  By varying 
the amplitude of the alternative true worldlines for the harmonic oscillator, we can find one that 
coalesces with the original worldline and thus satisfies the definition of the kinetic focus (Sec. 
II).  
 
 In summary we have shown that as terminal event R takes up positions along the 
worldline farther away from initial point P, in all cases the special varied curve which leads to 
the earliest vanishing of 2S is a unique54 true worldline that can coalesce with the original 
worldline. This R satisfies the definition of the kinetic focus Q (Sec. II).  Since the varied 
worldline for which   2S = 0  for the first time is unique, it follows that all other curves PQ 
adjacent to the original worldline have 2S > 0. 
 

For bound motion in a time-independent potential, worldlines that can coalesce will 
typically cross more than once. In the literature, all of these sequential limiting crossings are 
called kinetic foci. The above argument is valid only for the first such crossing, which in this 
paper we refer to as the kinetic focus.  
 
 The present section shows that a sufficient condition for the kinetic focus Q is that it is the 
earliest terminal event R for which 2S = 0 . In the following section we show the converse 
necessary condition: Given the definition (Sec. II) of kinetic focus Q as the first event at which a 
second true worldline can coalesce with PQ, the necessary consequence is that 0

2
=S  for 

worldline PQ for the variation leading to coalescence. Taken together, the arguments in these 
two sections prove the following theorem, which is the fundamental analytical result of our 
paper: 
 

A necessary and sufficient condition for Q to be a kinetic focus of worldline PQ is 
that Q is the earliest event on the worldline for which 0

2
=S .  
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This earliest vanishing of S
2  occurs for one special type of variation  (which turns out to 

correspond to a true worldline), with  unique (up to a factor) and typically   0; for all other 
variations S

2  remains positive at the kinetic focus. The Culverwell-Whittaker argument (more 
complicated than that above) is incomplete in that (a) it addresses only the sufficiency part of 
the theorem (the necessary part given in Sec. VII is new), and (b) it overlooks the typical case 
above, which is the usual one applicable to all nonlinear systems. 

 

 
 

Figure 6. Schematic illustration of topological evolution of minimum    trough   saddle of 
action S for two "directions" in function space. Read from bottom to top. (Adapted from ref. 
55)   
 

A simple topological picture of the action landscape in function space is emerging (Fig. 
6).  For a short worldline PR, action S is a minimum: action increases in all directions away from 
the stationary point in function space (bottom panel in Fig. 6).  For longer PR, we may reach a 
kinetic focus R = Q, for which S is trough-shaped, i.e., flat in one special direction and increasing 
in all other directions away from the stationary point (middle panel in Fig. 6).  (The trough is 
completely flat for the harmonic oscillator, and flat to second-order for all other systems.)  As 
we shall see in Sec. VII, as R moves beyond Q the trough bends downward, placing the action at 
a saddle point; that is, S decreases in one direction in function space and increases in all other 
directions away from the stationary point (top panel in Fig. 6).  Although not discussed in this 
paper, the pattern may continue as R moves still further beyond the kinetic focus Q. If R reaches 
a second event at which 0

2
=S  (called the second kinetic focus in the literature), label it Q2, a 

trough again develops for one special variational function  (different from the first special ); at 
Q2 the action is flat in one direction in function space, decreases in one direction, and increases 
in all other directions.  Beyond Q2, the trough becomes a maximum, and we have a saddle point 
which is a maximum in two directions and a minimum in all others.  Similar topological 
changes occur if we reach still later kinetic foci events Q3, Q4, and so forth.  This is in agreement 
with Morse’s theorem33, which states that the number of directions n in function space for which 
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action is a maximum at a saddle point for worldline PR is equal to the number n of kinetic foci 
between the end events P and R of the worldline.  
 
VII. SADDLE POINT IN ACTION WHEN WORLDLINE TERMINATES BEYOND KINETIC 
FOCUS 

In Sec. VI we showed that the earliest event at which   
2S = 0  is connected to the initial 

event P by a unique true coalescing worldline is a sufficient condition for that earliest event to 
be the kinetic focus Q. All other alternative curves PQ lead to   

2S > 0 . In the present section we 
demonstrate the corresponding necessary condition, namely: (1) Given an alternative true 
worldline between P and R that coalesces with the original worldline as   R Q and therefore 
defines Q as the kinetic focus, then we have 0

2
=S  for that worldline. Using an extension of 

this analysis, we also show in the present section that (2) when R lies beyond the kinetic focus 
Q the action of worldline PQR is a saddle point.  

 
The essence of the proof of (1) is outlined in the following heuristic argument of Routh28. 

Consider two intersecting true worldlines P R connecting P to R. Assume R is close to kinetic 
focus Q so that the two worldlines differ infinitesimally, as required in the definition of Q (Sec. 
II). Let action along the two worldlines be S  and S  + S  respectively. Because both are true 
worldlines, the first order variation of each is equal to zero: we have 0=S  and 0)( =+ SS . 
Subtracting these two relations gives 0

2
=S  for R near Q and hence 0

2
=S  for R = Q . In the 

following we show that Routh is correct in the sense that S
2  vanishes not only at R = Q but 

also vanishes to the usual second order )(
2

O  for R near Q, differing from zero by third order 
O )(

3 for R near Q.  
 
To make the Routh argument rigorous, think of two alternative true worldlines x0(t) and 

x1(t) in Fig. 6 that connect initial event P to terminal event R, where R is close to the kinetic focus 
Q of )(

0
tx . When R reaches Q the two worldlines coalesce according to the definition of kinetic 

focus Q. For definiteness, take )(
1

tx  to be the top worldline in Fig. 7 which is closely adjacent to 
true worldline )(

0
tx , so it is a member of the set of adjacent curves used for variation in Sec. IV 

and therefore we can employ the formalism of that section. Conversely we can regard )(
0

tx  as a 
varied curve of )(

1
tx , as it is closely adjacent to the other true worldline )(

1
tx . Equations similar 

to (IV-1) in Sec. IV are 
   
 ( ) ( ) ( ) ( ) ( ) ( )ttxtxttxtx =+=

1001
,     (VII-1a) 

 
and 
 )()()(,)()()(

1001
ttxtxttxtx &&&&&& =+=        .   (VII-1b) 

 
We have  
 
        S1 = S0 + S0 +

2S0 +
3S0 + ...     (VII-2a) 

 
In this case both x0(t) and x1(t) are true worldlines, so that we can also write the inverse 
expression 
        S0 = S1 + S1 +

2S1 +
3S1 + ...  .    (VII-2b) 
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Figure 7. By definition the kinetic focus Q of initial event P is the event at which two 

adjacent true worldlines x0(t) and x1(t) coalesce.  We show that     2S = 0 at the kinetic focus 
Q for this variational function  in the limit R1  Q, and that the action is a saddle point 
when the terminal event R2 lies anywhere on the worldline beyond the kinetic focus Q.  
(The lower has opposite sign from the upper , and the upper and lower functions  

are slightly different due to the end-events R1 and 
1

R  being slightly different.) 

 
 
Subtract (VII-2b) from (VII-2a) and use S0 = 0and S1 = 0 , since both x0(t) and x1(t) are 

true worldlines. This gives  
 

   ( ) ( ) ( )
          

...2
1

3

0

3

1

2

0

2

01
++= SSSSSS  .   (VII-3) 

Find expressions for S
2  from (IV-12) using the simplified notation for partial 

derivatives U ' '= 2U x 2 : 
 

    ( )( )+=
R

P

dtmxUS
2

0

2

2

0

2
''

2

& ,         ( )( )+=
R

P

dtmxUS
2

1

2

2

1

2
''

2

&    .  (VII-4) 

 
Then the first parenthesis on the right side of (VII-3) has the form 

 

( ) ( )[ ]=
R

P

xUxUdtSS
01

2

1

2

0

2
)(

2
  ,   (VII-5) 

 
where terms in &  have cancelled. Expand )("

1
xU  to linear power in : 

 
)()(")()()(")("

0001001
xUxUxxxUxUxU +=+  .   (VII-6) 

 



 22

When (VII-6) is substituted into (VII-5), the resulting integral contributes a further factor of ,  
yielding a result of )(

3
O : 

 

      ( ) ( ) 3

0

3

1

2

0

2

2

R

P

xUdtSS         .   (VII-7) 

 
 The fact that (VII-7) is proportional to 3 means that in (VII-3) we cannot neglect terms in 
3S , which are also proportional to 3. (Later terms are proportional to 4 or higher.)  From   (IV-

13), taking account of the signs of  in (VII-1a) and using our simplified notation U  for 
33

/ xU , we have 
 

   ( )=
R

P

dtxUS
0

3

3

0

3
'''

6
   ,      ( )+=

R

P

dtxUS
1

3

3

1

3
'''

6
     ,  (VII-8) 

 
and hence the second term on the right side of (VII-3) becomes 
  

  ( ) [ ] ,)(
3

)()(
6

3

0

3

3

01

3

1

3

0

3
dtxUdtxUxUSS

R

P

R

P

+=   (VII-9) 

 
where we have set )()(

01
xUxU which is correct to )(

3
O in (VII-9).  

 
 Substituting (VII-7) and (VII-9) in (VII-3) then gives  
 

  ( ) dtxUSS

R

P

3

0

3

01
12

 ,      (for R near Q, to O )(
3 ).   (VII-10) 

 
Equation (VII-10) makes precise the earlier Routh heuristic argument: We see that 

01
SS  is of 

)(
3

O  for R near Q and therefore vanishes for R Q (i.e. 0).  Comparing (VII-10) and     
(VII-2a) (with S0 = 0) and noting that the coefficient 3/12 in (VII-10) differs from the coefficient 
- 3/6 in (VII-8) for 3S0, we see that not only is 2S0 - 

2S1 = O( 3), but 2S0 itself is also O( 3).  In 
footnote 56 we again show this important relation 2S0 = O( 3), more directly but less elegantly 
(using equations of motion rather than purely variational arguments). This yields our desired 
necessary condition: Given the definition of Q (Sec II) involving two true worldlines coalescing 
as R  Q, we have 2S = 0 for worldline PQ for the special variation leading to the coalescence 
which defines kinetic focus Q (Sec. II).  
 

Next we extend our results to show that when R lies immediately beyond the kinetic 
focus Q the action of worldline PQR is a saddle point.  For this to occur the sign of     S1 S0  in 
(VII-10) must change from positive to negative as R passes through the kinetic focus Q. To 
interpret the sign in (VII-10) consider the varied worldline ( )tx

1
, the uppermost worldline in Fig. 

7, which crosses original worldline x0(t) at R1 slightly earlier than the kinetic focus Q of 
worldline x0(t). We have seen that 0

0

2
>S  for all variations for short PR along x0(t) and that 

0

2
S does not vanish until R reaches Q. Thus 

0

2
S  and S1 - S0 are positive for R1 slightly earlier 

than Q. Figure 7 shows, and (VII-10) makes quantitative, the fact that as R takes positions from 
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R1 to Q and then positions at Q and beyond Q to
1

R , the particular variational function  
vanishes, and then changes sign to become negative. From (VII-10) we see that when the 
variation of x0(t) is the adjacent true worldline ( )tx

1
, we have 0

01
<SS  for 

1
R  slightly later 

than Q, so that   S P  1  R 1( ) < S P0  R 1( ). However we know of other variations in )(
0

tx which generate 
0

01
>SS , such as displacing or adding wiggles to a short segment (recall discussion at the end 

of Sec. IV). Thus when 
1

R  is just beyond Q we can increase or decrease the action compared to 
S0, depending on which variation we choose. This means that for worldline )(

0
tx , or

1
0RP , the 

action S0 is a saddle point for
1

R  just beyond Q. 
 

We now demonstrate that worldline )(
0

tx  has a saddle point in action not only for
1

R  just 
beyond Q but also for all terminal events on the worldline beyond Q, no matter how far beyond 
Q they lie. To show this, imagine some point R2 further along )(

0
tx  from

1
R  by an arbitrary 

amount, so that the true worldline in Fig. 6 is now
21

0 RRP . Use the bottom worldline 
1

1 RP  in 
Fig. 7 to construct the comparison curve 

21
1 RRP  (which is not a true worldline due to the kink 

at
1

R ). Because 
21

0 RRP  and
21

1 RRP  have the segment 
21

RR  in common, and because 

  S P  1  R 1( ) < S P0  R 1( ) as shown above, we therefore have  S P  1  R 1R2( ) < S P0  R 1R2( ).  Hence we have 
found a variation

21
1 RRP  with a smaller action than the original worldline

21
0 RRP . But we know 

it is easy to find other variations giving a larger action (just add wiggles somewhere).  
Thus

21
0 RRP  has a saddle point58 in action for all R2 later than the kinetic focus Q. 
 
The above demonstrations have been for the typical (nonlinear potential) case.  The 

untypical case is the harmonic oscillator potential.  The proofs of all the above points are given 
for the harmonic oscillator separately in Sec. VIII.  All systems are therefore included in the 
theorem.  
 
 We have established the two central results of our paper: (1) Worldline PR has minimum 
action if the terminal event R is earlier than the kinetic focus event Q of initial event P. (2) 
Worldline PQR has a saddle point in action when terminal event R lies beyond the kinetic focus 
event Q of initial event P.55 We stress that these results are correct wherever on the worldline 
one freely chooses to place the fixed initial event P with respect to which the later kinetic focus 
event Q of P is established. In the literature24 these results are often expressed as follows: 

Jacobi's necessary and sufficient condition for a weak44 local minimum of the stationary action 
is that a kinetic focus does not occur between the end events P and R. 
 
VIII. HARMONIC OSCILLATOR 

We apply our general results to the bound worldlines of three potentials and the 
scattering worldlines of one potential. From analytic equations for these worldlines, we show 
explicitly that they satisfy the general results derived above. The first bound system is the 
harmonic oscillator. For the harmonic oscillator it is particularly easy to use Fourier series to 
compare the action along a worldline with the action along every (at least every piecewise-
smooth) curve alternative to the worldline61. The harmonic oscillator Lagrangian has the form 
 

,
2

1

2

1 22
kxxmUKL == &       (VIII-1) 
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so that (IV-12) becomes 
 

( ) ( )=+=
R

P
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P

dt
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where 

 
0

2/1

0

2

Tm

k
=  and T0  is the natural period.     (VIII-3) 

 
All third and higher partial derivatives of L with respect to x and x&  are zero, so there are only 
second-order variations in S due to  (see (IV-13)). Therefore we have 
 
 S S0 =

2S ,      for the harmonic oscillator .                        (VIII-4) 
 
Set P = (xP, 0) and R = (xR, tR). Express the variational function (t) using a Fourier sine series: 
 

( ) .
2

    where,
2

sin
1 Rn

n

t

tn
at ==

=

     (VIII-5) 

 
This function (t) automatically goes to zero at initial and final events P and R respectively. The 
constants an can be chosen arbitrarily, corresponding to our free choice of (t) . Because of the 
completeness of the Fourier series, the an taken together can represent every possible piecewise-
smooth trial curve alternative to any true worldline. Substitute (VIII-5) into (VIII-2). The squares 
of &  and  lead to double summations: 
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As t goes from zero to tR , the arguments of the harmonic functions go from zero to n  or n' , 
both of which represent an integer number of half-cycles. Because the different harmonics are 
orthogonal, terms with n' n  integrate to zero for any number of completed half-cycles. This 
simplifies (VIII-6) to the form 
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sin
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22 1 0
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The integrals from 0=t to 

R
tt = in (VIII-7) are over n half-cycles. For any integer number of half-

cycles the average cosine squared and the average sine squared are each equal to one-half. 
Therefore we have, finally: 
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=
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S   ,    (VIII-8) 
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Figure 8. Several true harmonic oscillation worldlines with initial event  P = (0,0) and initial 
velocity v0 > 0. Starting at initial fixed event P at the origin, all worldlines pass through the same 
event Q. That is, Q is the kinetic focus for all worldlines of the family starting at initial event P = 
(0,0). Worldlines 1 and 0 differ infinitesimally; worldlines 2 and 0 differ by a finite amount.  

 
 
where  and 0 are defined in (VIII-3) and (VIII-5), and recall, Eq. (VIII-4), that all higher 
variations are zero. The harmonic oscillator is atypical in that the period does not depend on 
amplitude, so that all worldlines that start at the same initial event recross at the same kinetic 
focus, as shown in Fig. 8. 
 

We now use (VIII-8) to give examples and verify, for the atypical case of the harmonic 
oscillator, the results derived for the typical case in earlier sections of this paper. 
Case I: tR < T0 2 . Final time less than one half-period 2 = tR > 0 = 2 T0( )  

In this case S
2  is positive for all choices of an and hence for every adjacent curve. For final times 

less than one half-period (that is, for worldlines that terminate before they reach the kinetic 
focus of the initial event) the action along the worldline is a minimum with respect to every 
adjacent curve. 

 
Case II: tR = T0 2 . Final time equal to one half-period 2 = tR = 0 = 2 T0( )  

Here the final event is the kinetic focus of the initial event, where (Eq. (VIII-4)) S S0 =
2S  goes 

to zero for the first time for a special type of variation. Choose a1 = A  and all other an = 0, giving 
2S = 0 in (VIII-8). This corresponds to the trial curves 1 and 2 pictured in Fig. 8, which are 

alternative curves, which here are also true worldlines; if we take the limit   0 (or the zero-
displacement limit A  0) we have true worldline 1 coalescing with true worldline 0. (All half-
period harmonic oscillator worldlines starting from P pass through the same kinetic focus, Fig. 
8.) For all other choices of the an (e.g. a2 = A, other an = 0) we have SSS

2

0
=  > 0 in (VIII-8), a 

result established for the typical case in Sec. VI. 
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Think of each choice of all the coefficients a1, a2, a3, . . . as a point in function space. Then 

we see that at the kinetic focus the action is a minimum for all “directions” in function space 
except for the direction with 0

1
=/a , all other an = 0, for which S S0 =

2S= 0. Thinking of each 
an as plotted along a different direction in function space, we can picture this exceptional 
stationary S case at the kinetic focus as an action “trough” in function space, i.e. flat in one 
special direction, increasing in all others. (In the typical case46 the trough is flat only to second-
order.)  In contrast, for Case I where tR < T0 2 , then S

2  is positive along every direction in 
function space. 
 
Case III: tR > T0 2 . Final time greater than one half-period 2 = tR < 0 = 2 T0( )  
In this case we can choose our an in order to find adjacent curves with action either greater or 
less than the action along the original worldline. For a1 = A  and all other an = 0 the value of S

2  
is negative, so the action for the worldline is greater than that for the adjacent curve. In contrast, 
if we choose an = A for any term n = N for which (N /2)2 2

0
>  and all other an = 0, then 2S  is 

positive and the action for the worldline is smaller than for the curve. In brief, for a final time 
greater than half a period of the harmonic oscillator the action for the worldline is neither a true 
maximum nor a true minimum; it is a saddle point. The corresponding result was shown for the 
typical case in Sec. VII.  Figure 6 shows schematically the evolution of S from Case I to Case II to 
Case III as tR increases. 
 
 All three cases above apply to the second variations S

2 for all harmonic oscillator true 
worldlines x0(t), for example those that do not start from (xP, tP) = (0,0), such as 

)0sin()(
0000

+= tAtx , and includes the no-excursion or equilibrium worldline x0(t)=0. In all 
cases, for actual worldlines S is a minimum (or a trough as in the special case II) or a saddle 
point, never a true maximum, in agreement with the general theory.  
 

For the harmonic oscillator all worldlines starting at initial event P = (0, 0) as in Fig. 8, for 
example, converge next on event Q = (0, T0/2), which is therefore the kinetic focus of P. We 
verify this result analytically using the general method of Sec. II. For the harmonic oscillator 
with P = (0, 0), express the amplitude of displacement in terms of the initial velocity v0: 
 

,sin
0

0

0
t

v
x =       (VIII-9) 

 
where 0 is independent of v0 for the harmonic oscillator. According to (II-3), time 

Q
t  of the 

kinetic focus is found by taking the partial derivative of (VIII-9) with respect to v0 and setting 
the result equal to zero: 
 

x

v0
=
1

0

sin 0tQ = 0 .               (VIII-10) 

 
Therefore the kinetic focus of the initial event P = (0, 0) occurs at the time when 0tQ =  or 
tQ = T0 /2 ,as expected. (What the general literature calls "later kinetic foci" occur for 0t = 2 , 3 , 
… but we limit the term kinetic focus to the first of these.)  A similar calculation with  
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P  (0, 0) gives the same result, i.e. 2/
0

Ttt
PQ
= . The fact that tQ tP is independent of initial 

event P is exceptional for the harmonic oscillator and does not carry over to nonlinear 
oscillators, considered next.  In Appendix B we discuss the location of the kinetic focus for the 
trajectories of two-dimensional harmonic oscillators. 
 

In summary, four characteristics of the harmonic oscillator worldlines are exceptional; 
these characteristics are not true for worldlines in most potential energy functions. For an 
arbitrary initial event P: (1) all worldlines from P pass through the same point (the kinetic 
focus), (2) the time of the kinetic focus Q of P is half a period T0 2  later, (3) the time interval is 
T0/2 between all successive kinetic foci, and (4) when the final event R is not a kinetic focus, 
only one true worldline connects it to P. Underlying these four exceptional characteristics is the 
basic exceptional property of the harmonic oscillator: frequency is independent of amplitude, 
which reflects the linearity of the system.  

 
IX. NONLINEAR OSCILLATORS 

We could analyze the action S for the worldlines of an arbitrary oscillator with potential 
)(xU by methods similar to those used for the harmonic oscillator in Sec. VIII. The second order 

variation 2S from the value S0 for a worldline x0(t) is given by (IV-12): 
 

    ( ) ( )[ ] ,)()(
2

2

0

2

2

2
dtttxUtmS

R

P

= &     (IX-1) 

 
where 22

/)()( dxxUdxU = and (t) is an arbitrary variation from x0(t) which vanishes at the 
end-events P and R . The analysis is complicated62 for arbitrary )(xU ; it is more instructive to 
consider instead two examples: (a) the piecewise-linear oscillator with V-shaped potential )(xU  
= C|x| and (b) the quartic oscillator with U-shaped potential )(xU  = Cx4. Figure 9 illustrates the 
fact that the piecewise linear oscillator is representative of the class whose period increases with 
increasing amplitude of oscillation. Figure 10 illustrates the fact that the quartic oscillator is 
representative of the class whose period decreases with increasing amplitude of oscillation. (The 
period of the harmonic oscillator is independent of oscillation amplitude.) 
 
(a) Piecewise-linear Oscillator 

The piecewise-linear oscillator we consider has a symmetric potential )(xU = C|x|, with 
C > 0. As an example, a star oscillates back and forth through the plane of the galaxy and 
perpendicular to it (Misner et al63). We approximate the galaxy as a (freely penetrable) sheet of 
zero thickness and uniform mass density and express the gravitational potential energy of this 
configuration as )(xU  = mg|x|, with the value of g = C/m calculated from the mass density per 
unit area of the galaxy surface. On earth a piecewise-linear potential of the form64,65 )(xU = C|x| 
(with C proportional to the conventional value of g) models the horizontal component of the 
oscillations of a particle sliding without friction between two equal-angle inclined planes that 
meet at the origin. The same form of potential roughly models that between two quarks where x 
is their separation. The classical, semiclassical, and quantum motions of three quarks on a line 
interacting with mutual piecewise-linear potentials have been studied by variational methods 
(reference 69 and references therein).  

 
For concreteness we use the example of the star oscillating back and forth perpendicular 

to the galaxy. We know the solution to the star's oscillation on either side of the galaxy from 
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elementary analysis of the vertical motion near the surface of earth. With the initial event chosen 
as P(xP, tP)=(0, 0) and v0 > 0 as in Fig. 9, the first half-cycle follows the parabolic worldline 
 

,
2

1 2

0 gttvx =   t  T0/2   ,     (IX-2) 

 
where the numerical value of g for galactic oscillation derives from the surface mass density of 
the galaxy sheet. The time T0/2 of the first half cycle is the time to return to x = 0: 
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g
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After crossing into negative values of x, the worldline equation has a form similar to   
(IX-2): 
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If we were dealing with motion in the region of positive x (or negative x) alone, there would be 
no kinetic focus because the second derivative U  is zero in either region, leading to a positive 
second order variation in the action derived from (IX-1) as discussed in Sec. V. It is the infinite 
second derivative U at the origin of the potential xCxU =)(  that creates the kinetic focus for 
the piecewise-linear oscillator. The second derivative )(" xU of this potential is 

 
    )(2)(" xCxU =  ,      (IX-5) 

 
where (x) is the Dirac delta function. 
 

Now consider the second order variation 2S for a worldline with (xP, tP)= (0,0) and the 
time tR of the terminal point R in the range T0 /2  tR T0. As our variational function we choose 
the sine function 

 

    =
2

sin)(
tn

at
n

 ,     (IX-6) 

 
where 

n
a is arbitrary and = 2 / tR . The variational function )(t vanishes at the end-points P 

and R, as it should, and is a slowly oscillating variation for n = 1 and a rapidly oscillating 
variation for n large. We substitute (IX-6) and (IX-5) into (IX-1) and carry out the integrations. 
The integration over )(x  is most easily carried out by changing integration variable from t to x 
using xdxdt &/= . The other integration follows the same pattern as in Sec. VIII. We find  
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Figure 9. Schematic space-time diagram of a family of true worldlines for a piecewise-linear 
oscillator, with initial event P = (0,0) and initial velocity v0 > 0. Kinetic focus Q0 of worldline 0 
occurs at 4/3 of its half-period T0/2. Similarly circles Q1 and Q2 are the kinetic foci of worldlines 1 
and 2 respectively. The heavy gray curve is the caustic, the locus of all kinetic foci of different 
worldlines of this family (originating at the origin with positive initial velocity). Squares indicate 
events at which the other worldlines recross worldline 0.  

 
where 

00
/2 T=  and 

0
T is given by (IX-3). For sufficiently short tR (i.e. sufficiently large 

= 2 / tR ) the positive ( )22/n term in (IX-7) will dominate for any n, so that we always have 
.0

2
>S  Action S is therefore a minimum for a worldline with sufficiently short tR. For large tR 

(i.e.  small), the ( )22/n  term will again dominate for a variation with sufficiently large n. In 
this case we again have 0

2
>S . But for the n=1 variation the negative term in (IX-7) dominates 

for small enough  (i.e. tR sufficiently large). In this case we have 0
2
<S . Thus for sufficiently 

large tR the action is a saddle point. These results are consistent with the general theorems 
derived in earlier sections.  
 
 The dividing line between small and large tR in the preceding paragraph is the time of the 
kinetic focus. To find the time tQ  at the kinetic focus Q of initial event P (see Fig. 9) we use the 
analytic method developed in Sec. II. Because the oscillator frequency decreases with increasing 
amplitude (see Fig. 9) we know that the kinetic focus time tQwill exceed T0/2. We apply 
condition (II-3) to (IX-4), giving 
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which yields 
 



 30

tQ =
8v0
3g

=
2T0
3

=
4

3

T0
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 .    (IX-9) 

 
Thus for the piecewise-linear oscillator the time of the kinetic focus is later than the half-period 
by a factor of 4/3, as displayed in Fig. 9. 
 
 The spatial location xQof the kinetic focus Q of a particular worldline is found from tQ  
using (IX-4): 
 

    xQ = v0 tQ
2v0
g
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,    (IX-10) 

 
where v0 is the initial velocity of the particular worldline. The locus of the various kinetic foci Q 
of the family of worldlines in Fig. 9, is the caustic or envelope and can be found by relating 

0
v  to 

tQ . From (IX-9) we have 
 

     
2v0
g

=
3

4
tQ  .      (IX-11) 

 
Substituting (IX-11) into (IX-10) gives the equation for the caustic of the family of piecewise-
linear oscillator worldlines with P = (0,0) and v0 > 0: 
 

xQ =
1

16
g tQ

2 .      (IX-12) 

 
This caustic is a parabola, shown as the heavy gray line in Fig. 9. It divides space-time.  Each 
final event (xR, tR) above the caustic can be reached by one or more worldlines of this family of 
worldlines; each final event on the caustic can be reached by just one worldline of the family; 
and each final event below the caustic can be reached by no worldline of the family.  For the 
harmonic oscillator all kinetic foci for a given initial event P fall at the same point (a focal 
point38), the limiting case of a caustic. Caustics for other systems are discussed in Secs. IX (b) and 
X and Appendix B.  
 
 Unlike the harmonic oscillator, for the piecewise-linear oscillator the time tQ-tP to reach a 
kinetic focus depends on coordinates (xP,tP) of the initial event P. For example we have already 
shown that tQ-tP has the value (4/3) T0/2 when xP=0. On the other hand if xP is nonzero but still 
small we find that tQ-tP is smaller than (4/3) T0/2 by the approximate amount (8xP/gT0

2)T0/2. 
 
(b) Quartic Oscillator 

The quartic oscillator has the potential U x( ) = Cx 4 , with C>0. Pure quartic potentials are 
rare in nature,70 but a mechanical model is easily constructed.75 A particle is linked by harmonic 
springs on both sides lying along the y-axis. The equilibrium position is y = 0 and both springs 
are assumed to be relaxed in this position. Oscillations along the y-axis are harmonic, but for 
small transverse oscillations in the x direction the potential has the form )(xU  = Cx4 + O(x6).  

 
Figure 10 shows a family of worldlines for the quartic oscillator. The second order 

variation of the action for a worldline x0(t) is given from (IX-1) for the potential )(xU = Cx4 as 
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where we assume 0=
P

t  and (t) is an arbitrary variational function. An exact analysis for a 
general worldline x0(t) is complicated. We therefore analyze an approximate worldline which 
brings out the salient points. 

 
Consider a periodic worldline x0(t) which starts from P=(0,0) with V0>0, as in Fig. 9. For a 

given energy or amplitude of motion the worldline can be approximated by12,69 
 
     ( ) .sin)(

000
tAtx       (IX-14) 

 
Unlike the harmonic oscillator, the frequency 0 depends on the amplitude A0. Action principles 
can be used in the direct (Rayleigh-Ritz) mode12,69 to estimate 0, giving 
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Figure 10. Schematic space-time diagram of a family of true worldlines for the quartic oscillator 
starting at P = (0,0) and with v0>0. The kinetic focus occurs at a fraction 0.646 of the half-period 
T0/2, illustrated here for worldline 0. The kinetic foci of all worldlines of this family lie along the 
heavy gray line, the caustic. Squares indicate recrossing events of worldline 0 with the other two 
worldlines. 

 
As discussed in reference 12, the variational result (IX-15) is accurate to better than 1%, and   
(IX-14) and (IX-15) can both be improved systematically with the direct variational method if 
required.  (A direct variational method finds true trajectories directly from a variational 
principle (here an action principle) without any use of equations of motion.) 

 
We can analyze S

2 for the quartic oscillator in the same manner as for piecewise-linear 
oscillator: substitute (IX-6) and (IX-14) into (IX-13) and carry out the integrations. The results are 
similar to the preceding section so we omit the details. 
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 As discussed earlier, the cut-off time for minimum action trajectories is the kinetic focus 
time tQ ; beyond this time the action is a saddle point. We recall (see (II-3) and argument there) 
that for a family of worldlines x(t,v0) all starting at event P and with differing initial velocity v0, 
the kinetic focus of the worldline with initial velocity v0 occurs when x(t,v0)/ v0 = 0. To apply 
this condition to the worldline in (IX-14), first express A0 and 0 in (IX-14) in terms of v0. For 
brevity we write (IX-15) as 0 = A0, where   (3C/4m)1/2. We also have v0 = 0A0 from 
differentiation with respect to time of (IX-14). From these two relations we get 2/1

0

2/1

0
vA =  and 

2/1

0

2/1

0
v= . Our condition for the kinetic focus is then 
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Resubstituting 

0

2/1

0

2/1
=v  we obtain 

 
     ( ) .tan

00
tt =       (IX-17) 

 
Equation (IX-17) is satisfied for t = tQ (and for times of later kinetic foci). MAPLE yields the 
smallest positive root Q of tan  = -  as Q  0.646 . The kinetic focus time is then given by 
0tQ 0.646 , or tQ 0.646 T0 2( ) for worldline 0 in Fig. 10 and the same fraction of the half-

period for the other worldlines shown there. Since our worldline (IX-14) is approximate, this 
location of the kinetic focus is also approximate. Note that for the quartic oscillator tQ is earlier 
than the half-period 2

0
T .  

 
 The spatial location xQ  of the kinetic focus ( )

QQ
txQ ,  of a particular worldline is found 

from tQusing (IX-14): 
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where Q 0.646 and A0 is the amplitude of the particular worldline. The locus of the various 

kinetic foci Q xQ ,tQ( ) of the family of worldlines in Fig. 10, or caustic, can be found by relating A0 

to tQ . From (IX-15) we have /
00

=A , where ( ) 2/1
4/3 mC= , and we also have 0 tQ Q . Thus 

we find 
 

     xQ =
B

tQ
,       (IX-19) 

 
where B = Q sin Q / =1.82 4m /3C( )

1/ 2. This caustic in Fig. 10 is a simple hyperbola and it too 
divides space-time (see discussion of piecewise-linear oscillator caustic). Other families of 
quartic oscillator worldlines can have different caustics.  
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 The quartic oscillator is a typical nonlinear oscillator, having properties different from 
the linear harmonic oscillator. For example, the time interval tQ-tP to reach the first kinetic focus 
Q  Q1 is not universal, but depends on the location of initial event P. Also, the time interval 
between the first and second kinetic foci, for example for the worldlines of Fig. 10 where 

12 QQ
tt = 0.914 (T0/2), differs from the time interval 

PQ
tt

1
 = 0.646 (T0/2). 

 
We have now seen examples (the quartic oscillator, the harmonic oscillator, the piece-

wise linear oscillator) for which the kinetic focus time is earlier than, equal to, and later than the 
half-period, respectively. These correspond, respectively, to oscillators whose frequency 
increases with amplitude, is independent of amplitude, and decreases with amplitude. 
 
X. REPULSIVE INVERSE SQUARE POTENTIAL 
 The previous examples were systems with exclusively bound motions (oscillators). We 
now demonstrate corresponding results for a system whose unbound worldlines all describe 
scattering from the potential 
 

     ,)(
2

x

C
xU =        (X-1) 

 
where C > 0. It may seem surprising  that a worldline in a scattering potential, where motion is 
unbound, can have a kinetic focus, since there is no kinetic focus for free particle worldlines or 
for worldlines in the scattering potential ( )xU  = Cx. The difference is in the curvatures of the 
potentials: the inverse square potential (X-1) has "U (x) >0 whereas the free particle and the 
linear potential have "U (x) = 0. As discussed qualitatively in Sec. III, potentials with positive 
curvature ( "U > 0) are stabilizing/focusing, which can lead to a kinetic focus. 
 

For a given initial position xP and final position xR in the potential (X-1), a worldline may 
be “direct” (direct motion from xP to xR) or “indirect” (backward motion from xP to a turning 
point xT followed by forward motion from xT to xR ). For indirect worldlines the turning point 
(xT, tT) occurs where the kinetic energy is equal to zero, so that the total energy E is equal to the 
potential energy (X-1), yielding 
 

     xT
2

=
C

E
 .      (X-2) 

 
The actual worldlines x(t) for the potential (X-1) are calculated by integrating the energy 
conservation relation. Assuming (xP, tP)=(xP, 0), we find 
 

    x 2 = xT
2 +

2E

m
t ± tT( )

2
,      (X-3) 

 
where +/– apply to a direct/indirect worldline respectively. For an indirect worldline with the 
initial event P(xP, 0), (X-3) can be solved for the turn-around time tT: 
 

    
    
tT =

m
2E

 

 
 

 

 
 

1/2

xP
2 xT

2( )
1/2

      (X-4) 
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Figure 11. Schematic space-time diagram for the repulsive inverse square potential, with a family 
of worldlines starting at P(xP, 0) with various initial velocities. Intersections are events where two 

worldlines cross. The heavy gray straight line ( )
QPQ

txx /= , where  = ( )2
1

/2 mC , is the 

caustic, the locus of kinetic foci Q (open circles) and envelope of the indirect worldlines. Worldline 
2, with zero initial velocity, is asymptotic to the caustic, with kinetic focus Q2 at infinite space and 
time coordinates. The caustic divides space-time: each final event above the caustic can be 
reached by two worldlines of this family of worldlines, each final event on the caustic by one 
worldline of the family, and each final event below the caustic by no worldline of the family.  

 
Some typical worldlines with P(xP, 0) are shown in Fig. 11. Note the two types, direct and 

indirect. A direct worldline of arbitrary length has minimum action (no kinetic focus). For 
indirect worldlines the kinetic foci Q are not the minimum-x turning points but rather the 
tangent points to the straight-line caustic (heavy gray line) with the equation  
 

 xQ =
2C

m

 

 
 

 

 
 

1/ 2 tQ
xP

   .       (X-5) 

 
  The derivation and discussion of S

2  for comparison curves are similar to those given 
for the piecewise-linear oscillator in Sec. IX, so we omit them. 
 
 The derivation of the kinetic foci (xQ, tQ) and caustic equation (X-5) by our standard 
method is cumbersome for this system, so we use an alternative argument (cf. reference 51). We 
can eliminate tT and xT from (X-3) using (X-2) and (X-4), giving a relation involving x, t, and the 
(conserved) energy E. Following some routine algebra, we can solve for E: 
 

   2t 2 /m( )E = x 2 + xP
2 ± 2xxP 1

2C

m

t 2

x 2xP
2

 

 
 

 

 
 

1

2

  .    (X-6) 

 
Here the +/– signs refer either to an indirect/direct pair of worldlines, or to two indirect 
worldlines; both situations are possible, as seen in Fig. 11. A kinetic focus arises here when two 
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indirect worldlines coalesce into one; the locus of kinetic foci forms the caustic or envelop 
(heavy gray line) in Fig. 11. When the trajectories coalesce, their energies coincide. From (X-6) 
we see that the condition for coinciding energies is the vanishing of the term in square brackets. 
The caustic relation is thus found to be (X-5). Equation (X-5) for the caustic is seen to be 
plausible by the following argument. Note from Fig. 11 that worldline 2 starting from rest 
 (v0 = 0, or zero initial slope) has the caustic as its asymptote. The equation for this asymptote is 
easily calculated from (X-3) by setting tT = 0 and E = C / xP

2  and taking t large. We find (X-5) 
immediately. 
 
 As we have seen, the indirect worldlines each have a kinetic focus. In contrast to the 
oscillator systems studied earlier, subsequent kinetic foci do not exist for this system. 
 
XI. GENERALIZATIONS 

Extensions of the results of this paper to two-dimensional (2D) and three-dimensional 
(3D) motion and multi-particle systems is formally straightforward, primarily because both 
action and energy are scalars; adding dimensions or particles merely sums the corresponding 
scalar quantities. Let xi denote the coordinates, for example (x1,x2)  (x,y) for 2D motion of a 
single particle; (x1,x2,x3)  (x,y,z) for 3D motion of a single particle; (x1, …, x6) for two particles in  
3D, where (x1,x2,x3) = (x,y,z) for particle one and (x4,x5,x6) = (x,y,z) for particle two, and so forth. 
Equation (IV-1a) generalizes to 
 

,
)0(

iii
xx +=       (XI-1)  

 
where )0(

i
x  and xi are the coordinates of a point on the actual worldline and varied curve, 

respectively. This leads to obvious generalizations of the subsequent equations of Section IV. In 
particular, for the common case of one or more particles of mass m in 1D, 2D or 3D, the 
Lagrangian is  
 

 ,
2

1 2
UxmL

i

i

= &                                       (XI-2) 

 
where for particles interacting with each other and/or an external field U can be a function of 
all xi and time. Equation (IV-12)  then generalizes to 
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2

22

2
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R

P ij i

i

ji

ji
m

xx

U
dtS &                 (XI-3) 

 
 The kinetic energy in Lagrangian (XI-2) is quadratic in the velocities and thus positive, 
and this leads to S having a minimum or saddle point (never a maximum) for true worldlines 
(see argument at the end of Sec. IV).  It would be of interest to investigate the possible extension 
of this result (and the corresponding result for Maupertuis action W – see Appendix A) to more 
general Lagrangians, including relativistic Lagrangians, Lagrangians containing terms linear in 
the velocities (e.g. magnetic field terms, gyroscopic terms), etc. 
 

Appendix B describes 2D motion of a particle in two types of gravitational potential and 
in harmonic oscillator potentials. The criteria for minimum action and location of kinetic foci76,55 
are essentially the same for 2D as for 1D, but, unlike 1D, for the attractive 1/r potential two 
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trajectories connecting P to R can both have minimum action. The formal analysis generalizes 
easily to other 2D systems, to 3D and multi-particle systems, but the calculations will be more 
complicated for complex worldlines, e.g. when motion is chaotic (following paragraph). Also, 
for many-particle systems it is unlikely that we want to specify in advance the complete final as 
well as initial configuration, since a major purpose of mechanics is to find the final 
configuration77.  In such cases these powerful deterministic tools may be less useful than 
modern statistical mechanical methods, although it is interesting to note that historically69 
Helmholtz, Boltzmann, Planck and others attempted to base the second law of thermodynamics 
on action principles for the molecular motions. 

 
In our derivations we have been careful to use partial derivatives of the potential 

function with respect to position, UxUUxU
22

/,/ , etc., because potential energy 
( )txU ,  can also be an explicit function of time in the defining equations of action and its 

variations, such as (I-1) and (IV-12). Results of this paper can be applied in principle to motion 
in time-dependent potentials, in which the energy of the moving particle may not be a constant 
of the motion. Qualitatively new features may arise if U is explicitly time-dependent; for 
example, we expect that S

2 can remain positive for some long worldlines in potentials with 
0">U .80  As an example, consider the quartic oscillator studied in Sec. IX but with time-

dependent external forcing F(t) added. The potential is now 
 
    ,)(),(

4
txFCxtxU =      (XI-4) 

 
and has 0">U for all x except x = 0. One often chooses periodic forcing tFtF cos)(

0
= , but 

other choices are also of interest, e.g. quasiperiodic forcing F(t) = F1cos 1t + F2cos 2t, with 2/ 1 
irrational.  Alternatively, one can introduce parametric forcing by modulating C.  The unforced 
oscillator has only equilibrium and periodic worldlines, which are stable. Depending on the 
initial conditions and potential parameters such as C, F0, and , the forced oscillator can have in 
addition unstable periodic worldlines29, quasiperiodic worldlines83,84, and chaotic (aperiodic, 
exponentially unstable) worldlines86.  Similarly the potential xCxU =)(  of the piecewise-linear 
oscillator of Sec. IX can be made time-dependent87. Second variations and kinetic foci have been 
studied for some worldlines of various oscillators with time-dependent potentials88,89,90, but as 
far as we are aware not specifically for chaotic worldlines. 
 
 Chaotic behaviour can arise in higher dimensions even without explicitly time-
dependent potentials. As an example, worldlines for the 2D nonlinear Henon-Heiles oscillator 
with potential 
 

    3222

3

1
)(

2

1
),( yyxyxkyxU ++=     (XI-5) 

 
are chaotic for certain values of the initial conditions and parameters91. Some studies of 2S and 
kinetic foci have been done on periodic worldlines for this system89, but again we are not aware 
of any studies for chaotic worldlines. 
 

It will be interesting and challenging to study S
2 for chaotic worldlines in any system92. 

We hypothesize that kinetic foci will not exist if the worldline is sufficiently chaotic. In such 
cases worldlines with incremental difference in velocity at initial event P may recross pseudo-
randomly in time, but the severe instability may prevent the two worldlines from smoothly 
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coalescing, as required for the existence of a kinetic focus Q. Worldlines PR lacking kinetic foci 
have 0

2
>S for arbitrary final events R, so that action is expected to remain a minimum in such 

cases, even for long worldlines in potentials having U” > 0, such as (XI-4). 
 
XII. SUMMARY  

We examined the nature of the stationary value of the Hamilton action S for the 
worldlines of a single particle moving in 1D with potential energy function U x( ). We showed 
that when no kinetic focus exists the action is a minimum for worldlines of arbitrary length.  
When a kinetic focus exists, and when a worldline terminates before reaching its kinetic focus, 
then the action is still a minimum. In contrast, when a worldline terminates beyond its kinetic 
focus, its action is a saddle point. The value of the action S is never a true maximum for a true 
worldline.  These results were illustrated with the harmonic oscillator, two anharmonic 
oscillators, and a scattering system. Extensions to time-dependent 1D potentials ),( txU , and to 
multidimensional potentials ),( yxU  etc., were discussed briefly. Appendices supply parallel 
results for spatial orbits described by Maupertuis’ action W and give examples for 2D motion 
for both S and W.  Corresponding results for some newer action principles have not as yet been 
derived, and open questions about these newer action principles are sketched in the final 
Appendix C.  
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APPENDIX A: THE MAUPERTUIS ACTION PRINCIPLE  

In the literature there are two major versions of action and two corresponding action 
principles.  The Hamilton or time-dependent action S, and the corresponding Hamilton action 
principle were introduced in Sec. I.  The Maupertuis or time-independent action W is defined 
along an arbitrary trial trajectory connecting P(xP, tP) to R(xR, tR) by 
 

    ,2===
R

P

R

P

R

P

x

x

t

t

t

t

dtKdt
dt

dx
xmdxpW &      (A-1) 

 
where the first (time-independent) form is the general definition with xLp &= /  the canonical 
momentum (pdx is replaced by p• dx for multidimensional systems), and the last (time-
dependent) form is valid more generally for so-called normal systems69, in which the kinetic 
energy K is quadratic in the velocity components. For normal systems W is positive for all 
trajectories in all potentials (unlike S).  The Maupertuis action principle states that in 
conservative systems W is stationary ( 0=W ) for an actual trajectory when comparing trial 
trajectories all of the same fixed energy E and the same fixed start and end positions xP and xR.  
Note that in Maupertuis’ Principle the energy E is fixed and the duration T  (tR – tP) is not, the 
opposite conditions from those occurring in Hamilton’s Principle.  The constraint of fixed end 
positions xP and xR is common to both principles. Hamilton’s Principle is valid for both 
conservative systems, and nonconservative systems with ( )txUU ,= .  The conventional 
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Maupertuis Principle just given is valid only for conservative systems;  the extension to 
nonconservative systems is discussed in reference 69. Maupertuis’ Principle can be used in its 
time-independent form to find spatial orbits (e.g. (xP, yP) (xR, yR) in 2D), and in its time-
dependent form to find space-time trajectories or worldlines (e.g. (xP, yP, tP) (xR, yR, tR)). 
 
 The Hamilton and Maupertuis action principles can be stated69 succinctly in terms of 
constrained first variations as ( S)T = 0 and ( W)E = 0 respectively, where the constraints of fixed 
T and fixed E are denoted explicitly as subscripts, and the constraint of fixed end-positions xP 
and xR is left implicit.  Along an arbitrary trial trajectory P  R, S and W are related69 by a 
Legendre transformation, i.e. 
 
      ,TEWS =       (A-2) 
 

where =
R

P

t

t

TdtHE /  is the mean energy along the arbitrary trajectory, and T  (tR – tP) is the 

duration. Equation (A-2) follows simply from integrating over time between tP and tR , along the 

arbitrary trajectory, the corresponding Legendre transform relation HxpL =
•

 between 
Lagrangian L and Hamiltonian H,  and deserves to be better known.  Along an actual trajectory 
of a conservative system, (A-2) reduces to the well-known relation93 S = W – ET, where E is the 
constant energy of the actual trajectory. 
 
 Parallel yet distinct discussions have developed for the second variations of actions S and 
W  because the kinetic foci, which play such an important role in determining the second 
variation (see Secs. II and VI) can differ for the two actions29,94,95.   
 
 An intuitive argument why W can never be a true maximum for actual paths was given 
by Routh96 for normal systems (defined above). Consider an actual path xP A B xR which 
makes stationary the first form of W in (A-1). Here A and B are two arbitrary intermediate 
positions between the end-positions xP and xR. Consider a second, trial path xP A B A B  
xR which has an extra “loop” inserted, with momentum p exactly reversed at every point along 
B A compared to A B. This comparison path satisfies the proper constraint of having the 
same energy as the actual path, but clearly has a larger action since p dx is always positive. Thus 
W for the actual path cannot be a true maximum.  
 
APPENDIX B: TWO-DIMENSIONAL TRAJECTORIES  

(a) Gravitational Fields 
We have shown that the Hamilton action S is a minimum for all 1D radial/vertical 

trajectories in the 1/r and linear gravitational potentials discussed in Sec. V.  This minimum 
action property may not hold for 2D trajectories, as we shall presently discuss.  A possible non-
minimum in the action is more evident for the Maupertuis action W, Eq. (A-1), for which the 
true trajectories are defined by giving the two end-positions (xP, yP) and (xR, yR) and the energy 
E; we therefore discuss 2D orbits for W first.  (We choose our x,y axes in the plane of the orbit.) 

 
For the linear gravitational potential ),( yxU = mgy, with y the vertical direction and x 

horizontal, it is well-known that two actual spatial orbits (parabolas) with the same energy E can 
connect two given positions, the origin (xP,yP) = (0,0) say, and final position (xR, yR), provided 
that position (xR , yR) lies within the so-called “parabola of safety” — the envelope97,98 of the 
parabolic orbits of energy E originating at (0,0). See Fig. 12. If (xR,yR) lies on the parabola of 
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safety, which is the locus of the spatial kinetic foci ),(
QQ

yx , or caustic, there is one actual orbit 
between fixed end-locations. If (xR,yR) lies outside the parabola of safety, no orbit of energy E 
can connect it to the origin. These points are evident in Fig. 12.  As we have seen in Sec. II, the 
intersection of two paths implies the existence of a (different) kinetic focus for each of the paths.  
W is a minimum for the path for which (xR, yR) precedes its kinetic focus, and is a saddle point 
for the path for which (xR, yR) lies beyond its kinetic focus. 

 

 
 

Figure 12. For the Maupertuis action, the heavy line envelope (the "parabola of safety") is the 

locus of spatial kinetic foci ( )
QQ

yx , , or caustic, of the family of parabolic orbits of energy E 

originating from the origin O ( ) ( )0,0, =
PP

yx  with various directions of initial velocity v0. The 

potential is U(x,y) = mgy.  The horizontal and vertical axes are x and y respectively, and the 

caustic/envelope equation is 2

0

22

0
2/2/ vgxgvy = , found by Johan Bernoulli in 1692.  The 

caustic divides space. Each final point (xR,yR) inside the caustic can be reached from initial point 
(xP,yP) by two orbits of the family, each final point on the caustic by one orbit of the family, and 
each point outside the caustic by no orbit of the family.  C is the vertex (highest reachable 

point gvy 2/
2

0
= ) of the caustic and D1, D2 denote the maximum range points ( )gvx /

2

0
±= .  

(Figure from ref. 98.) 
 
 

Similarly, as first shown by Jacobi21, typically99 two given positions (xP,yP) and (xR,yR) in 
the gravitational potential (1/r) can be connected with two actual orbits (ellipses) (and therefore 
four paths) of the same energy E.  Again this leads to a non-minimum in the action W for actual 
paths connecting (xP, yP) to (xR, yR) when (xR, yR) lies beyond the kinetic focus.  An example is 
shown in Fig. 13.  The intersection points of the orbits show two different ellipses connecting 
point P to other points.  The outer curve is the envelope/caustic, which is also elliptical with 
foci at P and the force center.  The kinetic foci for action W lie on this outer ellipse.  The second 
kinetic focus occurs at P itself, following one revolution.  There is no envelope for the hyperbolic 
scattering orbits for the attractive 1/r potential.101 

 
To discuss 2D space-time worldlines for the Hamilton action S, which depends on the 

two given end-positions and the time interval which now specify a worldline, note that for the 
1/r gravitational potential, typically two102 actual worldlines can connect two given positions  
(xP, yP) and (xR, yR) in a given time interval (tR – tP).  This is illustrated in Fig. 14, showing two 
different elliptical trajectories connecting the initial and final points in the same time.  Choose   
tP = 0 for simplicity.  The kinetic focus time tQ for action S is here the period T0.  This is clear 
intuitively from Fig. 13 which shows a family of trajectories leaving point P and all converging 
back on P in the same time T0.  A rigorous proof that tQ = T0 can also be given.105  Note that the  
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Figure 13. A family of elliptical trajectories starting at P with the same speed | v0| (the directions of v0 

differ), and hence the same energy E, the same major axis 2a, and the same period T0, in the 1/r 
gravitational potential.  Here the value of v0 exceeds that necessary to generate a circular orbit. The center 

of force is the earth (heavy circle). The dashed circle gives the locus of the second focus of the ellipses (a 
circle centered at P). The outer ellipse, with foci at P and the earth, is the envelope of the family of ellipses. 
(Figure adapted from Butikov, ref. 97) 
 

kinetic focus here is of the “focal point” type, as in Fig. 1 for the sphere geodesics and in Fig. 7 
for the harmonic oscillator worldlines.  Note also that, as seen in Fig. 14, if two trajectories 
connect P to R in time (tR – tP) < T0, both have minimum action; this is in contrast to 1D, where 
one of the paths has a saddle point in action.  

 
 

Figure 14. Two different elliptical trajectories typically can connect P = (r1, t1) to  
R = (r2, t2) in the same time (t2 –t1) for the attractive 1/r potential. (Figure from Bates et 
al, ref.89)  

 
 For the linear gravitational potential ( ) mgyyxU =, , only one 2D (parabolic-shaped) actual 
worldline can connect two given positions (xP, yP) and (xR, yR) in a given time (tR – tP).  Kinetic 
foci for the space-time trajectories therefore cannot arise, and hence S is always a minimum for 
actual worldlines in this potential107. This is in contrast with the Maupertuis action W, for which 
we have seen that some pairs of positions (xP,yP) and (xR, yR) can be connected by more than one 
actual path of given energy E, so that kinetic foci can exist for the spatial orbits.  This contrast 
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between S and W also holds for the vertical 1D paths in this potential, mgyU = .  For S, only one 
actual 1D worldline can connect a given yP to a given yR in a given time (tR – tP), which leads to 
the conclusion that all 1D actual worldlines minimize S (see discussion of Section V).  For W, 
typically two actual 1D paths of given energy E can connect yP to yR, which leads to the 
conclusion that not all 1D actual paths minimize W (some are saddle points).  For the linear 
gravitational potential ( ) mgyyxU =, , there is always one actual worldline which can connect two 
given spatial points in a given time, for both 2D and 1D worldlines (S is always a minimum for 
these worldlines).  Again in contrast, there may be no actual path which can connect two given 
spatial points for a given energy, for both 2D and 1D.  Fig. 12 shows examples (final points 
outside the caustic) of this nonexistence of actual paths. 

 
Figure 15. An elliptical orbit (tilted ellipse) in a 2D isotropic harmonic oscillator potential 

( ) 2
)2/1( rkrU =  with force center at O. A family of trajectories is launched from P with equal 

initial speeds | v0| and various directions 
0
 of v0 .  One member of the family is shown.  The 

envelope of the family is the outer ellipse, with foci at P and Q (coordinates xQ = -xP , yQ = yP = 
0). Points on the envelope are the kinetic foci for the spatial orbits. Point Q, occurring at time tQ 
= T0/2 , where T0 is the period, is the kinetic focus for the space-time trajectories (wordlines). 
(Figure adapted from French, ref. 97) 

 
(b) Harmonic Oscillators 
 The potential for a 2D isotropic harmonic oscillator is 
 

    ( ) ( ) .
2

1

2

1
,

222
rkyxkyxU +=      (B-1) 

 
The spatial orbits are ellipses with the force center (r = 0) at the center of the ellipse.  A family of 
ellipses launched from P in Fig. 15, with equal |v0|’s (and hence equal energies E) and various 
directions of v0, has an envelope/caustic which is also elliptical in shape.101  The envelope is the 
outer ellipse in Fig. 15.  The kinetic foci for action W lie on the caustic. 
 

To locate the space-time kinetic focus, relevant for action S, we apply the relation given in 
footnote 74 for 2D trajectories x(t, v0). The matrix 

ji
vx

0
/  is here diagonal, so that the 

determinantal condition reduces to ( )( ) 0//
00

=
yx

vyvx  , and we get separate 1D conditions 
for the x and y motions, i.e.  x/ v0x = 0 or y/ v0y= 0.  Choose tP = 0 for simplicity.  Previously  
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Figure 16. A periodic orbit of a 2D anisotropic harmonic oscillator with commensurate frequencies 
(here

21
/ = 2). (From ref. 108) 

 
(Sec. VIII) we showed that the kinetic focus time tQ  for the 1D harmonic oscillator is T0/2 , 

where T0 = /2   is the period and  ( ) 2/1

0
/ mk= . Thus we have tQ= T0/2 for the isotropic 2D 

harmonic oscillator. 
 

 The space-time kinetic focus for the trajectories of the 2D anisotropic  harmonic oscillator 

with potential  

     ( ) 2

2

2

1
2

1

2

1
, ykxkyxU +=      (B-2) 

and 
21

kk  can be derived similarly. The orbits are here Lissajous figures, closed (periodic) for 

21
/  rational as in Fig. 16, and open (quasiperiodic) for 

21
/  irrational as in Fig. 17, where  

( ) 2/1
/ mk

ii
= . The problem is again separable into x and y motions, and the method of footnote 

74 yields for the kinetic focus time tQ  the value T0/2, where T0 is the smaller of T1 and T2 where 
Ti = 

i
/2 . 

 
Figure 17. A quasiperiodic orbit of a 2D anisotropic harmonic oscillator with incommensurate 
frequencies (

21
/ irrational). The outer ellipse is the equipotential contour  U(x,y) = E. The 

rectangle delimits the region of x-y space actually reached by the particular orbit. (From ref. 109) 
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APPENDIX C: OPEN QUESTIONS FOR SOME NEWER ACTION PRINCIPLES  

Culverwell and Whittaker (Sec. VI)  framed their analysis in terms of the Maupertuis 
action W.  For sufficiently short trajectories (i.e., the final position occurs before the kinetic 
focus) W is always a minimum, and for longer trajectories W is a saddle point.  W is never a true 
maximum.  In this paper we amended the Culverwell-Whittaker analysis and adapted it to the 
Hamilton action S.  For times less than a kinetic focus time tQ , the action S is always a 
minimum.  For longer times S is a saddle point.  S is never a true maximum.  We refer to these 
results for W and S as “no-max” theorems. 

 
It may be possible to extend the theorems to several newer action principles69.110.  To state 

the newer principles, we first recall the succinct notation for the Hamilton Principle (HP) and 
the Maupertuis Principle (MP) given in Appendix A: 
 
      ( ) )(,0 HPS

T
=      (C-1) 

 
      ( ) )(,0 MPW

E
=      (C-2) 

 
where subscripts T  tR – tP (the duration) and E (the energy) denote the constraints. The 
additional constraints of fixed end-positions xP and xR are left implicit in (C-1) and (C-2), and are 
to be understood to hold here and also in all the action principles given below. 
 

In recent years the Maupertuis Principle (C-2) has been extended to a Generalized 
Maupertuis Principle (GMP)69,110, 
 
      ( ) )(,0 GMPW

E
=      (C-3) 

 

where 
T

TdtHE

0

/ is the mean energy along the arbitrary trial trajectory, with H the 

Hamiltonian, and where for simplicity we choose tP  0, tR  T.  The constraint of fixed E in  
(C-2) has been weakened to one of fixed mean energy E in (C-3).  Conservation of energy for 
actual trajectories is now a consequence of the principle (C-3), rather than an assumption as in 
the original principle (C-2). 
 
 Both the GMP (C-3) and HP (C-1) have associated reciprocal principles69,110: 
 
      ( ) )(,0 RMPE

W
=      (C-4) 

 
      ( ) )(,0 RHPT

S
=      (C-5) 

 
i.e. a Reciprocal Maupertuis Principle (RMP) (C-4) and a Reciprocal Hamilton Principle (RHP) 
(C-5).  The newer principles (C-3)-(C-5) have several advantageous features, computational and 
conceptual, discussed in references 12, 66 and 91.  Additionally, the RMP (C-4) is the direct 
classical analogue110,111 (in fact, the classical   h 0 limit) of the well known Schrödinger quantum 
variational principle involving the quantum mean energy. 
 

It would be of interest to prove the existence or nonexistence of a no-max or no-min 
theorem for these newer action principles. A Routh-type intuitive argument (see Appendix A) 
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suggests that the GMP (C-3) obeys a no-max theorem, but the examples worked out to 
date12,69,110 provide no compelling evidence one way or the other for the other principles.  Other 
newer action principles are also discussed in references 69 and 110.  One can completely relax 
the constraints of fixed T in (C-1) and fixed E  in (C-3) with the help of Lagrange multipliers.  
One finds an Unconstrained Hamilton Principle (UHP), S = - E T, and an Unconstrained 
Maupertuis Principle (UMP), W = T E , where the Lagrange multipliers E and T are the 
energy and duration of the actual trajectory, respectively.  The UHP and UMP can also be 
written in the more suggestive forms ( ) 0=+ TS and ( ) 0=+ EW  respectively, where  = E 
or  = -T is the corresponding constant Lagrange multiplier.  These “unconstrained” principles 
still have the constraint of fixed end positions xP and xR; by introducing additional Lagrange 
multipliers these constraints can also be relaxed.69  It would also be of interest to prove the 
existence or nonexistence of no-max or no-min theorems for these various principles.  
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0
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