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We derive conservation laws from symmetry operations using the principle of least action.  These
derivations, which are examples of Noether’s theorem, require only elementary calculus and are suit-
able for introductory physics. We extend these arguments to the transformation of coordinates due to
uniform motion to show that a symmetry argument applies more elegantly to the Lorentz transforma-
tion than to the Galilean transformation. 

I. INTRODUCTION
“It  is increasingly clear that  the symmetry group of nature is the deepest  thing that  we

understand about nature today.” (Steven Weinberg). 1 Many of us have heard statements like: For
each  symmetry  operation  there  is  a  corresponding  conservation  law.  The  conservation  of
momentum is related to the homogeneity of space. Invariance under translation in time means that
the law of conservation of energy is valid. Such statements come from one of the most amazing
and useful theorems in physics, known as Noether’s theorem. 

When the German mathematician Emmy Noether proved her theorem,2,3 she uncovered the
fundamental  justification  for  conservation  laws.  This theorem tells us  that  conservation  laws
follow from the symmetry properties of nature.  Symmetries (called “principles of simplicity” in
Ref. 1) can be regarded as a way of stating the deepest properties of nature. Symmetries limit the
possible forms of  new physical laws.  However,  the  deep  connection  between  symmetry and
conservation laws requires the existence of a minimum principle in nature: the principle of least
action. In classical mechanics, symmetry arguments are developed using high level mathematics.
On the other  hand, the corresponding physical ideas are often much easier to  understand than
mathematical ones.

In this paper we give an elementary introduction to and explanation of the relation between
symmetry arguments and central conservation laws, as mediated by the principle of least action.
We shall use only elementary calculus, so that  our  considerations can be used in introductory
university physics classes.

Because  the  paper  deals  mainly with  symmetry,  it  is  important  how  we  define  or
characterize this concept  in the  framework of introductory physics. We have decided to  take
Feynman’s simple description of symmetry from his lectures on physics4 which says that anything
is symmetrical if one can subject it to a certain operation and it appears exactly the same after the
operation. 

Like Feynman, we will concentrate on symmetry in physical laws. The question is what can
be  done  to  a  physical  law  so  that  this  law  remains  the  same?  Noether’s  theorem  derives
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conservation laws from symmetries under the assumption that the principle of least action is the
basic law that  governs  the  motion of  a  particle in classical mechanics.  This principle can be
phrased as follows: “The action is a minimum for the path (worldline) taken by the particle.”5,
which leads to  the reformulation of our basic question about symmetry: What changes can we
make in the worldline that  do not  lead to  changes in either the magnitude or  the form of the
action?

We will explore and apply symmetry operations to the action along an infinitesimally small
path segment. Because the action is additive, conclusions reached about a path segment apply to
the entire path. The simplest examples of symmetry show the independence of the action on the
difference in some quantity such as  position,  time,  or  angle.6 When such a  symmetry exists,
Noether’s theorem tells us that a physical quantity corresponding to this symmetry is a constant of
the motion that  does not change along the entire path of the particle.7 The existence of such a
constant implies a conservation law, which we then need to identify. 

Section II briefly describes our software that helps students study action and its connection
to conservation laws. Section III analyzes four examples of symmetry operations: translation in
space and time, rotation through a fixed angle, and symmetry under uniform linear motion, namely
the  Galilean  transformation.  The  first  three  symmetries  lead  to  three  conservation  laws:
momentum,  energy,  and angular momentum. Section IV  extends  the  analysis to  symmetry in
relativity, showing that these conservation laws exist in that realm. Moreover, for uniform linear
motion the symmetry argument applies more elegantly to the Lorentz transformation than to the
Galilean transformation.

In the following we often talk about variations or changes in the action. Consistent with
standard practice,  we will be only interested  in variations representing infinitesimal first-order
changes in the action. To keep the arguments simple, we also assume that the particle’s invariant
mass m (“rest mass”) does not change during the motion to be studied.

II. SOFTWARE
We start with the well-known definition of action for a particle of mass m that moves from

some initial position at time t1 to some final position at time t2:

  
2

1

t

t
tS d PEKE , (1a)

or equivalently 
S = (KEav – PEav) (t2 – t1). (1b)

Here KEav denotes the time averaged kinetic energy and PEav the time averaged potential energy
between t1 and t2. We use the notation KE and PE as symbols for kinetic and potential energies
respectively, because they are more mnemonic than the traditional symbols T and V.

Action is not a familiar quantity8 for many students, so we employ an interactive computer
program9 to help them develop an intuition about action and the principle of least action. By using
an interactive computer display, the student can not only explore the operation of the principle of
least action, but also study the relation between this principle and conservation laws in specific
cases (Fig.  1).  In carrying out  this manipulation, the student  naturally works  with the central
concepts of the worldline (a graph of the time dependence of a particle’s position) and an event (a
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point on a worldline). Unlike the path (trajectory in space), the worldline specifies completely the
motion  of  a  particle.  For  background  in the  symmetry properties  of  nature,  students  read  a
selection from Ref. 10.

FIG. 1. The use of software helps students study the action along a worldline for a particle moving
vertically in a gravitational field (as shown) or in other conservative potentials. The user clicks on
events to create a worldline and then drags the events to minimize the action, which the computer
continuously calculates and displays. The computer also displays a table of energy, momentum or
other  quantities that  demonstrate  conservation  of these quantities.  Students  discover that  for  the
worldline of minimum action, momentum is conserved for the motion of a free particle and that in a
gravitational field total energy is conserved.

III. SYMMETRY AND CONSERVATION LAWS IN NEWTONIAN MECHANICS
A. Translation in space

We first  examine the  symmetry related  to  translation in space.  When we perform an
experiment at  some location and then repeat  the same experiment with identical equipment at
another location, then we expect the results of the two experiments to be the same. So the physical
laws should be symmetrical with respect to space translation.

As a simple example, consider the action of a free particle (in zero potential or uniform
potential) moving along the x-axis between two events 1 [t1, x1] and 2 [t2, x2] infinitesimally close
to one another along its worldline. Because the worldline section is considered to be straight, the
particle  moves  at  constant  velocity  v = (x2  x1)/(t2  t1)  and  therefore  with  a  constant  kinetic
energy (1/2)mv2. According to Eq. (1b), the action along this straight segment in zero potential is
(the consideration for uniform potential is analogous) 
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If we change the positions of both observed events by a fixed displacement a, the action
remains unchanged (invariant),  because the value of the action depends only on the difference
between the positions:  x2 + a  (x1 + a) = x2  x1.  The principle of least action is symmetrical with
respect to a fixed displacement of the position. Noether’s theorem implies that this symmetry is
connected with some conservation law. In the following we demonstrate that the conservation law
related to symmetry under space translation is conservation of momentum.

1. Principle of least action and momentum
Think of the motion of a free particle along x-axis. To explore the connection between the

principle of least action and the conservation of momentum, we take advantage of the additive
property of the action to require that the action along an arbitrary infinitesimal section of the true
worldline have a minimal value.11 Thus we consider three successive infinitesimally close events, 1,
2, and 3 on the particle’s worldline and approximate a real worldline by two connected straight
segments, A and B (see Fig. 2). 

FIG. 2. Segment of the worldline of a particle that passes through three infinitesimally close events,
for which every smooth curve can be approximated by two connected straight segments.

Because we are considering translation in space, we fix the first and last events 1 and 3 and
change the space coordinate x2 of the middle event 2 so as to minimize the value of the total action
S. This minimum condition corresponds to a zero value of the derivative of S with respect to x2: 

 0
2


x
S

d
d

. (3)

Because the action is an additive quantity, the total action equals the sum of the actions for seg-
ment A and B, so S = S(A) + S(B). If we use Eq. (2), we can write

   
)(2

1
)(2

1
23

2
23

12

2
12

tt
xx

m
tt
xx

mS







 . (4)

If we perform in Eq. (4) the derivative indicated in Eq. (3), we derive the condition:
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The expression on the left side of Eq. (5) is the momentum pA for segment A while the expression
on the right side is the momentum pB for segment B, so pA = pB. We could continue and add other
segments C, D, E … to cover the entire worldline that describes the particle motion. For all these
segments  the  momentum  will  have  the  same  value,  which  yields  the  conservation  law  of
momentum. The action for this free particle depends only on the change of the coordinate x and
the result of this dependence is the conservation of the particle’s momentum.

However,  this  derivation  uses  only the  displacement  of  one  event  on  the  worldline.
Therefore we have not yet demonstrated the relation between the conservation of momentum and
the symmetry of translation in space in which all three events are displaced.

2. Symmetry and the conservation of momentum 
Now we show the straightforward relation between the symmetry of translation in space

and conservation of momentum. Again consider three infinitesimally close events on the worldline
x(t) of the free particle shown in Fig. 3 (the extension to  the entire worldline will be discussed
later).

 

segment  
A 

segment  
B 

a 

1 

2* 
3* 

2 3 

1*  

 t  

x  

FIG. 3. Three infinitesimally close events 1, 2, 3 on the actual worldline. We shift this worldline
through a fixed infinitesimal displacement a. An arbitrary displacement can be composed from a se-
quence of such infinitesimal displacements.

We shift the worldline x(t) so that every event changes its position by a fixed infinitesimal
displacement a. The new events create a shifted worldline that we indicate by an asterisk: x*(t). As
pointed out previously, the form of the action for x*(t) remains unchanged and does not depend on
the parameter a. Thus the change in action with respect to the displacement a is zero:

0)123()321( ***  SSSa . (6)
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Note that the worldline x*(t) is just as valid as the original one. Therefore the worldline x*

(t) also obeys the principle of least action. In translating from x(t) to x*(t) we do not need to shift
all the events simultaneously. The same effect is obtained if we first change the position of event 1
(in Fig. 3 only coordinate  x1 changes, which creates the worldline 1*23),  then event 3 (only x3

changes, which creates 1*23*) and finally event 2 (only x2 changes, which creates 1*2*3*). The total
change in action for displacement a can be written as:

*** 223311 
 SSSSa , (7)

where S11*, S22*, S33* denotes the changes in the action after the shifts in the corresponding
events. 

Equation (6) tells us that  aS is always zero. The final change S22* must also be zero,
from the principle of least action applied to the new worldline. Hence Eqs. (6) and (7) give:

** 3311 
 SS . (8)

If we now calculate the changes in the  action in Eq.  (8),  we obtain the conservation law of
momentum. Because the displacement a is infinitesimal, we can write:

a
x
SSSS
1

*
11 )123()231(*

d
d


 (9a)

a
x
SSSS
3

***
33 )231()231(*

d
d


 . (9b)

If we substitute Eq. (9) into Eq. (8) and use the fact that the fixed infinitesimal displacement a is
arbitrary, we have:12

31 x
S

x
S

d
d

d
d

 . (10)

The application of the derivatives in Eq. (10) to the expression for the action in Eq. (4)
yields the identical result for a free particle as Eq. (5), but this time as a result of spatial translation
of the entire incremental worldline segment. Thus the left side of Eq. (10) can also be interpreted
as the momentum at event 1 and the right side as the momentum at event 3.

The  preceding considerations  can be applied to  the  entire  worldline  x(t).  We did not
specify the  location  of  the  segments  A and  B.  Therefore  an  arbitrary  number  of  additional
segments can be added between them. Then we shift segments as before (see Fig. 4). By the same
analysis we conclude that the momentum for segment A (effectively the momentum at event 1) has
the  same value  as  for  segment  B (effectively at  event  3).  Arbitrariness of  position  of  these
segments on the worldline means that the value of the momentum remains constant at every event
on the worldline. Thus,  in classical mechanics, the symmetry of spatial translation means that
momentum is conserved for a free particle.
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FIG. 4. Following the same analysis as before, we conclude that the momentum at event 1 is the
same as at event 3. The events 1 and 3 can be chosen arbitrarily. The arbitrariness of position of
these events on the worldline implies the same value of momentum at every point (event) along the
whole worldline of the moving object.

The  invariance  of  the  action  with  respect  to  translation  in  space  is  also  called  the
homogeneity of space, which means that all points in space are equivalent as the origin of our
reference frame. In other words, it does not matter where an experiment is performed. Therefore
we can briefly state  that  the law of momentum conservation results from the homogeneity of
space.

B. Translation in time
It is easy to envision the symmetry related to translation in time. Repeating an experiment

on identical initial systems yields the same result when the two experiments are separated by a
lapse of time. Our conclusion is that physical laws should not change with translation in time.

Again we will show the relation of translation in time symmetry to a relevant conservation
law. We start  with an expression for the action of a particle moving in the  x-direction along an
infinitesimally small worldline segment in a potential field described by PE(x). As in Sec. IIIA the
action for this segment can be written according to Eq. (1b) as

)( 
2

 PE
)(
)(

2
1

12
21

12

2
12

segmentfor ttxx
tt
xxmS 






 





 , (11)

where the potential energy is evaluated at the average position along the segment. Now suppose
that  we translate the time  t by an amount  .  It  is easy to  see that  the action will not  change,
because only the difference of the time,  t2 +   (t1 +  ) = t2  t1,  appears in the equation for the
action.  So  the  action  is  symmetrical  with  respect  to  a  fixed  displacement  of  time  t.  What
conservation law is related to this time symmetry? We will show that it is conservation of energy.

We follow the same line of reasoning as for the case of translation in space, but now we fix
all position and time coordinates with the exception of t2. Think of a particle that moves along the
x-axis in the potential field with potential energy PE(x). To simplify the algebra, we denote space
and time differences by:
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According to Eqs. (11) and (12), the values of the actions S(A) and S(B) for segments A and B are
equal to:

A
A

A txx
t
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

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
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  
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1)( 23

2

. (13b)

The principle of least action leads to the following condition for the total action S:
  0

22





t
BSAS

t
S

d
)()(d

d
d

. (14)

If we substitute Eq. (13) into Eq. (14), differentiate, and rearrange, we obtain:







 








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2
1

2
 PE

2
1 23

2

2
12
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2 xx
t
xmxx

t
xm

B

B

A

A . (15) 

The expressions on both sides of Eq. (15) are sums of average kinetic and potential energies. For
infinitesimally  close  events,  Eq.  (15)  gives  an  equality  for  the  instantaneous  values

BBAA mvmv PEPE  22 )2/1()2/1( , and expresses the conservation of mechanical energy. 
Next we carry out  an argument that  translates all three times  t1,  t2,  and  t3 by the same

amount  , similar to the way we translated positions for the momentum case. Equations (6), (7)
and (8) apply to the present case as well, and also Eq. (9) when the derivatives are taken with
respect  to  time rather than position. Then the result of the temporal translation is an equation
similar to Eq. (10):

31 t
S

t
S

d
d

d
d

 ,         (16)

which yields Eq. (15) multiplied by (1). We again obtain conservation of energy, but this time as
a result of symmetry under time translation. For infinitesimally close events, the left side of Eq.
(16) also can be interpreted as the negative of the total energy at event 1 and the right side as the
negative of the energy at event 3. The energy is a constant of the motion for the entire worldline x
(t). Similarly as in the last paragraph of Sec. IIIA, we can say that the symmetry of translation in
time, or in other words the homogeneity of time, implies conservation of energy.

C. Rotation through a fixed angle
We now trace the consequences of another symmetry, symmetry under rotation in space. If

we rotate an experimental setup through a fixed angle, the experiment will yield the same result. If
this symmetry were not  true,  a laboratory in New York  would not  be able to  verify what  is
measured in another laboratory in Los Angeles. Indeed, repeating the experiment in New York
must lead to the same results as the earth rotates. So physical laws should remain invariant with
respect to rotation.
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We  use  polar  coordinates  to  determine  which  conservation  law  corresponds  to  this
symmetry and consider the planar motion of a particle in a spherically symmetric potential field of
energy PE(r). As before, we consider the expression for the action along the infinitesimal segment.
The definition (1b) shows that the action is equal to: 

tr
t

smS 



 )(PE
2
1

av

2

segmentfor . (17)

The increment s is the length of a path segment traveled by the particle during the time interval
t and rav is the average position of the particle on this segment.

FIG.5 Path  segment  of planar  motion with  three infinitesimally close points  whose positions are
described by polar coordinates. The radius rA (rB) represents the average position of the particle on
segment  A (B).  All  coordinates  of the  points  1,  2,  3  are  fixed with  the  exception  of the  angle
coordinate j2, which we vary to satisfy the principle of least action

Consider three infinitesimally close points on the real path of a particle and approximate
the real path by a  once-broken line consisting of two  infinitesimally small segments  A and  B
(Fig. 5).  (In this case we do not  display a worldline because it would require curves in three-
dimensional spacetime.) To find the required expression for the action in polar coordinates, we use
the Pythagorean theorem. The infinitesimal lengths sA and sB of segments A and B are 

222

222

)(

)(

BBBB

AAAA

rrs

rrs

j

j
(18)

where 12 rrrA  , 12 jjj A , 23 rrrB  , and 23 jjj B . If we substitute Eq. (18)
into Eq. (17), we find values of the action for segments A, B:

  AA
A

AAA tr
t
rrmAS 


j
 PE

222

2
1)( (19a)

  BB
B

BBB tr
t
rrmBS 


j
 PE

222

2
1)( . (19b)
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Once again, note that the action for these two segments depends only on the difference in the j-
coordinate, and not on the j-coordinate itself. As before, we conclude that neither S(A) nor S(B)
will change as we increase all j-coordinates by a fixed angle , because  j2 +   (j1 + ) = j2

 j1. As a result, the motion of the particle is symmetrical with respect to a fixed change in angle
j. Conservation of angular momentum which arises from this symmetry is derived as follows.

The condition of stationary action S is expressed as:
  0

22


j



j d

)()(d
d
d BSASS

. (20)

Substituting Eq. (19) into Eq. (20), differentiating and doing some rearrangement, we obtain:

B

BB

A

AA

t
rm

t
rm


j



j 22

. (21)

Equation (21) represents the conservation law of the angular momentum L, so BA LL = . The rate
of  change  of  the  angle  is  the  angular  velocity  .  Thus  Eq.  (21)  can  be  expressed  as

BBAA mrmr  22 .
A derivation  similar to  those  of  the  previous  cases  of  translations in space  and time

yields

31 j


j


d
d

d
d SS

,

(22)
which immediately implies conservation of angular momentum (21). Moreover, the left side of Eq.
(22) can be interpreted as the angular momentum at  point 1 and the right side as the angular
momentum at  point 3.  Angular momentum is conserved for the entire path.  The result is that
symmetry under rotation through a fixed angle implies conservation of angular momentum.

The condition that physical laws remain invariant with respect to rotation through a fixed
angle is called the isotropy of space. That is, space has the same properties in every direction.
Therefore conservation of angular momentum results from the isotropy of space.

D. Galilean transformation
Finally, we present  a  simple example of  an interesting and very important  symmetry:

symmetry under  uniform linear motion,  known in classical mechanics as Galileo’s principle of
relativity. We will be surprised to learn that the classical action is not invariant under a Galilean
transformation.

Consider again a free particle moving along the x-axis between closely adjacent events 1
and 2 as observed in a laboratory frame, where the action takes the form (2). The (slowly-moving)
rocket  observer, moving with a velocity  vrel with respect to  the laboratory, calculates particle’s
action given by the same equation 

12

2
12

segmentfor 
)(

2
1

tt
xxmS



 . (23)
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Here  we  use  primes for  rocket  coordinates,  not  for  the  derivative.  If we  apply the  Galilean
transformation 

tt
tvxx rel




,            (24)

for  the  rocket  coordinates  to  Eq.  (23),  we  obtain the  following form of  the  action  S´ in the
laboratory frame:

)(
2
1)()(

2
1

12
2

12
12

2
12

segmentfor ttmvxxmv
tt
xxmS relrel 



 . (25)

This form of action is not  the  same as Eq.  (2).  The action is not invariant  under  a  Galilean
transformation. Which action, S in Eq. (2) or S´ in Eq. (25), governs the motion of the particle in
the laboratory? Or is the Galilean transformation incorrect? According to Appendix A everything
is all right. The two actions S and S´ differ by a function that depends only on the coordinates of a

given event  tmvmxvtxF relrel
2

2
1),(  , so the mechanical laws are the same as determined by

using S as they are by using S´.
If we use slightly more  general considerations,  but  reasoning similar to  that  employed

previously,13 we  can  demonstrate  that  the  corresponding  conservation  law  to  Galilean
transformation (24) is related to the uniform motion of the center of mass. 

IV. SYMMETRY AND CONSERVATION LAWS IN RELATIVITY
A. Action in Relativity

We have shown that the classical action is not symmetrical with respect to uniform linear
motion, but all laws of motion remain unchanged under a Galilean transformation. We believe that
this asymmetry for the principle of least action is not accidental, but rather results from the fact
that  the  Galilean  transformation  and  Newton’s  laws  are  only approximate  laws  of  motion.
Symmetry under uniform linear motion is a basic assumption of Einstein’s special relativity.

We consider the same free particle, but now we use the special theory of relativity. The
action for linear segment between 1 and 2 has the form:14

t
c
vmcS 









21

2

2
2

segmentfor 1 , (26)

where c is the velocity of light, t = t1 – t2, and v = (x2  x1)/(t2  t1). It can be seen from Eq. (26)
that Newtonian mechanics is a special case of relativistic mechanics in the low-velocity limit (v <<
c):

tmctmvt
c
vmcS 







 22

2

2
2

2
1

2
11 (27)

According to Appendix A, if we take tmctxF 2),( −= , Eq. (27) will give the same laws of
motion for a free particle as the classical Newtonian action in Eq. (2).
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B. Lorentz transformation
Now  we  outline  the  symmetry  argument  connected  to  the  relativistic  Lorentz

transformation which has the form (c = 1):

)(
)(

xvtt
tvxx

rel

rel




, (28)

where    21211 relv . Here  vrel has the same meaning as in Sec. IIID. We express the action
(26) along a segment of the worldline:

  2/12
12

2
12segmentfor )()( xxttmS  . (29)

The expression in the square root is the particle’s proper time (wristwatch time) between the two
events, which is easily verified to  be an invariant under the Lorentz transformation. Hence the
relativistic action is symmetrical under a transformation connected to uniform linear motion.

Noether’s theorem can be used also in relativity. The same procedure used in Sec. III, can
be repeated in special relativity to yield the laws of conservation of relativistic energy, momentum
and angular momentum:

€ 

m∆x
∆τ

= prelativistic=constant

m∆t
∆τ

= Erelativistic=constant

mr2∆ϕ
∆τ

= Lrelativistic=constant

(30) 
where   is the particle’s proper  time. As for  the Lorentz  transformation,  there also exists a
corresponding conservation law, but its derivation goes beyond the scope of this paper.15

We  see  that  the  theory  of  relativity  eliminates  the  asymmetry  of  the  action  under
translation. The invariance of the action under all the transformations we have considered makes
the theory of relativity a more beautiful and elegant theory than the Newtonian theory of classical
mechanics.

If one uses the correct expression for the action (or proper time), the constants of motion
also can be derived for general relativity without complicated or advanced mathematics.16

V. SUMMARY
We have discussed the connection between symmetries and conservation laws provided by

Noether’s theorem using only elementary calculus. This approach can be used to help familiarize
students with the powerful consequences of symmetry in the physical world. In addition, students
can see a unified and systematic approach to  all the conservation laws, mediated by Noether’s
theorem and the principle of least action. 

All our  considerations can be easily generalized to  three  dimensions.  We note  that  all
symmetries  in  this  paper  are  one-parameter  transformations,  which  provide  the  central
conservation laws using the most common form of Noether’s theorem related to the invariance of
the Lagrangian (see Appendix B). Reference 17 and the pedagogically oriented Refs. 18 and 19
Paper accepted in American Journal of Physics (Received 30 December 2002; accepted 23 May 2003)

12



Jozef Hanc, Slavomir Tuleja, Martina Hancova           

 

give clear,  elegant,  and more mathematically precise (but  much more mathematically oriented)
applications of Noether’s theorem to particle dynamics.
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APPENDIX A: THE ADDITION OF CERTAIN TERMS TO THE ACTION HAS NO EF-
FECT ON THE LAWS OF MOTION

Think of two expressions for the action S(12) and S*(12) for a given worldline between any
two events 1 and 2 in spacetime. Suppose that these two expressions are related to each other in
the following way:

S*(12) = S(12) + F(2) – F(1),
(31)

where F is an arbitrary function that depends only on the space and time coordinates of a given
event. For example, F(1) could be the value of F at the event 1. Then laws of motion are the same
for both forms of action. Why? 

We answer  this  question  by repeating  the  same procedure  as  for  earlier  symmetries,
starting with three events 1, 2, 3. If we apply Eq. (31), we obtain the following equations relating
action S and S* for segment 1-2 and 2-3:

)1()2()12()12( * FFSS  (32a)

 )2()3()23()23(* FFSS  . (32b)
The total action S*(123) is the sum of (32a) and (32b):

)1()3()123()123( FFSS*  . (33)
The two total actions S* and S in Eq. (33) differ only in the difference in F at the fixed events 3
and 1.  If  we change the  space  or  time coordinate  (generally  u2)  of  the  middle event  2,  this
difference remains constant. So the minima of S and S* yield the same position of event 2, or in
other words, the first derivatives of S and S* with respect to  u2 are the same (all other variables
being fixed):

22

*

u
S

u
S

d
d

d
d

 (34)

According to Eq. (34), the principle of least action for S* gives the same particle’s path as
in the case of S. The laws of motion are unchanged if an additive constant (the difference in an
arbitrary function between final position and initial position of a particle) is added to the action.21
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APPENDIX B: NOETHER’S THEOREM AND THE LAGRANGIAN
Noether’s  theorem  determines  the  connection  between  constants  of  the  motion  and

conditions of invariance of the action under different kinds of symmetry. The function KE – PE in
Newtonian mechanics is called the Lagrangian and is denoted by the symbol L. So we can write S
for segment  

€ 

≡ S = L t  (Do not confuse the symbol L for the action with the symbol L for angular
momentum  used  in  Sec.  IIIC.)  If  we  discuss  symmetry  transformations  such  that  time  is
transformed identically, t*  = t,  or transformations involving a uniform time translation:, t*  = t + ,
where  t=t*,  then  the  invariance  of  the  Lagrangian  implies  the  invariance  of  the  action.
Therefore,  most textbooks state  Noether’s theorem as: for each symmetry of the Langrangian,
there is a corresponding conserved quantity.
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