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C H A P T E R

14 Expanding Universe25

Edmund Bertschinger & Edwin F. Taylor *

Nothing expands the mind like the expanding universe.26

—Richard Dawkins27

14.1 DESCRIBING THE UNIVERSE AS A WHOLE28

Finding words that correctly describe the unbounded29

What is a one-sentence summary of our Universe? Try this:30

Our visible Universe consists of hundreds of billions of galaxies,One-sentence
description of
our Universe

31

each containing roughly one hundred billion stars, scattered more32

or less uniformly through a volume about 28 billion light years33

across.34

A one-sentence description of anything is bound to be inadequate as a35

predictor of observed details; this and the following chapter expand(!) and36

correct this one-sentence description.37

Figure 1 shows a small example of our visible Universe, which illustrates38

our assertion that galaxies are “scattered more or less uniformly.” If so, this39

radically simplifies our model of the Universe: We describe the part we can see,Assume a uniform
Universe and that
our location is
not unique.

40

and—in the absence of evidence to the contrary—assume the place we live is41

not unique but the same as any other location in the Universe. As a first—and42

it turns out, accurate—approximation, we look for metrics that describe43

curvature caused by a uniform distribution of mass. Make no assumption44

about how far this distribution extends. Instead, first, examine all possibilities45

consistent with general relativity; second, compute their predictions; third, let46

astronomical observations select the “correct” model or models.47

Restrict attention to metrics that are uniform in space? Why not also48

uniform in time—a Universe that remains unchanged as the eons roll? In the49

absence of evidence to the contrary this would be the simplest hypothesis.50

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity

Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.

14-1



May 12, 2017 09:07 ExpandCosmos170331v1 Sheet number 3 Page number 14-2 AW Physics Macros

14-2 Chapter 14 Expanding Universe

FIGURE 1 “Ultra deep field” image from the Hubble Space Telescope, named after
astronomer Edwin P. Hubble. Every dot and every smear in this image is a galaxy, with the
exception of a few nearby stars in our local galaxy. (Can you distinguish these exceptions?)

Indeed, in his 1917 cosmological model inspired by general relativity, Einstein51

looked for metrics that described a static Universe filled smoothly with mass.52

He found that no static metric was compatible with his newly-invented fieldCosmological constant
comes, goes . . . then
comes back again!

53

equations unless he introduced a new term into those equations, a term that54

he called the cosmological constant and denoted by the Greek capital letter55

lambda, Λ. Later, after acknowledging Hubble’s discovery that galaxies are56

flying away from one another, Einstein regretted the addition of Λ to his field57

equations. Astonishingly, today we know that there is something very similar,58

if not identical, to Λ at work in the Universe, as described in Chapter 15,59

Cosmology.60

We know far more about the Universe than Einstein did a century ago.61

We know that the Universe is not static, but evolving. We know thatBrief history of
the Universe

62

approximately 14 billion years ago all matter/energy was concentrated in a63

much smaller structure. We know that this concentration expanded and64

thinned, from a moment we call the Big Bang, with galaxies forming during65

the initial expansion.66
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Box 1. Is this the only Universe?
Are there multiple universes, parallel universes, or baby
universes? General relativity theorists write about all these
and more. In this book we investigate the simplest model
Universe consistent with observations—a single simply-
connected spacetime.

Cosmologists often distinguish between “the observable
universe” and all that there is or might be, citing plausible
arguments that spacetime could be very different trillions

of light years away. Here we restrict discussion to the
simplest generalization of the observable universe, one—
the—Universe that is everywhere similar to what we see in
our vicinity.

Wait. Isn’t science supposed to tell us what exists? Not at all!
Science struggles to create theories that we can verify—or
disprove—with observation and measurement.

How do we know these things? And how do we describe an evolving,How do we know? 67

expanding Universe? The present chapter assembles tools for this description,68

beginning with the metric of a spatially uniform, static Universe, then69

generalizes the metric to include general features of development with the70

t-coordinate. However, a detailed prediction of t-development requires a71

knowledge of the constituents of the Universe. Chapter 15, Cosmology72

provides this, then applies the tools assembled in the present chapter to73

analyze the past and predict alternative futures for our Universe.74

14.2 SPACE METRICS FOR A STATIC UNIVERSE75

Describing a uniform space76

A Universe filled uniformly with mass and energy has—on average—uniform77

space curvature everywhere. In this book we deal mainly with two spaceSpace metric for
uniform space
curvature

78

dimensions plus a global t-coordinate. In one popular global map coordinate79

system, the most general constant-curvature space metric has the following80

form on the r, φ plane:81

ds2 =
dr2

1−Kr2
+ r2dφ2 (1)

The value of the parameter K determines the shape of the space, which inFlat, closed, and
open spaces

82

turn determines the range of r:83

for K = 0, 0 ≤ r <∞ (Case I: flat space) (2)

for K > 0, 0 ≤ r ≤ 1

K1/2
(Case II: closed space) (3)

for K < 0, 0 ≤ r <∞ (Case III: open space) (4)

Preview: We easily visualize Case I, flat space—equation (2). Next weFlat plane, sphere,
and saddle

84

visualize Case II, closed space, as a sphere—equation (3) and Figure 2. Finally85

Case III, open space has the shape of a saddle—equation (4) and Figure 3.86
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To describe the expansion of the Universe, it is helpful to separate its scale87

or size, symbolized by a scale factor R, from its curvature described by a88

space metric that uses the unitless coordinate χ (“chi,” rhymes with “high”),89

the lower-case Greek letter that corresponds to the Roman x.90

Case I: flat space. For flat space, equation (2) tells us that K = 0 in (1).Traveling
in flat space

91

For this case the r-coordinate is simply the product of the scale factor R and92

the unitless coordinate χ:93

r = Rχ so that dr = Rdχ (flat space, 0 ≤ χ <∞) (5)

This leads to the metric for flat space:94

ds2 = R2
(
dχ2 + χ2dφ2

)
(flat space, K = 0 and 0 ≤ χ <∞) (6)

If you start walking “straight in the χ-direction” in a flat space, you do95

not return to your starting point.96

Case II: closed space. Limits on the r-coordinate in (3) for a closed97

space can be automatically satisfied with a coordinate transformation. LetVariable χ
automatically
satisfies limits.

98

r ≡ 1

K1/2
sinχ (K > 0 and 0 ≤ χ ≤ π) (7)

The sine function automatically limits the range of r to that given in (3). The99

coordinate r is a troublemaker; it has the same value in the two hemispheres100

of the sphere (Figure 2). But we use the coordinate χ, which does not have101

this problem; it is single-valued.102

The differential dr is103

dr =
1

K1/2
cosχdχ (K > 0 and 0 ≤ χ ≤ π) (8)

With these transformations the metric for the closed, constant-curvature space104

(1) and (3) becomes105

ds2 =
1

K

(
dχ2 + sin2 χdφ2

)
(closed space, K > 0 and 0 ≤ χ ≤ π) (9)

Equation (9) is equivalent to the space metric for the surface of Earth,106

equation (3), Section 2.3:107

ds2 = R2(dλ2 + cos2 λ dφ2) (space metric : Earth′s surface) (10)

Expressions in parentheses on the right sides of both (9) and (10) refer to the108

unit sphere. In Chapter 2 we used the latitude λ rather than the colatitude χ.109

The two are related by the following equation, illustrated in Figure 2:110

χ ≡ π

2
− λ (11)

Transformation (11) replaces the sine in (9) with the cosine in (10).111
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FIGURE 2 Relation between latitude λ and colatitude χ to determine the north-south
coordinate on the sphere with R = 1/K1/2 in Euclidean space. Latitude λ ranges over the
values −π/2 ≤ λ ≤ +π/2, whereas colatitude χ ranges over 0 ≤ χ ≤ π. Equation (11)
gives the relation between χ and λ, while (7) gives the relation between χ and r. This figure
also shows that r is a “bad” coordinate, since it is double-valued, failing to distinguish between
northern and southern latitude. In contrast, χ is single-valued from χ = 0 (north pole) to χ = π
(south pole).

Thus for K > 0 the shape of constant-curvature space is that of a112

spherical surface with a scale factor R whose square is equal to 1/K. TheDescribing
closed space

113

space represented by the surface of the sphere is homogeneous and isotropic:114

the same everywhere and in all directions. Same shape in this model means115

same physical experience in its predictions. In addition, if you start walking116

“straight in the χ-direction” in this closed space, you return eventually to your117

starting point.118

When we use R instead of K, equation (9) becomes119

ds2 = R2
(
dχ2 + sin2 χdφ2

)
(closed space, 0 ≤ χ ≤ π) (12)

where the expression in the parenthesis on the right side also embodies the120

shape of the unit sphere.121

Comment 1. Scale factor R?122

In Figure 2, R is the radius of a sphere in Euclidean space. In equation (12) R is123

a scale factor in curved spacetime. Euclid does not describe curved spacetime,124

so what does “scale factor” mean for the description of our Universe? We cannot125

answer this question until we know what the Universe contains, the subject of the126

following chapter. In the meantime we continue to play the dangerous analogy127

between points in flat space and events in curved spacetime begun in Chapter 2.128

Case III: open space. Values K < 0 in metric (1) lead to an open space,Describing
open space

129

as shown by the alternative transformation:130

r ≡ R sinhχ (open space, 0 ≤ χ <∞) (13)
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FIGURE 3 The saddle shape has intrinsic negative curvature. Only in the neighborhood of
a single (central) point, however, is the negative curvature the same in all directions. Elsewhere
on the surface the curvature is negative but varies from place to place and is different in
different directions. (It is mathematically impossible to embed in three spatial dimensions a
two-dimensional surface that has uniform negative curvature everywhere.)

where R2 = −1/K and sinh is the hyperbolic sine. The hyperbolic sine and131

cosine are defined by the equations132

sinhχ ≡ eχ − e−χ

2
and coshχ ≡ eχ + e−χ

2
(14)

Equation (13) shows r to be a monotonically increasing function of χ, so there133

is no worry about a single value of r representing more than one location. The134

differential dr is135

dr = R coshχdχ (open space, 0 ≤ χ <∞) (15)

and the corresponding space metric is136

ds2 = R2
(
dχ2 + sinh2 χdφ2

)
(open space, K < 0 and 0 ≤ χ <∞) (16)

The expression in the parentheses on the right side of this equation embodies137

an open space that has a uniform negative curvature. The saddle surface138

shown in Figure 3 has a single central point whose curvature is negative and139

the same in all directions. That is the only point on the surface with the same140

curvature in all directions. Unfortunately it is not possible to embed in three141

spatial dimensions a two-dimensional surface that has uniform negative142
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Box 2. What does the Universe expand into?
A common misconception is that the Universe expands in the
same way that a balloon expands or a firecracker explodes:
into a pre-existing three-dimensional space. That is wrong:
Spacetime comes into existence with the Big Bang and
develops with t.

If you stick with the image of the expanding balloon
for the closed Universe, the model correctly requires you
to assume that the surface of the balloon is all that
exists. Galaxies are scattered across its surface and human

observers are surface creatures who view nothing but what
lies on that surface. At the beginning of expansion, the surface
evolves from a point-event that is also the beginning of time—
the so-called Big Bang. During the subsequent expansion,
every surface creature sees other points on the balloon move
away from him, and points farther from him move away faster.
In this model, the balloon does not expand into space, it
represents all of space.

curvature everywhere. The best we can do is the saddle shape, with its single143

point of isotropic negative curvature.144

14.3 ROBERTSON-WALKER GLOBAL METRIC145

A Universe that expands146

We hear that the Universe “expands with time.” What does that mean? Space“Expands” means
R(constant)→ R(t)

147

metric (12) describes the surface of Earth, with R equal to Earth’s radius.148

Suppose we inflate the Earth like a balloon. Then R increases with t while its149

property of uniform space curvature remains. By analogy, to describe a150

Universe that expands while keeping the same shape, we replace the static151

scale factor R in equations (12), (16), and (6) with a scale factor R(t) that152

increases with t. In the 1930s, Howard Percy Robertson and Arthur Geoffrey153

Walker proved that the only spacetime metric that describes an evolving,154

spatially uniform Universe takes the form:155

dτ2 = dt2 −R2(t)
[
dχ2 + S2(χ)dφ2

]
(Robertson-Walker metric) (17)

156

To describe different shapes of the Universe, we modify the function S(χ) byRobertson-Walker
metric

157

generalizing equations (5), (7), and (13) respectively:158

S(χ) = χ (flat Universe, 0 ≤ χ <∞) (18)

S(χ) = sinχ (closed Universe, 0 ≤ χ ≤ π) (19)

S(χ) = sinhχ (open Universe, 0 ≤ χ <∞) (20)

Coordinates χ and φ are called comoving coordinates because a galaxyComoving
coordinates

159

with fixed χ and φ simply “rides along” as the scale function R(t) increases.160

For a closed Universe, R(t) might be interpreted loosely as the “radius of161

the Universe.” However, for flat or open Universes, R(t) has no such simple162

interpretation. We simply call R the scale function of the Universe.163
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Box 3. Is a static, uniform Universe possible?
The Robertson-Walker metric (17) is more general than
general relativity. Whether or not the Robertson-Walker metric
satisfies Einstein’s field equations depends on variation of
the scale function R(t) with the global t coordinate. At any
value of t, the function R(t) depends on what the Universe
is made of and how much of each constituent is present at
that t and was present at smaller t. Chapter 15, Cosmology,
examines the presence and density of the constituents of
the Universe at different global t-coordinates, then displays
the resulting functions R(t) that satisfy Einstein’s equations,
and finally traces the consequences for our current model of
the development of the Universe. In the present chapter we
simply assume that R(t) starts with value zero at the Big
Bang and thereafter increases monotonically.

In 1917 Einstein thought that the Universe was not only
uniform in space, but also unchanging in t. Such a spacetime
has the spacetime metric (17) withR a constant. Is this a valid
metric for the Universe?

Einstein showed that metric (17) with R = constant does
not satisfy his field equations for a Universe uniformly filled
with matter. However, by adding the cosmological constant
Λ to his field equations, he obtained a unique solution for a
closed Universe, the case described by (19). The effect of Λ

is to create a cosmic repulsion that keeps galaxies from being
drawn together by gravity. Chapter 15, Cosmology, shows
that something very much like Λ—now called dark energy—
repels galaxies, so at the present stage of the Universe
distant galaxies fly away from our own galaxy with increasing
speed.

YOU ARE AT THE “CENTER OF THE UNIVERSE.”164

For all three models of the Universe described by (18) through (20), the location165

χ = 0 appears to be a favored point, for example the north pole for the closed166

Universe or the center of the saddle for the open Universe or an origin anywhere167

in the flat Universe. Because the Universe is assumed to be completely uniform,168

however, we can choose any point as χ = 0 (and as the origin of φ). That169

arbitrary point then becomes the north pole or the center of the saddle or the170

origin in flat space. The mathematical model permits every observer to assume171

that s/he is at the center of the Universe. (Talk about ego!)172

The squared t-differential dt2 in (17) has the coefficient one; inGlobal t on
wristwatch of
comoving observer

173

Robertson-Walker map coordinates, t has no warpage. Indeed, for174

dχ = dφ = 0, passage of coordinate t tracks the passage of wristwatch time τ .175

The interpretation is simple: coordinate t is that recorded on comoving clocks,176

those that ride along “at rest” with respect to the space coordinates of the177

expanding Universe.178

We should also give a range for coordinate t in order to complete theSpace and
time exist
only for t > 0.

179

definition of the spacetime region described by equations (17) through (20).180

However we cannot specify a range of t until we know details of the scale181

function R(t). For Big Bang models of the Universe—expansion from an initial182

singularity—the scale function starts with R(t) = 0 at t = 0. In this book we183

examine Big Bang models, for which spacetime exists only for t > 0.184

14.4 REDSHIFT185

Light we receive from far away increases in wavelength in an expanding Universe.186

We are free to choose the center of the Universe at our location, that is atChoose the center
of the Universe
to be at my location,
and t0 to be now.

187

χ = 0 and to assume that we stay at the center permanently. Then every188
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current observation that we make is an event that takes place at χ = 0 and189

now, which we will call t = t0.190

Observation NOW on Earth has map coordinates t ≡ t0, χ ≡ 0 (21)

Suppose that a distant star is fixed in comoving coordinates χ and φ, so it191

rides along as the scale function R(t) increases. Let the star emit a light flash192

at (temit, χemit), which we observe on Earth at (t0, 0).193

For light, dτ = 0 and for radial motion dφ = 0 in metric (17). Write the194

resulting metric with t and space terms on opposite sides of the equation, take195

the square root of both sides, and integrate each one:196 ∫ t0

temit

dt

R(t)
=

∫ χemit

0

dχ = χemit (light, dφ = 0) (22)

Think of a second light flash emitted from the same star at eventEmit and detect
two light flashes.

197

(temit + ∆temit, χemit) and observed by us at (t0 + ∆t0, 0). The two flashes can198

represent two sequential positive peaks in a continuous wave. We assume that199

the emitter is located at constant χ, so the second flash travels the same200

χ-coordinate difference as the first. Hence the right-hand integral has the same201

value for both flashes. Therefore202 ∫ t0+∆t0

temit+∆temit

dt

R(t)
= χemit (light) (23)

Compare the t-limits of the integrals on the left sides of (22) and (23). The203

integration in (23) starts later by ∆temit and ends later by ∆t0. In204

consequence, when we subtract the two sides of equation (22) from the205

corresponding sides of equation (23), the result is:206 ∫ t0+∆t0

t0

dt

R(t)
−
∫ temit+∆temit

temit

dt

R(t)
= 0 (light) (24)

Approximate this equation to first order in ∆temit and ∆t0, leading to207

∆t0
R(t0)

≈ ∆temit

R(temit)
(light) (25)

Let the two flashes represent two sequential peaks in a continuous wave.208

Then the lapse in t between flashes in meters that each observer measures209

equals the wavelength in meters.210

∆t0
∆temit

=
λ0

λemit
=

R(t0)

R(temit)
(light) (26)

In this equation an equality sign replaces the approximately equal sign in (25)211

because one wavelength of light λ is truly infinitesimal compared with theRedshift z 212

scale function R(t) of the Universe. It is customary to measure the fractional213
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FIGURE 4 A remarkable plot of the redshifts z of the spectra from more than 46 thousand
quasars taken by the Sloan Digital Sky Survey (SDSS). The spectrum of each quasar lies along
a single horizontal line at a vertical position corresponding to its redshift z. Some prominent
spectral lines from different atoms are labeled: Lyα is the Lyman alpha line of hydrogen. Roman
numeral I following an element is the neutral atom; Roman numeral II is the singly ionized atom,
and so forth. Thus MgII is singly ionized magnesium and CIV is triply ionized carbon. The
observed wavelength λ0 increases with increasing z. (The redshift scale is nonlinear so the
bands are not straight lines.)

change in wavelength using a dimensionless parameter z, called the redshift,214

defined by the equation215

λ0 ≡ (1 + z)λemit (light) (27)

where we call 1 + z the stretch factor. Then equation (26) can be writtenStretch factor:
1 + z

216

1 + z ≡ λ0

λemit
=

R(t0)

R(temit)
(stretch factor) (28)
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In other words, when we train our telescopes on a source with redshift z, we217

observe light emitted at the t-coordinate when the Universe scale function218

R(t) was a factor 1/(1 + z) the size it is today.219

The change in wavelength described by equation (28) is called theCosmological
redshift

220

cosmological redshift. The observation t0 is greater than the emission temit,221

and for an expanding universe R(t0) > R(temit). Therefore the observed light222

has a longer wavelength than the emitted light; the color of light visible to our223

eyes shifts toward the red end of the spectrum, hence the term “redshift.” The224

same fractional increase in wavelength occurs for electromagnetic radiation of225

any frequency, so the term redshift applies to microwaves, infrared, ultraviolet,226

x-rays, and gamma rays.227

Equation (27) appears not to describe a Doppler shift in the special228

relativity sense. Both emitter and observer are at rest in their comoving229

coordinate χ; nevertheless, they observe the light to have different230

wavelengths. In a sense the expansion of the Universe “stretches out” theRedshift a
Doppler shift?

231

wavelength of the light as it propagates. In another sense, however, the232

cosmological redshift is a cumulative redshift, because a star at fixed χ is at an233

R(t)χ that grows with t. In other words, it moves away from us. Section 14.7234

shows that for z � 1, the cosmological redshift is a Doppler shift.235

When we see light of a given frequency that has been emitted from a236

distant galaxy, how do we know that it has been redshifted? With what do we237

compare it? From laboratory experiments on Earth, we know the discreteRedshift deduced
from laboratory
spectra

238

spectrum of radiation frequencies emitted by a particular atom or molecule.239

Then the identical ratios of frequencies of light received from a distant star tell240

us what element or molecule we are observing in that star. And from the value241

of the shift at any one frequency we can deduce the redshift for all frequencies.242

Figure 4 shows redshifted spectral lines (bright: emission lines; dark:243

absorption lines) of light from many different atoms in distant quasars.244

Because it is easy to measure a galaxy’s redshift z, astronomers use z as a245

proxy for temit in equation (26)—Figure 5. Whenever you read a news articleAstronomers
use z for temit.

246

about a galaxy formed during the first billion years of the Universe, remember247

that astronomers do not measure t; they measure redshift. The distant248

galaxies in the news have z > 6: in the process of traveling to us, the249

wavelength of their light has been stretched by a factor more than 7! Light in250

our visual spectrum has been redshifted to the infrared. This is why the James251

Webb Space Telescope—the successor to the Hubble Space Telescope—looks252

in the infrared region of the spectrum for light from the most distant galaxies,253

those that appeared earliest in the evolution of the Universe.254

14.5 HOW DO GALAXIES MOVE?255

Apply the Principle of Maximal Aging to the motion of a galaxy.256

We have a disability in viewing the distant Universe: we are limited toTransverse galaxy
motion is difficult
to detect.

257

effectively a single point, the Earth and its solar system. The redshift of light258

from distant galaxies gives us a handle on their radial recession. However,259
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z= 8
z=6

z=2

z=0

Big Bang

t= 2 Gyr

t= 0

t= 14 Gyr

t

t= 1 Gyr* quasar emits
flash, t=0.7 Gyr

we detect
flash now

redshift z

FIGURE 5 Schematic diagram comparing redshift z with cosmic t, in units of Gigayears
(109 years). Calibration of the scale at the right of the figure depends on the t-development of
the Universe, through R(t), based on our current model. Astronomers use redshift as a proxy
for t, both because it is directly measurable and also because it does not change as we revise
our scale of cosmic t. The flash emission and detection is the case analyzed in Box 4.

transverse motion of a remote source is too small to detect directly in a human260

lifetime. (See the exercises.) In this and following sections, however, we limitLimit attention
to radial motion.

261

attention to sources that move radially away from us.262

How do galaxies move in the global coordinate system of metric (17)? As263

usual, the metric tells us about the structure of spacetime but does not264

determine the motion of a stone—or a galaxy. For that we need the PrincipleGalaxy motion
from Principle of
Maximal Aging

265

of Maximal Aging, which requires that total wristwatch time be a maximum266

along the worldline of a free galaxy that crosses adjoining flat patches.267

For radial motion, the metric (17) becomes:268

dτ2 = dt2 −R2(t)dχ2 (dφ = 0) (31)

This metric is valid for any function S(χ) in (17), whether for a flat, closed, or269

open model Universe. By just looking at this metric, can we anticipate270

constants of motion? One metric coefficient depends explicitly on t through271

the function R(t). All our earlier derivations of map energy as a constant ofSeek a conserved
quantity.

272

motion required that no metric coefficient be an explicit function of t.273

Therefore metric (17) tells us that energy will not be conserved in the motion274

of galaxies. However, for radial motion (dφ = 0) the metric coefficients do not275
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Box 4. How far away (now) is the most distant galaxy that we see (now)?
We see now the most distant galaxies as they were when
they emitted the light: at, say, temit = 0.7 billion years after
the Big Bang (Figure 5). The current age of the Universe is
t0 ≈ 14 billion years, so t0 − temit ≈ 13.3 billion years.
Naively, then, we might expect that these galaxies lie about 13
billion light years from us. However, this is false; they must lie
much further away at the present day. Why? Because these
galaxies have moved farther away from us during the 13.3
billion years that it took for their light to reach us. How much
farther? What is the “true” map distance now between us and
a galaxy formed at temit = 0.7 billion years ago? In this case
the word “true” has meaning only through the metric.

Use the Robertson-Walker metric (17) with dτ = 0 to obtain
the map distance between the emitting galaxy (at χ = χemit)
and Earth (at χ = 0) at any particular t. This map distance
is given simply by R(t)χemit, since the emitter continually
“rides along” at the constant comoving coordinate χemit. The
present separation d0 ≡ σ0 is then just R(t0)χemit with
χemit given by (22).

d0 = R(t0)χemit = R(t0)

∫ t0

temit

dt

R(t)
(29)

We cannot complete this calculation until we know how the
scale function R(t) increases with t. That is the task of
Chapter 15. For a rough estimate of the present map distance
d0, assume that the scale function increases uniformly with t:
R(t)/R(t0) = t/t0. Then the integral in (29) can be carried
out using temit = 0.7 billion years and the present t0 = 14
billion years:

d0 = t0

∫ t0

temit

dt

t
= t0 ln

t0

temit
(30)

= t0 ln
14

0.7
= 14 × 3.0 = 42

in billions of light-years. We call d0 the look-back distance.
According to this rough model, look-back distances of
galaxies that emitted light 13 billion years ago are something
like d0 = 42 billion light years. This is their calculated map
distance away from us now. We can refine this estimate by
using a more accurate scale function R(t); the present look-
back distance to these remote galaxies is almost certainly
larger than 42 billion light years.

depend explicitly on χ, so there will be a conserved quantity related to motion276

in χ, a kind of radial momentum.277

The galaxy crosses two adjoining patches (Figure 6). Label A and B the278

segments of its path across the respective patches. Consider three events: Two279

at the opposite edges of the patches and one where they join. To find280

momentum as a constant of motion, we fix the t of all three events and fix the281

locations of the two events at the outer ends of the two segments. Then we282

vary the χ-coordinate of the connecting event (and the boundary between283

patches) in order to maximize total wristwatch time.284

Over one patch, R(t) is treated as being constant, so each patch is flat.285

Define286

RA ≡ R(t̄A) and RB ≡ R(t̄B) (32)

where t̄A and t̄B are the average t-values when the galaxy crosses patch A and287

B, respectively. Define t for the galaxy to cross each patch as:288

tA ≡ tmiddle − tstart (33)

tB ≡ tend − tmiddle

Let χA be the change in coordinate χ across segment A and χB be the289

corresponding change across segment B. Then RAχA is the radial separation290
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FIGURE 6 Greatly magnified picture of alternative worldlines across incremental
segments A and B used in the derivation of the constant of motion (38). We vary the position
χA of the middle event between segments A and B and demand that the total wristwatch time
across both segments be maximum. The origin of this diagram is NOT necessarily at the zero
of either t or radial position.

across segment A and RB(χtot − χA) the radial separation across segment B,291

with χA variable. Then the metric (31) across the two patches becomes:292

τA =
[
t2A −R2

A χ
2
A

]1/2
(34)

and293

τB =
[
t2B −R2

B (χtot − χA)2
]1/2

(35)

Fix tstart, tmiddle, and tend at the edges of the two segments. This fixes the294

values of tA, tB, RA, and RB through equations (32) through (35).295

Now vary χA to maximize the total wristwatch time τtot = τA + τB across296

both segments:297

dτtot

dχA
=
dτA
dχA

+
dτB
dχA

(36)

= −R
2
A χA

τA
+
R2

B (χtot − χA)

τB

= −R
2
A χA

τA
+
R2

B χB

τB
= 0
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FIGURE 7 One possible radial motion for a galaxy is to remain at rest in the comoving
coordinate χ and φ and ride outward, following R(t), as the Universe expands. This figure
shows the result for a flat Universe. All separations increase by the same ratio, so every
observer can analyze galaxy motion with himself at the center and galaxies expanding away
from him.

or298

R2
B χB

τB
=
R2

A χA

τA
(37)

Now the usual argument: The left side of (37) refers to parameters of segment299

B alone, the right side to parameters of segment A alone. We have found a300

quantity that has the same value for each segment—that is, a constant of301

motion. Restore differentials and define a constant of motion Qr.Constant Qr

for radial
motion only

302

Qr ≡ mR2 dχ

dτ
= R

(
mRdχ

dτ

)
≡ Rpr is a constant of motion (38)

where (38) provides a definition of local radial momentum pr because Rdχ is a303

measured distance, from (17). Here m is the mass of a stone—or of a galaxy!Constant of
motion for galaxy
or light

304

Let the motion be radial only, so pr = p. Then (38) is still valid as m→ 0 for a305

photon, with p = E. In other words R(t)E is constant for light, which means306

that as R(t) increases, the energy E of photons decreases—another example of307

cosmological redshift.308

We can distinguish two possible radial motions of a galaxy that leave Qr309

constant. In the first, χ remains constant as t increases, so dχ/dτ = 0 and310

Qr = pr = 0. Each such “comoving” galaxy rides outward with R(t); twoTwo possible
radial motions

311

galaxies at different values of χ move apart as R(t) increases with t. For flat312

space (S = χ) one can think of a set of concentric rings of galaxies fixed in the313
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comoving coordinate χ. As t increases, the radius of each ring increases with314

R(t). Figure 7 shows that radial separations R(t)χ and tangential separations315

R(t)χφ both increase proportionally to R(t). This is true for every observer.316

There is no unique center; every observer can plot the expansion of the317

Universe in global coordinates with himself at the center.318

In the second possible radial motion that leaves Qr constant, a galaxy319

moves radially with respect to comoving coordinate χ. (Most galaxies have at320

least a slightly non-zero Qr because of local gravity from spatial321

inhomogeneities.) Or one can think of a stone thrown radially out of a322

comoving galaxy. For such motion one can rewrite (38) as:323

pr =
Qr

R(t)
(39)

Qr remains constant and R(t) increases, so pr decreases. This is called the324

“cosmological redshift of momentum.” The high speed limit on (39) applies to325

a photon:326

E = p ∝ 1

R(t)
(light) (40)

We can derive another constant of motion, one that is valid for any freeConstant Qφ for
any motion

327

motion in Robertson-Walker global coordinates. Apply the Principle of328

Maximal Aging to two patches separated in φ-coordinate instead of329

χ-coordinate. The result is330

Qφ ≡ mR2S2 dφ

dτ
= RS

(
mRSdφ

dτ

)
≡ RSpφ (41)

(constant for any free motion)

Equation (41) provides a definition of local tangential momentum pφ because331

RSdφ is a measured distance, from metric (17).332

14.6 MEASURING DISTANCE333

Extending a ruler from one lonely outpost.334

So much for the theory of how galaxies move in the expanding Universe. What335

predictions does theory make about observations? On Earth we describe336

motion by plotting distance vs. time. Life in the Universe is more complicated.Problems with
our observations

337

There are two problems: We cannot directly measure distances to objects338

outside our galaxy, and we cannot directly measure times longer than a few339

centuries. What hope can we have, therefore, to measure billions of years and340

billions of light years in the Universe?341

First we give up trying to measure time. Instead we measure distance and342

velocity, both through indirect means. Section 14.7 discusses velocity343

measurements through redshift of spectral lines; here we focus on distance.344
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Box 5. Edwin P. Hubble

FIGURE 8 Edwin P. Hubble on the cover of Time
Magazine, 1948.

Edwin P. Hubble was as important to astronomy as
Copernicus. He expanded our view of the Universe from a
single home galaxy to many galaxies that are rushing away
from one another.

Hubble was born in 1889. In his youth he was an
outstanding athlete and one of the first Rhodes Scholars
at Oxford University, England. After returning to the United
States he taught Spanish, physics, and mathematics in high
school. He served in World War I, after which he earned a
Ph.D. at the Yerkes Observatory of the University of Chicago.

In 1919 Hubble took up a position at Mount Wilson
Observatory where he used the new 100-inch Hooker
reflecting telescope, with which he discovered and analyzed
redshifts of light from what were called “nebulae.” At that time
the prevailing view was that the Universe consisted entirely of
our galaxy. Hubble showed that nebulae are not objects within
our galaxy but galaxies themselves, in motion away from our
galaxy. The nearby galaxies he studied recede from us at
speeds proportional to their map separation from us (Figure
11).

Before his death in 1953, Hubble made observations
with the 200-inch telescope installed on Mount Palomar,
California in 1948.

Comment 2. “Distance” and “time”? Look out!345

Review Section 2.7, titled Goodbye “Distance.” Goodbye “Time”, which first346

asserted that we cannot apply the concepts of distance and time to our347

observations of the Universe. The present chapter deeply embodies that348

assertion.349

We cannot use laser ranging or classical surveying methods to measure350

distances outside our galaxy. The most widely used method employs what is351

called a standard candle, a light source whose intrinsic brightness is known.Determine “distance”
with a “standard
candle.”

352

From that intrinsic brightness (more precisely, luminosity) and the apparent353

brightness (more precisely, flux density) of the object viewed on Earth, we can354

determine a distance. However, the expanding Universe complicates the355

analysis, as detailed in Box 4.356

When Hubble did his observations, the major standard candle was oneCepheid variables:
standard candles

357

form of the so-called Cepheid variable stars. These are stars whose emitted358

power varies periodically. Their rate of pulsation depends on their emitted359

power: the longer the pulsation period, the greater the emitted power of the360

star.361

Hubble found Cepheid variable stars in nearby galaxies (but he could not362

detect them in distant galaxies). To find their approximate distances he363

classified different galaxies, found the intrinsic brightness of galaxies of a given364

type that were near enough to allow detection of Cepheid variables they365

contained, then assumed the same intrinsic brightness for more distant (but366

still nearby) galaxies of the same type.367
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Hubble’s observations in 1923-1924 showed that most spiral nebulae (forHubble’s “island
universes” =
our galaxies.

368

him, fuzzy patches of light in the sky) are much farther away than the limits of369

our galaxy; they are indeed separate “island universes,” or what we now call370

“galaxies.” He also classified “elliptical,” “lenticular,” and “irregular” galaxies,371

so-called because of their appearance. All lie outside our own Milky Way372

galaxy. (Interesting fact: Both “galaxy” and “lactose” come from the Greek373

and Latin words for milk.) In summary: The Universe extends far beyond our374

galaxy.375

Cepheid variable stars are too faint to be seen at distances more than a376

hundred million light years. For more distant sources, the standard candle of377

choice is a Type Ia supernova. A Type Ia supernova results when a small,378

dense white dwarf star gradually accretes mass from a binary companion star,Modern standard
candle: Type Ia
supernova

379

finally reaching a mass at which the white dwarf becomes unstable, collapses,380

and explodes into a supernova. The “slow fuse” on the gradual accretion381

process can lead to an explosion of almost the same size on each such occasion,382

giving us a “standard candle” of the same intrinsic brightness. The brightness383

of the explosion as seen from Earth provides a measure of the distance to the384

supernova. The cosmological redshift of light tells us how fast the supernova is385

receding (Section 14.4). Because supernovae (plural of supernova) are so386

bright, they can be seen at a very great distance, which brings us information387

about the Universe most of the way back to the Big Bang.388

Astronomers plot a quantity called distance modulus m−M (also called389

the effective magnitude) where m is the apparent magnitude and M is theFor astronomers,
M and m are
magnitudes.

390

absolute magnitude (also called the intrinsic magnitude). This difference is391

related to luminosity distance dL (Box 6) by the equation392

m−M = 5 log10

(
dL

10 pc

)
(m and M are magnitudes) (42)

where pc stands for parsec, a unit of distance equal to 3.26 light years. Why393

this peculiar formula? Blame the ancient Greeks, who first quantified the394

brightness of stars. The key is the realization that M is known (or knowable)395

for Type Ia supernovae, so measurements of apparent magnitude m, the396

distance modulus, allow us to solve equation (42) for dL.397

A graph of effective magnitude vs. redshift is called a Hubble Diagram.398

Figure 9 shows the Hubble Diagram for Type Ia supernovae. The thin spreadHubble Diagram 399

of the curve in the vertical direction confirms that Type Ia supernovae are400

good standard candles—they all have the same M (when small corrections are401

applied to raw measurements) so that apparent magnitude m can be used to402

measure distance.403

What are the implications of this analysis? First the obvious: Redshift404

increases with distance. The next section gives an interpretation of this as a405

result of cosmological expansion. The more subtle and surprising result is thatExpansion
speeding up

406

this expansion is speeding up with t. Chapter 15, Cosmology, elaborates on407

this second point.408
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FIGURE 9 Effective magnitude of Type Ia supernovae as a function of their redshift z.
The vertical axis is µ = m − M , the difference between apparent magnitude and intrinsic
magnitude.

In the future, a second way to measure distances may prove useful in409

cosmology. From metric (17), objects of known transverse size D at radial410

coordinate distance χ extend across an angle411

θ ≈ D

S(χ)R(temit)
(|θ| � 1) (43)

In flat spacetime the distance would be d = D/θ if θ � 1. In the412

expanding Universe, cosmologists define the angular diameter distance as:413

dA ≡
D

θ
= S(χ)R(temit) =

S(χ)R(t0)

1 + z
(44)

where we used equation (28). Objects of known transverse size D are called414

standard rulers. Comparing (44) with (52), you can show thatStandard rulers 415

dA = dL/(1 + z)2. Thus, measurements of standard candles and standard416

rulers for an object of known z yield the same information. The difficulty lies417

in determining the intrinsic size and luminosities of objects billions of light418

years away.419
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FIGURE 10 Doppler effect observed in a single inertial frame of special relativity, used by
Hubble to analyze the speed of receding nearby galaxies.

14.7 LAWS OF RECESSION420

Recession rate proportional to “distance”—at least for nearby galaxies.421

When Edwin P. Hubble arrived at the Mount Wilson Observatory in422

California USA in 1919 and began to use the new 100-inch telescope, many423

astronomers believed that the entire Universe consisted of stars in the Milky424

Way, what we now call “our galaxy.” A disturbing feature of this model of the425

Universe was the behavior of some of the objects they called nebulae. We426

now know that some nebulae are within our galaxy but most are separate427

galaxies distant from our own. As early as 1912 Vesto Melvin Slipher had428

shown that light from many nebulae had significant redshifts, implying that429

they were moving away from us at high speed. But were these nebulae dim430

objects in our own galaxy or bright objects outside our galaxy? To answer this431

question, Hubble needed, first, a relation between redshift and recession432

velocity. Second, he needed a measure of the distance of these nebulae from us.433

We examine these tasks in turn.434

Velocity vs. Redshift435

Slipher and Hubble used the Doppler shift of light to find a relation between436

redshift z and velocity of recession v. They were astronomers, not generalHubble used
special relativity
Doppler shift.

437

relativists. (General relativity theory did not exist when Slipher began his438

work.) For them the nebulae were speeding away from us in static flat space,439

and the redshift was a Doppler effect that could be analyzed using special440

relativity. We will show that this simple analysis gives correct results for441

nearby nebulae receding from us at relative speeds much less than that of light.442

Figure 10 introduces the Doppler shift for special relativity. Earlier than443

the t shown in this figure an object emitted one flash, then moved v∆t fartherHubble uses
special relativity
Doppler shift

444

away from the observer, and is emitting the second flash at the instant shown.445

During that t-lapse the initial flash moved ∆t closer to the observer. Let the446

lapse in t between the two flashes represent one period of a continuous wave.447

Then the wavelength λobs detected by the observer has the value shown in the448
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figure. According to Newton, in the rest frame of the source the emitted449

wavelength would be λsource = ∆t. However, we must apply a relativistic450

correction to Newton’s result, because of time stretching.451

The t-lapse between flash emissions in the rest frame of the source is452

different from ∆t in the frame of the observer. We say that “the emitting clock453

runs slow,” according to the equation454

(1− v2)1/2∆t = ∆tsource = λsource (special relativity) (45)

The ratio of observed wavelength to the wavelength in the frame of the source455

is456

λobs

λsource
=

(1 + v)∆t

(1− v2)1/2∆t
=

(
1 + v

1− v

)1/2

= 1 + z (special relativity) (46)

where we have inserted the definition of redshift z from (28). Nearby galaxies457

are not moving away from us very fast; for them we may make the458

approximation:459

1 + z = (1 + v)1/2(1− v)−1/2 ≈
(

1 +
v

2

)2

≈ 1 + v (v � 1) (47)

so for slow-moving galaxies the redshift z is equal to the velocity of recession v.460

v = z (v � 1) (48)

This Doppler interpretation of the cosmological redshift is valid for z � 1,Doppler OK
for small z

461

because spacetime over such a “small distance” is well approximated by a462

single flat patch, on which general relativity reduces to special relativity.463

Measuring Distance with a “Standard Candle”464

Equation (48) gives the velocity of recession. Hubble also needed to know how465

far away the emitting star is, σnow. To determine distance we use what is466

called a standard candle, that is, a star whose intrinsic brightness is known.467

From that intrinsic brightness and the apparent brightness of this star at468

Earth, one can then determine its distance. However, the expanding Universe469

complicates this analysis, as detailed in Box 6.470

Hubble’s Law of Recession471

From the redshift of different galaxies, Hubble now knew from (48) their472

recession velocities. From the intrinsic brightness of Cephied variable stars andHubble’s law
of recession

473

a galaxy of a given type, he could calculate its distance. He found a direct474

proportion between the average recession velocity of a star and its distance475

(Figure 11). He called this result the Redshift-Distance Law. We call it476

Hubble’s Law, one of the major results of cosmology in the twentieth477

century:478
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Box 6. Finding the distance (which distance?) to a standard candle
Consider a star that emits electromagnetic power L (energy
per unit time), called luminosity, as viewed in its rest frame.
We assume that this emission is isotropic, the same in all
directions. Place this star at the center of coordinates, χ = 0.
Place an observer at a comoving coordinate χ away from the
star. In special relativity the power per unit area, also called
flux density F , reaching an observer at this distant location
is:

F =
L

4πd2
(flat spacetime) (49)

where d is the distance between star and observer. Now,
astronomers cannot measure d directly, so they define a
luminosity distance dL by the equation

dL =

(
L

4πF

)1/2

(50)

and report the value of dL for a given star. The luminosity
distance dL is the distance from an emitter of power L at
which it would produce a flux density F in flat spacetime.

In an expanding Universe, F is modified in several ways.
First, the metric contains no distance d, but rather a map
coodinate χ and an angular factor S(χ). Second, the energy
reaching the observer is reduced by a factor (1 + z) due to
the cosmological redshift. Third, the lapse in t that this light
takes to arrive at the observer is stretched out by another
factor (1 + z). The result is

F =
L

4π(1 + z)2R2(t0)S2(χ)
(51)

We can measure F and z. Suppose we also know the
intrinsic power L of the emitter and, for a specific model of
the Universe, the cosmic scale function R(t0). We can then
obtain a measure of the distance from the emitter using (50):

S(χ) =
dL

(1 + z)R(t0)
(52)

The quantities dL and S(χ) are measures of distance to our
standard candle of luminosityL. You should convince yourself
that (50) and (52) taken together imply (51).

v = H0dL (nearby galaxy) (53)

Here H0 is called the Hubble constant and refers to its value at the presentHubble constant H0 479

age of the Universe. The current value of the Hubble constant in units used by480

astronomers is481

H0 = 73± 2
kilometer/second

Megaparsec
(54)

where one Megaparsec equals 3.26 million light years. Expressed in geometric482

units, this has the value:483

H0 = (8.0± 0.2)× 10−27 meter−1 (55)

Robertson-Walker Law of Recession484

What happens when we do not make the assumption that emitting galaxiesRecession at
great distance
and great speed

485

are nearby? We use the Robertson-Walker metric to answer this question.486

Write the spacelike form of (17) for fixed φ-coordinate.487

dσ2 = R2(t)dχ2 − dt2 = ds2 − dt2 (dφ = 0) (56)

At fixed t1 this equation can be integrated to give the distance d:488

d1 = R(t1)χ (dt = 0) (57)
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FIGURE 11 A plot of recession velocity as a function of distance by Hubble and Milton
Humason (1931). Open circles represent averages of groups of galaxies; solid dots near the
origin show individual galaxies from an earlier paper by Hubble. A parsec equals 3.26 light-
years, so the most distant group of galaxies is approximately 100 million light-years distant—
“nearby” by modern standards. The Hubble constant derived from the slope of the line in this
figure is different from the current value, equation (54); see the exercises.

Assume that a distant galaxy is at rest in comoving coordinates χ (and φ), so489

that χ remains constant. Then at a later t2, the galaxy is at distance490

d2 = R(t2)χ (dt = 0) (58)

The recession speed at t is expressed using elementary calculus:491

vr = lim
t2→ t1

d2 − d1

t2 − t1
= lim
t2→ t1

R(t2)−R(t1)

t2 − t1
χ (59)

≡ Ṙχ =

(
Ṙ

R

)
Rχ ≡ H(t)d

where the Hubble parameter H(t) is defined asHubble parameter 492
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H(t) ≡ Ṙ(t)

R(t)
(Hubble parameter) (60)

We can expect the Hubble parameter to have different values at different493

t-values during the evolution of the Universe. Its current value is given the494

symbol H0 ≡ H(t0).495

As noted in Section 14.6, astronomers cannot measure d directly. Instead496

they measure dL or dA. When either of these is plotted against redshift z, the497

resulting relation is linear only for z � 1. At high redshift the behavior498

depends on the detailed form of the scale function R(t).499

We have milked about as much information out of the Robertson-Walker500

metric as we can without knowing the t-development of the scale functionWe need radial
function R(t).

501

R(t), which derives from the constituents of the Universe as it expands. The502

following Chapter 15, Cosmology, develops this scale function from a503

combination of observed redshifts (28) using standard candles at different504

distances and further solutions of Einstein’s equations. The result provides our505

current picture of the history of the Universe and gives us insight into its506

possible futures.507

14.8 EXERCISES508

1. Tangential Momentum509

Carry out the full derivation of the tangential momentum Qφ in equation (41),510

including equations similar to (32) through (38) and a figure similar to Figure511

7.512

2. Energy not a Constant of Motion513

Show that a derivation of the energy as a constant of motion is not possible.514

Begin by varying only the t-value of the central event in Figure 7. What515

derails this derivation, making it impossible to complete?516

3. Transverse Motion517

A galaxy is five billion light-years distant. The most sensitive microwave array518

can detect a displacement angle as small as 50 microarcseconds transverse to519

the radial direction of sight. (One second of arc is 1/3600 of a degree.) With520

what transverse speed, as a fraction (or multiple) of the speed of light, must521

the distant source move in order that its transverse motion be detected in a522

100-year human lifetime? Assume the Universe is flat.523

5. Hubble’s Error524

Compare the value of the slope in Figure 11 with the modern value of525

Hubble’s constant given in equations (54) and (55). By what factor was526

Hubble’s result different from the current value of the Hubble constant?527
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6. ‘Distance’ and ‘velocity’ in Hubble’s Law528

Section 14.7 states that Hubble found a direct proportion between the average529

recession velocity of a star and its distance, which violates our rule to avoid530

words like distance when we describe observations in curved spacetime.531

A. Review Section 14.7 and explain why the word distance does not have a532

unique meaning in this case.533

B. Explain why the word velocity does not have a unique meaning.534

C. Does the relative velocity of two distant objects have a unique meaning535

in curved spacetime? in flat spacetime?536

D. Rewrite the Section 14.7 statement of Item A to avoid difficulties of537

words like velocity and distance.538
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