
 

Section 1 Operation of the GPS

 

A-1

 

Project A

 

Global Positioning 
System

 

There is no better illustration of the unpredictable payback of fundamental 
science than the story of Albert Einstein and the Global Positioning 
System [GPS] . . . the next time your plane approaches an airport in bad 
weather, and you just happen to be wondering "what good is basic 
science," think about Einstein and the GPS tracker in the cockpit, guiding 
you to a safe landing.

 

—Clifford Will

 

1  Operation of the GPS

 

Do you think that general relativity concerns only events far from com-
mon experience? Think again! Your life may be saved by a hand-held 
receiver that “listens” to overhead satellites, the system telling you where 
you are at any place on Earth. In this project you will show that this sys-
tem would be useless without corrections provided by general relativity.

The Global Positioning System (GPS) includes 24 satellites, in circular 
orbits around Earth with orbital period of 12 hours, distributed in six 
orbital planes equally spaced in angle. Each satellite carries an operating 
atomic clock (along with several backup clocks) and emits timed signals 
that include a code telling its location. By analyzing signals from at least 
four of these satellites, a receiver on the surface of Earth with a built-in 
microprocessor can display the location of the receiver (latitude, longi-
tude, and altitude). Consumer receivers are the approximate size of a 
hand-held calculator, cost a few hundred dollars, and provide a position 
accurate to 100 meters or so. Military versions decode the signal to pro-
vide position readings that are more accurate—the exact accuracy a 
military secret. GPS satellites are gradually revolutionizing driving, flying, 
hiking, exploring, rescuing, and map making.

Airports use one GPS receiver at the control tower and one on the 
approaching airplane. The two receivers are close together, which cancels 
errors due to propagation of signals between each receiver and overhead 
satellites. It also cancels the “jitter” intentionally introduced into the satel-
lite signal to make civilian receivers less accurate than military receivers.
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As a result, measurement of the 

 

relative

 

 position of control tower and air-
plane is accurate to 1 or 2 meters. This configuration of receivers permits 
blind landing in any weather. Runway collisions can also be avoided by 
using this system to monitor positions of aircraft on the ground (a task 
impossible for the electromagnetic signals of radar).

The timing accuracy required by the GPS is so great that general relativis-
tic effects are central to its performance. First, clocks run at different rates 
when they are at different distances from a center of gravitational attrac-
tion. Second, both satellite motion and Earth rotation must be taken into 
account; neither the moving satellite nor Earth’s surface corresponds to 
the stationary spherical shell described in Chapter 2. In this project you 
will investigate these effects.

Your challenge in this project (and in all later projects) is to respond to the 
numbered queries. (Query 1 for this project appears on page A-4.) Typi-
cally, a query contains several related questions. Answer the queries in 
order, or as assigned to you, or skip to those that interest you the most.

 

2  Stationary Clocks

 

Earth rotates and is not perfectly spherical, so, strictly speaking, the 
Schwarzschild metric does not describe spacetime above Earth’s surface. 
But Earth rotates slowly and the Schwarzschild metric is a good approxi-
mation for purposes of analyzing the Global Positioning System. 

 [1]

Apply this equation twice, first to the orbiting satellite clock and second to 
a clock fixed at Earth’s equator and rotating as Earth turns. Both the Earth 
clock and the satellite clock travel at constant radius around Earth’s center. 

Operation of the Global Positioning System

The goal of the Global Positioning System (GPS) is to deter-
mine your position on Earth in three dimensions: east-west, 
north-south, and vertical (longitude, latitude, and altitude). 
Signals from three overhead satellites provide this informa-
tion. Each satellite sends a signal that codes where the 
satellite is and the time of emission of the signal. The 
receiver clock times the reception of each signal, then sub-
tracts the emission time to determine the time lapse and 
hence how far the signal has traveled (at the speed of light). 
This is the distance the satellite was from you when it emit-
ted the signal. In effect, three spheres are constructed from 
these distances, one sphere centered on each satellite. You 
are located at the single point at which the three spheres 
intersect.

Of course there is a wrinkle: The clock in your hand-held 
receiver is not nearly so accurate as the atomic clocks carried 
in the satellites. For this reason, the signal from a fourth 
overhead satellite is employed to check the accuracy of the 
clock in your hand-held receiver. This fourth signal enables 
the hand-held receiver to process GPS signals as though it 
contained an atomic clock.

Signals exchanged by atomic clocks at different altitudes are 
subject to general relativistic effects described using the 
Schwarzschild metric. Neglecting these effects would make 
the GPS useless. This project analyzes these effects.
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So 

 

dr

 

 = 0 for each clock. Divide the Schwarzschild metric through by the 
square of the far-away time 

 

dt

 

2

 

 to obtain, for either clock,

[2]

Here 

 

d

 

τ

 

 is the wristwatch time between ticks of either clock and 

 

v

 

 = 

 

r

 

 

 

d

 

φ

 

/

 

dt

 

 is the tangential velocity along the circular path of the same 
clock as measured by the bookkeeper using far-away time measurement. 
Write down equation [2] 

 

first

 

 for the satellite, using 

 

r = r

 

satellite

 

, 

 

v = v

 

satellite

 

, 
and 

 

d

 

τ

 

 = dt

 

satellite

 

 between ticks of the satellite clock, 

 

second

 

 for the Earth 
clock, using 

 

r = r

 

Earth

 

, 

 

v = v

 

Earth

 

 and time 

 

d

 

τ

 

 = dt

 

Earth 

 

between ticks of the 
Earth clock, all these for the same time lapse 

 

dt 

 

on the far-away clock. 
Divide corresponding sides of these two equations to obtain the squared 
ratio of time lapses recorded on the satellite and earth clocks:

[3]

The general relativistic effects we study are small. How small? Small com-
pared to what? When 

 

must

 

 one use exact general relativistic expressions? 
When are approximations good enough? These questions are so central to 
the analysis that it is useful to begin with a rough estimate of the size of 
the expected effects, not worrying for now about the crudeness of this 
approximation.

Start by ignoring the motions of satellite clock and Earth surface clock. 
Ask instead what the difference in clock rates will be for 

 

stationary

 

 clocks 
at these two radii. Then equation [3] can be written

[4]

You will show in Query 7 that the radius of a 12-hour circular orbit is 
about 26.6 

 

×

 

 10

 

6

 

 meters from Earth’s center. You will find values for the 
radius and mass of Earth among the constants inside the back cover. 

We now make first use of an approximation that appears repeatedly in this 
project:

[5]

Here the two vertical lines mean “absolute value.”
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Approximation [5] is accurate for any real (positive or negative, integer or 
fractional) value of the exponent 

 

n

 

 provided the absolute values of 

 

d

 

 and 

 

nd

 

 are both very much less than unity. Equation [5] is used so often in this 
book that it is rewritten for general reference as equation [E] on the last 
page of the book.

The number represented by 

 

b

 

 in equation [8] is an estimate of the frac-
tional difference in rates between stationary clocks at the position of the 
satellite and at Earth’s surface. Is this difference negligible or important to 
the operation of the GPS? Suppose the timing of a satellite clock is off by 1 
nanosecond (10

 

–9

 

 second). In 1 nanosecond a light signal (or a radio wave) 
propagates approximately 30 centimeters, or about one foot. So a differ-
ence of, say, hundreds of nanoseconds will create difficulties.

The satellite clock will “run fast” by something like 50 000 nanoseconds 
per day compared with the clock on Earth’s surface due to position effects 
alone. Clearly general relativity is needed for correct operation of the Glo-
bal Positioning Satellite System! On the other hand, the 

 

fractional

 

 
difference between clock rates at the two locations (at least the fraction 
due to difference in radius) is small.

QUERY 1 Formula: Clock rate difference due to height. Apply approximation [5] to 
the two parenthetical expressions on the right of equation [4]. Multiply 
out the result to show that

[6. for v = 0]

QUERY 2 Improved approximation. What are the approximate values of M/rEarth 
and M/rSatellite? Make an argument that the last term on the right of [6] 
can be neglected in comparison with the other terms on the right, leading 
to the result for stationary satellite and Earth clocks:

[7. for v = 0]

QUERY 3 Numerical approximation. Substitute numbers into equation [7] and find 
the numerical value of b in the following equation:

[8. for v = 0]
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QUERY 4 Synchronization discrepancy after one day. There are 86,400 seconds in 
one day. To one significant figure, the satellite clocks and Earth clock go 
out of synchronism by about 50 000 nanoseconds per day due to their dif-
ference in altitude alone. Find the correct value to three-digit accuracy.
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In addition to effects of position, we must include effects due to motion of 
satellite and Earth observer. In which direction will these effects influence 
the result? The satellite clock moves faster than the clock revolving with 
Earth’s surface. But special relativity tells us that (in an imprecise sum-
mary) “moving clocks run slow.” This prediction agrees with the negative 
sign of v2 in equations [2] and [3]. Therefore we expect the effect of motion 
to reduce the amount by which the satellite clock runs fast compared to the 
Earth clock. In brief, when velocity effects are taken into account, we 
expect the satellite clock to run faster than the Earth clock by less than the 
estimated 50 000 nanoseconds per day. We will need to check our final 
result against this prediction.

3  Clock Velocities

Now we need to take into account the velocities of Earth and satellite 
clocks to apply the more complete equation [3] to our GPS analysis. What 
are the values of the clock velocities vEarth and vsatellite in this equation, 
and who measures these velocities? For the present we find the simplest 
measure of these velocities, using speeds calculated from Euclidean geom-
etry and Newtonian mechanics. Newton uses a fictional “universal” time 
t, so Newtonian results will have to be checked later in a more careful 
analysis.

What is the value of the speed vsatellite of the satellite? Newton tells us that 
the acceleration of a satellite in a circular orbit is directed toward the cen-
ter and has the magnitude vconv

2/r, where vconv is measured in 
conventional units, such as meters per second. The satellite mass m multi-
plied by this acceleration must be equal to Newton’s gravitational force 
exerted by Earth:

[9]

Equation [9] provides one relation between the velocity of the satellite and 
the radius of its circular orbit. A second relation connects satellite velocity 
and orbit radius to the period of one revolution. This period T is 12 hours 
for GPS satellites:

[10]

QUERY 5 Speed of a clock on the equator. Earth’s center is in free float as Earth 
orbits Sun and rotates on its axis once per day (once per 86 400 seconds). 
With respect to Earth’s center, what is the speed vEarth of a clock at rest 
on Earth’s surface at the equator? Use Newtonian “universal” time t. 
Express your answer as a fraction of the speed of light.
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4  The Final Reckoning

Now we have numerical values for all the terms in equation [3] and can 
approximate the difference in rates for satellite clocks and Earth clocks.

Section 2 described the difference in clock rates due only to difference in 
altitude. We predicted at the end of Section 2 that the full general relativis-
tic treatment would lead to a smaller difference in clock rates than the 
altitude effect alone. Your result for Query 9 verifies this prediction. In the 
following section we examine some of the other approximations made in 
the analysis.

A practical aside: When Carroll O. Alley was consulting with those who 
originally designed the Global Positioning System, he had a hard time 

QUERY 6 Geometric units. In equations [9] and [10] convert the mass M to units 
of meters and convert satellite speed to a fraction of the speed of light. 
Leave T in units of seconds. Then eliminate the radius rsatellite between 
these two equations to find an expression for vsatellite in terms of M and 
Tseconds and numerical constants.

QUERY 7 Satellite radius and speed. Find the numerical value of the speed vsatellite 
(as a fraction of the speed of light) for a satellite in a 12-hour circular orbit. 
Find the numerical value of the radius rsatellite for this orbit—according to 
Newton and Euclid.

QUERY 8 Formula: Clock rate difference. Take the square root of both sides of equa-
tion [3]. Do not substitute numerical values yet. Rather, for both numerator 
and denominator in the resulting equation, use the approximation [5], as 
follows, In the numerator, set 

[11]

In the denominator, use the same expression for d but with “Earth” as the 
subscripts. Carry out an analysis similar to that in Query 2 to preserve only 
the important terms. Show that the result is

[12]

QUERY 9 Numerical clock rate difference. Substitute values for the various quantities 
in equation [12]. Result: To two significant figures, the satellite clock 
appears to run faster than the Earth clock by approximately 39 000 nanosec-
onds per day. Give your answer to three significant figures.
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convincing them not to apply twice the correction given in equation [12]: 
first to account for the difference in clock rates at the different altitudes 
and second to allow for the blue shift in frequency for the signal sent 
downward from satellite to Earth. There is only one correction; moreover 
there is no way to distinguish what is the “cause” of this correction. Hear 
what Clifford Will has to say on the subject, as he describes the difference 
in rates between one clock on a tower and a second clock on the ground:

A question that is often asked is, Do the intrinsic rates of the emitter and 
receiver or of the clock change, or is it the light signal that changes frequency 
during its flight? The answer is that it doesn’t matter. Both descriptions are 
physically equivalent. Put differently, there is no operational way to distin-
guish between the two descriptions. Suppose that we tried to check whether the 
emitter and the receiver agreed in their rates by bringing the emitter down from 
the tower and setting it beside the receiver. We would find that indeed they 
agree. Similarly, if we were to transport the receiver to the top of the tower and 
set it beside the emitter, we would find that they also agree. But to get a gravita-
tional red shift, we must separate the clocks in height; therefore, we must con-
nect them by a signal that traverses the distance between them. But this makes 
it impossible to determine unambiguously whether the shift is due to the clocks 
or to the signal. The observable phenomenon is unambiguous: the received sig-
nal is blue shifted. To ask for more is to ask questions without observational 
meaning. This is a key aspect of relativity, indeed of much of modern physics: 
we focus only on observable, operationally defined quantities, and avoid unan-
swerable questions.

5  Justifying the Approximations

We calculated the speed of a satellite in circular orbit and the speed of the 
clock on Earth’s surface using Euclidean geometry and Newtonian 
mechanics with its “universal time.” Now, the numerator in each expres-
sion for speed, namely rdφ, is the same for Euclidean geometry as for 
Schwarzschild geometry because of the way we defined r in Schwarz-
schild spacetime. However, the time dt in the denominator of the speed is 
not the same for Newton as for Schwarzschild. In particular, the deriva-
tion of equation [3] assumes that the speeds in that equation are to be 
calculated using changes in far-away time dt. Think of a spherical shell 
constructed at the radius of the satellite orbit and another “shell” that is 
the surface of Earth. Then our task boils down to estimating the difference 
between far-away time dt and shell time dtshell in each case, which can be 
done using our equation [C] in Selected Formulas at the end of this book.

[13]dtshell 1 2M
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Two Notes

Note 1: The approximate analysis in this project also assumed that the 
radius rsatellite of the circular orbit of the satellite is correctly computed 
using Newtonian mechanics. The Schwarzschild analysis of circular orbits 
is carried out in Chapter 4. When you have completed that chapter, you 
will be able to show that this approximate analysis is sufficiently accurate 
for our purposes.

Note 2: Our analysis assumed the speed vEarth of the Earth clock to be that 
of the speed of the equator. One might expect that this speed-dependent 
correction would take on different values at different latitudes north or 
south of the equator, going to zero at the poles where there is no motion of 
the Earth clock due to rotation of Earth. In practice there is no latitude 
effect because Earth is not spherical; it bulges a bit at the equator due to its 
rotation. The smaller radius at the poles increases the M/rEarth term in 
equation [12] by the same amount that the velocity term decreases. The 
outcome is that our calculation for the equator applies to all latitudes.

6  Summary

A junior traveler, making her first trip by train from the United States into 
Mexico, sees the town of Zacatecas outside her window and reassures her-
self by the marginal note in the guidebook that this ancient silver-mining 
town is 1848 kilometers from San Diego, California, and 1506 kilometers 
from New Orleans, Louisiana. On a surface, two distances thus suffice to 
fix location. But in space it is three. Find those three distances, to each of 
three nearest satellites of the Global Positioning System, by finding the 
time taken by light or radio pulse to come from each satellite to us. Simple 
enough! Or simple as soon as we correct, as we must and as we have, for 
the clock rates at each end of the signal path. (1) General relativity predicts 
that both the relative altitudes and the relative speeds of satellite and 
Earth clocks affect their relative rates. (2) The clock in the hand-held 
receiver on Earth is far less accurate than the atomic clock in each satellite, 

QUERY 10 Effect of using Schwarzschild far-away time instead of Newton’s “univer-
sal time.” Use equation [13] and the approximation equation [5] to set up 
an approximate relation between the two measures of velocity:

[14]

where q is a small number. Find an algebraic expression for q. Then find 
numerical values of q both for Earth’s surface and at the orbit radius of 
the satellite. Use these results to estimate the difference that changed 
velocity values will make in the numerical result of Query 9. Is this differ-
ence significant?

rdφ
dt

--------- rdφ
dtshell
-------------- 1 q–( )≈
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so the signal from a fourth satellite is employed to correct the Earth clock. 
With these corrections, we can use the Global Positioning System to locate 
ourselves anywhere on Earth with an uncertainty of only a few meters.
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