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• Am I comfortable as I fall toward a black hole?13

• How fast am I going when I reach the event horizon? Who measures my14

speed?15

• How long do I live, measured on my wristwatch, as I fall into a black16

hole?17

• How much does the mass of a black hole increase when a stone falls into18

it? when I fall into it?19

• How close to a black hole can I stand on a spherical shell and still20

tolerate the “acceleration of gravity”?21
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C H A P T E R

6 Diving22

Edmund Bertschinger & Edwin F. Taylor *

Many historians of science believe that special relativity could have23

been developed without Einstein; similar ideas were in the air at the24

time. In contrast, it’s difficult to see how general relativity could25

have been created without Einstein – certainly not at that time, and26

maybe never.27

—David Kaiser28

6.1 GO STRAIGHT: THE PRINCIPLE OF MAXIMAL AGING IN GLOBAL29

COORDINATES30

“Go straight!” spacetime shouts at the stone.31

The stone’s wristwatch verifies that its path is straight.32

Section 5.7 described how an observer passes through a sequence of local33

inertial frames, making each measurement in only one of these local frames.34

Special relativity describes motion in each local inertial frame. The observer is35

just a stone that acts with purpose. Now we ask how a (purposeless!) free36

stone moves in global coordinates.37

Section 1.6 introduced the Principle of Maximal Aging that describes38

motion in a single inertial frame. To describe global motion, we need to extend39

this principle to a sequence of adjacent local inertial frames. Here, without40

proof, is the simplest possible extension, to a single adjacent pair of local41

inertial frames.42

DEFINITION 1. Principle of Maximal Aging (curved spacetime)43

The Principle of Maximal Aging states that a free stone follows a44

worldline through spacetime such that its wristwatch time (aging) is aDefinition: Principle
of Maximal Aging
in curved spacetime

45

maximum when summed across every adjoining pair of local inertial46

frames along its worldline.47

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
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Box 1. What Then Is Time?
What then is time? If no one asks me, I know what it is. If I
wish to explain it to him who asks me, I do not know.

**********
The world was made, not in time, but simultaneously with
time. There was no time before the world.

—St. Augustine (354–430 C.E.)

Time takes all and gives all.

—Giordano Bruno (1548–1600 C.E.)

Everything fears Time, but Time fears the Pyramids.

—Anonymous

Philosophy is perfectly right in saying that life must be
understood backward. But then one forgets the other
clause—that it must be lived forward.

—Søren Kierkegaard

As if you could kill time without injuring eternity.

**********
Time is but the stream I go a-fishing in.

—Henry David Thoreau

Although time, space, place, and motion are very familiar to
everyone, . . . it is useful to distinguish these quantities into
absolute and relative, true and apparent, mathematical and
common.

—Isaac Newton

Time is defined so that motion looks simple.

—Misner, Thorne, and Wheeler

Nothing puzzles me more than time and space; and yet
nothing troubles me less, as I never think about them.

—Charles Lamb

Either this man is dead or my watch has stopped.

—Groucho Marx

“What time is it, Casey?”

“You mean right now?”

—Casey Stengel

It’s good to reach 100, because very few people die after 100.

—George Burns

The past is not dead. In fact, it’s not even past.

—William Faulkner

Time is Nature’s way to keep everything from happening all at
once.

—Graffito, men’s room, Pecan St. Cafe, Austin, Texas

What time does this place get to New York?

—Barbara Stanwyck, during trans-Atlantic
crossing on the steamship Queen Mary

Objection 1. Now you have gone off the deep end! In Chapter 1,48

Speeding, you convinced me that the Principle of Maximal Aging was49

nothing more than a restatement of Newton’s First Law of Motion, the50

observation that in flat spacetime the free stone moves at constant speed51

along a straight line in space. But in curved spacetime the stone’s path will52

obviously be curved. You have violated your own Principle.53

On the contrary, we have changed the Principle of Maximal Aging as little54

as possible in order to apply it to curved spacetime. We require the free55

stone to move along a straight worldline across each one of the pair of56

adjoining local inertial frames, as demanded by the special relativity57

Principle of Maximal Aging in each frame. We allow the stone only the58

choice of one map coordinate of the event at the boundary between these59
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two frames. That single generalization extends the Principle of Maximal60

Aging from flat to curved spacetime. And the result is a single kink in the61

worldline. When we shrink all adjoining inertial frames along the worldline62

to the calculus limit, then the result is what you predict: a curved worldline63

in global coordinates.64

Now we can use the more general Principle of Maximal Aging to discover65

a constant of motion for a free stone, what we call its map energy.66

6.2 MAP ENERGY FROM THE PRINCIPLE OF MAXIMAL AGING67

The global metric plus the Principle of Maximal Aging leads to map energy as68

a constant of motion.69

This section uses the Principle of Maximal Aging from Section 6.1, plus the70

Schwarzschild global metric to derive the expression for map energy of a free71

stone near a nonspinning black hole. For a free stone, map energy is a constantMap energy: a
constant of motion

72

of motion; its value remains the same as the stone moves. Our derivation uses73

a stone that falls along the inward r-direction, but at the end we show that74

the resulting expression for map energy also applies to a stone moving in any75

direction; energy is a scalar, which has no direction.76

Objection 2. Here is a fundamental objection to the Principle of Maximal77

Aging: You nowhere derive it, yet you expect us readers to accept this78

arbitrary Principle. Why should we believe you?79

Guilty as charged! Our major tool in this book is the metric, which—along80

with the topology of a spacetime region—tells us everything we can know81

about the shape of spacetime in that region. But the shape of spacetime82

revealed by the metric tells us nothing whatsoever about how a free stone83

moves in this spacetime. For that we need a second tool, the Principle of84

Maximal Aging which, like the metric, derives from Einstein’s field85

equations. In this book the metric plus the Principle of Maximal86

Aging—both down one step from the field equations—are justified by their87

immense predictive power. Until we derive the metric in Chapter 22, we88

must be satisfied with the slogan, “Handsome is as handsome does!”89

The Principle of Maximal Aging maximizes the stone’s total wristwatch90

time across two adjoining local inertial frames. Figure 1 shows the Above91

Frame A (of average map coordinate r̄A) and adjoining Below Frame B (of92

average map coordinate r̄B). The stone emits initial flash 1 as it enters the topFind maximal aging:
find natural motion.

93

of Frame A, emits middle flash 2 as it transits from Above Frame A to Below94

Frame B, and emits final flash 3 as it exits the bottom of Below Frame B. We95

use the three flash emission events to find maximal aging.96

Outline of the method: Fix the r- and φ-coordinates of all three flash97

emissions and fix the t-coordinates of upper and lower events 1 and 3. Next98

vary the t-coordinate of the middle flash emission 2 to maximize the total99

wristwatch time (aging) of the stone across both frames.100
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Frame A

Frame B

1

Path of 
diving stone

(t2,r2)

(t1,r1)

(t3,r3)

2

3

rA

rB

Vary t2 of Event 2 
to find maximum wristwatch 
time τtot between Event 1 
and Event 3.

FIGURE 1 Use the Principle of Maximal Aging to derive the expression for
Schwarzschild map energy. The diving stone first crosses the Above Frame A, then
crosses the Below Frame B, emitting flashes at events 1, 2, and 3. Fix all three
coordinates of events 1 and 3; but fix only the r- and φ-coordinates of intermediate
event 2. Then vary the t-coordinate of event 2 to maximize the total wristwatch time
(aging) across both frames between fixed end-events 1 and 3. This leads to expression
(8) for the stone’s map energy, a constant of motion.

So much for t-coordinates. How do we find wristwatch times across the two101

frames? The Schwarzschild metric ties the increment of wristwatch time to102

changes in r- and t-coordinates for a stone that falls inward along the103

r-coordinate. Write down the approximate form of the global metric twice,104

first for Above frame A (at average r̄A) and second for the Below frame B (atApproximate the
Schwarzschild metric
for each frame.

105

average r̄B). Take the square root of both sides:106

τA ≈
[(

1− 2M

r̄A

)
(t2 − t1)2 + (terms without t-coordinate)

]1/2

(1)

τB ≈
[(

1− 2M

r̄B

)
(t3 − t2)2 + (terms without t-coordinate)

]1/2

(2)

We are interested only in those parts of the metric that contain the map107

t-coordinate, because we take derivatives with respect to that t-coordinate. To108

prepare for the derivative that leads to maximal aging, take the derivative of109

τA with respect to t2 of the intermediate event 2. The denominator of the110

resulting derivative is just τA:111

dτA
dt2
≈
(

1− 2M

r̄A

)
(t2 − t1)

τA
(3)

The corresponding expression for dτB/dt2 is:112
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dτB
dt2
≈ −

(
1− 2M

r̄B

)
(t3 − t2)

τB
(4)

Add the two wristwatch times to obtain the summed wristwatch time τtot113

between first and last events 1 and 3:114

τtot = τA + τB (5)

Recall that we keep constant the total t-coordinate separation across bothMaximize aging
summed across
both frames.

115

frames. To find the maximum total wristwatch time, take the derivative of116

both sides of (5) with respect to t2, substitute from (3) and (4), and set the117

result equal to zero in order to find the maximum:118

dτtot

dt2
=
dτA
dt2

+
dτB
dt2
≈
(

1− 2M

r̄A

)
(t2 − t1)

τA
−
(

1− 2M

r̄B

)
(t3 − t2)

τB
≈ 0 (6)

From the last approximate equality in (6),119 (
1− 2M

r̄A

)
(t2 − t1)

τA
≈
(

1− 2M

r̄B

)
(t3 − t2)

τB
(7)

The expression on the left side of (7) depends only on parameters of the120

stone’s motion across the Above Frame A; the expression on the right side121

depends only on parameters of the stone’s motion across the Below Frame B.122

Hence the value of either side of this equation must be independent of which123

adjoining pair of frames we choose to look at: this pair can be anywhere along124

the worldline of the stone. Equation (7) displays a quantity that has the same125

value on every local inertial frame along the worldline. We have found the126

expression for a quantity that is a constant of motion.127

Now shrink differences (t2 − t1) and (t3 − t2) in (7) to their differential128

limits. In this process the average r-coordinate becomes exact, so r̄ → r. NextMap energy
of a stone in
Schwarzschild
coordinates

129

use the result to define the stone’s map energy per unit mass:130

E

m
≡
(

1− 2M

r

)
dt

dτ
(map energy of a stone per unit mass) (8)

131

132

Why do we call the expression on the right side of (8) energy (per unit mass)?133

Because when the mass M of the center of attraction becomes very small—orFar from the black
hole, map energy
takes special
relativity form.

134

when the stone is very far from the center of attraction—the limit 2M/r → 0135

describes a stone in flat spacetime. That condition reduces (8) to136

E/m = dt/dτ , which we recognize as equation (28) in Section 1.7 for E/m in137

flat spacetime. Hence we take the right side of (8) to be the general-relativistic138

generalization, near a nonspinning black hole, of the special relativity139

expression for E/m.140
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Note that the right side of (8) has no units; therefore both E and m onMap energy E
same unit as m

141

the left side must be expressed in the same unit, a unit that we may choose for142

our convenience. Both numerator and denominator in E/m may be expressed143

in kilograms or joules or electron-volts or the mass of the proton, or any other144

common unit.145

Our derivation of map energy employs only the t-coordinate in the metric.146

It makes no difference in the outcome for map energy—expression147

(8)—whether dr or dφ is zero or not. This has an immediate consequence: TheMap energy
expression valid
for any motion
of the stone.

148

expression for map energy in Schwarzschild global coordinates is valid for a149

free stone moving on any trajectory around a spherically symmetric center of150

attraction, not just along the inward r-direction. We will use this generality of151

(8) to predict the general motion of a stone in later chapters.152

6.3 UNICORN MAP ENERGY VS. MEASURED SHELL ENERGY153

Map energy is like a unicorn: a mythical beast154

The expression on the right side of equation (8) is like a unicorn: a mythicalMap energy E/m
is a unicorn:
a mythical beast.

155

beast. Nobody measures directly the r- or t-coordinates in this expression,156

which are Schwarzschild global map coordinates: entries in the mapmaker’s157

spreadsheet or accounting form. Nobody measures E/m on the left side of (8)158

either; the map energy is also a unicorn. If this is so, why do we bother to159

derive expression (8) in the first place? Because E/m has an important virtue:160

It is a constant of motion of a free stone in Schwarzschild global coordinates; it161

has the same value at every event along the global worldline of the stone. The162

value of E/m helps us to predict its global motion (Chapters 8 and 9). But it163

does not tell us what value of energy an observer in a local inertial frame will164

measure for the stone.165

Remember, we make all measurements with respect to a local inertial166

frame, for example the frame perched on a shell around a black hole (Section167

5.7). What is the stone’s energy measured by the shell observer? The shell168

observer is in an inertial frame, so the special relativity expression is valid,169

using shell time. Recall the expression for ∆tshell, equation (9) in Section 5.7:170

∆tshell =

(
1− 2M

r̄

)1/2

∆t (9)

Then:171

Eshell

m
= lim

∆τ→0

∆tshell

∆τ
= lim

∆τ→0

(
1− 2M

r̄

)1/2
∆t

∆τ
(10)

As we shrink increments to the differential calculus limit, the average172

r-coordinate becomes exact: r̄ → r. The result is:173

Eshell

m
=

(
1− 2M

r

)1/2
dt

dτ
(shell energy of a stone per unit mass) (11)
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Into this equation substitute expression (8) for the stone’s map energy to174

obtain:175

Eshell

m
=

1

(1− v2
shell)

1/2
=

(
1− 2M

r

)−1/2
E

m
(12)

176

177

where we have added the special relativity expression (28) in Section 1.7.Shell energy 178

Equation (12) tells us how to use the map energy—a unicorn—to predict the179

frame energy directly measured by the shell observer as the stone streaks past.180

Expression (12) for shell energy Eshell applies to a stone moving in any181

direction, not just along the r-coordinate. Why? Energy—including map182

energy E—is a scalar, a property of the stone independent of its direction of183

motion.184

The shell observer knows only his local shell frame coordinates, which are185

restricted in order to yield a local inertial frame. He observes a stone zipDifferent shell
observers compute
same map energy.

186

through his local frame and disappear from that frame; he has no global view187

of the stone’s path. However, equation (12) is valid for a stone in every local188

shell frame and for every direction of motion of the stone in that frame. The189

shell observer uses this equation and his local r—stamped on every shell—to190

compute the map energy E/m, then radios his result to every one of his fellow191

shell observers. For example, “The green-colored free stone has map energy192

E/m = 3.7.” A different shell observer, at different map r, measures a different193

value of shell energy Eshell/m of the green stone as it streaks through his own194

local frame, typically in a different direction. However, armed with (12), every195

shell observer verifies the constant value of map energy of the green stone, for196

example E/m = 3.7.197

In brief, each local shell observer carries out a real measurement of shell198

energy; from this result plus his knowledge of his r-coordinate he derives the199

value of the map energy E/m, then uses this map energy—a constant of200

motion—to predict results of shell energy measurements made by shell201

observers distant from him. The result is a multi-shell account of the entire202

trajectory of the stone.203

The entire scheme of shell observers depends on the existence of local shell204

frames, which cannot be built inside the event horizon. Now we turn to the205

experience of the diver who passes inward across the event horizon.206

6.4 RAINDROP CROSSES THE EVENT HORIZON207

Convert t-coordinate to raindrop wristwatch time.208

The Schwarzschild metric satisfies Einstein’s field equations everywhere in the209

vicinity of a nonrotating black hole (except on its singularity at r = 0). Map210

coordinates alone may satisfy Schwarzschild and Einstein, but they do notHow to get inside
the event horizon?

211

satisfy us. We want to make measurements in local inertial frames. Shell212

frames serve this purpose nicely outside the event horizon, but we cannot213
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construct stationary shells inside the event horizon. Moreover, the expression214

(1− 2M/r)−1/2 in energy equation (12) becomes imaginary inside the horizon,215

which provides one more indication that shell energy cannot apply there.216

Yet everyone tells us that an unfortunate astronaut who crosses inward217

through the event horizon at r = 2M inevitably arrives at the lethal central218

singularity at r = 0. In the following chapter we build a local frame around a219

falling astronaut. To prepare for such a local diving frame, we start here as220

simply as possible: We ask the stone wearing a wristwatch that began ourRaindrop defined:
stone dropped
from rest at infinity

221

study of relativity (Section 1.1) to take a daring dive, to drop from rest far222

from the black hole and plunge inward to r = 0. We call this diving,223

wristwatch-wearing stone a raindrop, because on Earth a raindrop also falls224

from rest at a great height. By definition, the raindrop has no significant225

spatial extent; it has no frame, it is just a stone wearing a wristwatch.226

DEFINITION 2. Raindrop227

A raindrop is a stone, wearing a wristwatch, that freely falls inward228

starting from initial rest far from the center of attraction.229

Examine the map energy (8) of a raindrop. Far from the black holeMap energy of
a raindrop

230

r � 2M so that (1− 2M/r)→ 1. For a stone at rest there, dr = dφ = 0 and231

the Schwarzschild metric tells us that dτ → dt. As a result, (8) becomes:232

E

m
≡
(

1− 2M

r

)
dt

dτ
= 1 (raindrop: released from rest at r � 2M) (13)

The raindrop, released from rest far from the black hole, must fall inward233

along a radial line. In other words, dφ = 0 along the raindrop worldline.234

Formally we write:235

dφ

dτ
= 0 (raindrop) (14)

The raindrop-stone, released from rest at a large r map coordinate, begins236

to move inward, gradually picks up speed, finally plunges toward the center.237

As the raindrop hurtles inward, the value of E/m (= 1) remains constant.238

Equation (12) then tells us that as r decreases, 2M/r increases, and so Eshell239

must also increase, implying an increase in vshell. The local shell observer240

measures this increased speed directly. Equation (12) with E/m = 1 for theShell energy of
the raindrop

241

raindrop yields:242

Eshell

m
=
(
1− v2

shell

)−1/2
=

(
1− 2M

r

)−1/2

(raindrop) (18)

It follows immediately that:243

vshell = −
(

2M

r

)1/2

(raindrop shell velocity) (19)
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Box 2. Slow speed + weak field =⇒ Mass + Newtonian KE and PE
”If you fall, I’ll be there.” —Floor

The map energy E/m may be a unicorn in general relativity,
but it is a genuine race horse in Newtonian mechanics. We
show here that the map energy E/m of a stone moving at
non-relativistic speed in a weak gravitational field reduces
to the mass of the stone plus the familiar Newtonian energy
(kinetic + potential).
Rearrange (12) to read:

E

m
=

(
1−

2M

r

)1/2 (
1− v2shell

)−1/2
(15)

For r � 2M (weak gravitational field) and v2shell � 1 (non
relativistic stone speed) use the approximation inside the front
cover twice:(

1−
2M

r

)1/2

≈ 1−
M

r
(r � 2M) (16)

(
1− v2shell

)−1/2 ≈ 1 +
1

2
v2shell (v2shell � 1)

Substitute these into (15) and drop the much smaller product
(M/2r)v2shell. The result is

E ≈m+
1

2
mv2shell −

Mm

r
(17)(

r � 2M, v2shell � 1
)

In this equation, −Mm/r is the gravitational potential
energy of the stone. In conventional mks units it would be
−GMkgmkg/r. We recognize in (17) Newtonian’s kinetic
energy (KE) plus his potential energy (PE) of a stone, added
to the stone’s mass m.

As a jockey in curved spacetime, you must beware of riding
the unicorn map energy E/m; gravitational potential energy
is a fuzzy concept in general relativity. Dividing energy into
separate kinetic and potential forms works only under special
conditions, such as those given in equation (16).

Except for these special conditions, we expect the map
constant of motion E to differ from Eshell: The local shell
frame is inertial and excludes effects of curved spacetime.
In contrast, map energy E—necessarily expressed in
map coordinates—includes curvature effects, which Newton
attributes to a “force of gravity.”

The approximation in (17) is quite profound. It reproduces
a central result of Newtonian mechanics without using the
concept of force. In general relativity, we can always eliminate
gravitational force (see inside the back cover).

where the negative value of the square root describes the stone’s inward244

motion. Equation (19) shows that the shell-measured speed of the245

raindrop—the magnitude of its velocity—increases to the speed of light at the246

event horizon. This is a limiting case, because we cannot construct a247

shell—even in principle—at the exact location of the event horizon.248

Objection 3. I am really bothered by the idea of a material particle such as249

a stone traveling across the event horizon as a particle. The shell observer250

sees it moving at the speed of light, but it takes light to travel at light speed.251

Does the stone—the raindrop—become a flash of light at the event252

horizon?253

No. Be careful about limiting cases. No shell can be built at the event254

horizon, because the initial gravitational acceleration increases without255

limit there (Appendix, Section 6.7). An observer on a shell just above the256

event horizon clocks the diving stone to move with a speed slightly less257

than the speed of light. Any directly-measured stone speed less than the258

speed of light is perfectly legal in relativity. So there is no contradiction.259
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Sample Problems 1. The Neutron Star Takes an Aspirin
Neutron Star Gamma has a total mass 1.4 times that of our
Sun and a map r0 = 10 kilometers. An aspirin tablet of
mass one-half gram falls from rest at a large r coordinate
onto the surface of the neutron star. An advanced civilization
converts the entire kinetic energy of the aspirin tablet into
useful energy. Estimate how long this energy will power a 100-
watt bulb. Repeat the analysis and find the useful energy for
the case of an aspirin tablet falling from a large r coordinate
onto the surface of Earth.

SOLUTION
From the value of the mass of our Sun (inside the front cover),
the mass of the neutron star is M ≈ 2× 103 meters. Hence
2M/r0 ≈ 2/5. Far from the neutron star the total map
energy of the aspirin tablet equals its rest energy, namely its
mass, hence E/m = 1. From (18), the shell energy of the
aspirin tablet just before it hits the surface of the neutron star
rises to the value

Eshell

m
=

(
1−

2M

r0

)−1/2

≈ 1.3 (Neutron Star)

(20)

The shell kinetic energy of the half-gram aspirin tablet is 0.3 of
its rest energy. The rest energy is m = 0.5 gram = 5 ×10−4

kilogram or mc2 = 4.5 × 1013 joules. The fraction 0.3 of
this is 1.35 × 1013 joules. One watt is one joule/second;
a 100-watt bulb consumes 100 joules per second. At that
rate, the bulb can burn for 1.35 × 1011 seconds on the
kinetic energy of the aspirin tablet. One year is about 3×107

seconds. Result: The kinetic energy of the half-gram aspirin
tablet falling to the surface of Neutron Star Gamma from a
large r coordinate provides energy sufficient to light a 100-
watt bulb for approximately 4500 years!

What happens when the aspirin tablet falls from a large r
coordinate onto Earth’s surface? Set the values of M and r0
to those for Earth (inside front cover). In this case 2M � rE,
so equation (20) becomes, to a very good approximation:

Eshell

m
≈

(
1 +

M

r0

)
≈ 1 + 6.97× 10−10 (Earth)

(21)
Use the same aspirin tablet rest energy as before. The lower
fraction of kinetic energy yields 3.14 × 104 joules. At 100
joules per second the kinetic energy of the aspirin tablet will
light the 100-watt bulb for 314 seconds, or 5.2 minutes.

We want to compare the shell velocity (19) of the raindrop with the value260

of dr/dt at a given r-coordinate. To derive dr/dt, solve the right-handRaindrop dr/dt 261

equation in (13) for dτ and substitute the result into the Schwarzschild metric262

with dφ = 0. The result for a raindrop:263

dr

dt
= −

(
1− 2M

r

)(
2M

r

)1/2

(raindrop map velocity) (22)

Equation (22) shows an apparently outrageous result: as the raindrop264

reaches the event horizon at r = 2M , its Schwarzschild dr/dt drops to zero.265

(This result explains the strange spacing of event-dots along the trajectoryRaindrop dr/dt:
a unicorn!

266

approaching the event horizon in Figure 3.5.) Does any local observer witness267

the stone coasting to rest? No! Repeated use of the word “map” reminds us268

that map velocities are simply spreadsheet entries for the Schwarzschild269

mapmaker and need not correspond to direct measurements by any local270

observer. Figure 2 shows plots of both shell speed and |dr/dτ | of the271

descending raindrop. Nothing demonstrates more clearly than the diverging272

lines in Figure 2 the radical difference between (unicorn) map entries and the273

results of direct measurement.274

Does the raindrop cross the event horizon or not? To answer that question275

we need to track the descent with its directly-measured wristwatch time, not276

the global t-coordinate. Use equation (13) to convert global coordinate277
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vshell

dr
dt

and

dr
dt

vshell

Event

Raindrop

FIGURE 2 Computer plot of the speed |vshell| of a raindrop directly measured by shell

observers at different r-values, from (19), and its Schwarzschild map speed |dr/dt| from (22).

Far from the black hole the raindrop is at rest, so both speeds are zero, but both speeds
increase as the raindrop descends. Map speed |dr/dt| is not measured but computed from

spreadsheet records of the Schwarzschild mapmaker. At the event horizon, the measured shell

speed rises to the speed of light, while the computed map speed drops to zero. The upper
open circle at r = 2M reminds us that this is a limiting case, since no shell can be constructed

at the horizon. (Why not? See the Appendix, Section 6.7.)

differential dt to wristwatch differential dτ . With this substitution, (22)278

becomes:279

dr

dτraindrop
= −

(
2M

r

)1/2

(23)

Expression (23) combines a map quantity dr with the differential advance of280

the wristwatch dτraindrop. It shows that the raindrop’s r-coordinate decreases281

as its wristwatch time advances, so the raindrop passes inward through theRaindrop crosses
the event horizon.

282

event horizon. True, inside the event horizon this “speed” takes on a283

magnitude greater than one, and increases without limit as r → 0. But this284

need not worry us: Both r and dr are map quantities, so dr/dτ is just an entry285

on the mapmaker’s spreadsheet, not a directly-measured observable.286
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Box 3. Newton Predicts the Black Hole?
It’s amazing how well much of Newton’s mechanics works—
sort of—on the stage of general relativity. One example is
that Newton appears to predict the r-coordinate of the event
horizon r = 2M . Yet the meaning of that barrier is strikingly
different in the two pictures of gravity, as the following analysis
shows.

A stone initially at rest far from a center of attraction drops
inward. Or a stone on the surface of Earth or of a neutron
star is fired outward along r, coming to rest at a large r

coordinate. In either case, Newtonian mechanics assigns the
same total energy (kinetic plus potential) to the stone. We
choose the gravitational potential energy to be zero at the
large r coordinate, and the stone out there does not move.
From (17), we then obtain

E

m
− 1 =

v2

2
−
M

r
= 0 (Newton) (24)

From (24) we derive the diving (or rising) speed at any r-
coordinate:

|v| =
(

2M

r

)1/2

(Newton) (25)

which is the same as equation (19) for the shell speed of the
raindrop. One can predict from (25) the r-value at which the
speed reaches one, the speed of light, which yields r = 2M ,
the black hole event horizon. For Newton the speed of light is
the escape velocity from the event horizon.

Newton assumes a single universal inertial reference frame
and universal time, whereas (19) is true only for shell
separation divided by shell time. A quite different expression
(22) describes dr/dt—map differential dr divided by map
differential dt—for raindrops.

Does Newton correctly describe black holes? No. Newton
predicts that a stone launched radially outward from the event
horizon with a speed less than that of light will rise to higher
r, slow, stop without escaping, then fall back. In striking
contrast, Einstein predicts that nothing, not even light, can be
successfully launched outward from inside the event horizon,
and that light launched outward exactly at the event horizon
hovers there, balanced as on a knife-edge (Box 4).

Comment 1. How do we find the value of dr inside the horizon?287

There is a problem with equation (23), which is the calculus limit of the ratio288

∆r/∆τ . The denominator ∆τ has a clear meaning: it is the lapse of time289

between ticks read directly on the raindrop’s wristwatch. But what about the290

numerator ∆r when the raindrop is inside the horizon? Outside the horizon the291

contractor stamps the value of the map r-coordinate on every shell he292

constructs. The raindrop rider reads this r-stamp as she flashes past every shell;293

she takes the difference in map ∆r between adjacent shells as her wristwatch294

advances by ∆τ .295

But we cannot build a stationary shell inside the horizon. How can a rider on the296

descending raindrop—or anyone else—determine the value of ∆r in order to297

compute the calculus limit dr/dτ in equation (23)? In Chapter 7 we build around298

the zero-size raindrop a local inertial “rain frame” which we ride through the299

event horizon and onward to the center of the black hole. Box 7.3 in Section 7.3300

describes one practical method by which a descending “rain observer” in this301

local rain frame measures the map r inside the horizon. This empowers her to302

determine the value of ∆r during the time lapse ∆τ between ticks of her303

wristwatch—even inside the horizon—so at any r-coordinate she can compute304

the expression ∆r/∆τ , whose calculus limit is the left side of (23).305

6.5 GRAVITATIONAL MASS306

A new way to measure total energy307
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FIGURE 3 Measure the total mass-energy Mtotal of a central star-satellite system
using the acceleration of a test particle at a large r coordinate, analyzed using
Newtonian mechanics.

This book uses the word mass in two different ways. In equations (8) and (11)308

for map energy and shell energy respectively, m is the inertial mass of a testMass of a stone 309

particle, which we call a stone. This mass is too small to curve spacetime by a310

detectable amount. We measure the stone’s mass m in the same units as its311

energy in expression (12).312

The mass M of the center of attraction is quite different: It is the313

gravitational mass that curves spacetime, as reflected in the expression314

(1− 2M/r) in the Schwarzschild metric. But are the two definitions of massAdd stone’s mass
to star mass?

315

really so different? What happens when a stone falls into a black hole? Will316

some or all of the stone’s mass m be converted to gravitational mass?317

Our new understanding of energy helps us to calculate how much the mass318

of a black hole grows when it swallows matter—and yields a surprising result.319

To begin, start with a satellite orbiting close to a star. How can we measure320

the total gravitational mass of the star-plus-satellite system? We make this321

measurement using the initial acceleration of a distant test particle so remote322

that Newtonian mechanics gives a correct result (Figure 3). In units of inverse323

meters, Newton’s expression for this acceleration is:324

a = −Mtotal

r2
(Newton) (26)

What is Mtotal? In Newtonian mechanics total mass equals the mass Mstar ofNewton says,
“Yes.”

325

the original star plus the mass m of the satellite orbiting close to it:326

Mtotal = Mstar +m (Newton) (27)

Could this also be true in general relativity? The answer is no, but proof327

requires a sophisticated analysis of Einstein’s equations.328

A mathematical theorem of general relativity due to G. D. Birkhoff inBirkhoff’s theorem 329

1923 states that the spacetime outside any spherically symmetric distribution330

of matter and energy is completely described by the Schwarzschild metric with331

a constant gravitational mass Mtotal, no matter whether that spherically332

symmetric source is at rest or, for example, moving inward or outward along333

the r-coordinate.334
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FIGURE 4 Replace the moving satellite of Figure 3 with an inward-falling uniform
spherical bubble of dust that satisfies the condition of Birkhoff’s theorem, so the
Schwarzschild metric applies outside the contracting dust bubble.

In order to apply Birkhoff’s theorem, we approximate the moving satellite335

of Figure 3 by the inward-falling uniform spherical bubble of Figure 4, a336

bubble composed of unconnected particles—dust—whose total mass m is the337

same as that of the satellite in Figure 3. (We use the label “bubble” instead of338

“shell” to avoid confusion with the stationary concentric shells we construct339

around a black hole on which we make measurements and observations.) This340

falling uniform dust bubble satisfies the condition of Birkhoff’s theorem, so the341

Schwarzschild metric applies outside this inward-falling bubble.342

Unfortunately, Birkhoff’s theorem does not tell us how to calculate the343

value of Mtotal, only that it is a constant for any spherically symmetric344

configuration of mass/energy. What property of the dust bubble remains345

constant as it falls inward? Its inertial mass m? Not according to special346

relativity! Inertial mass is not conserved; it can be converted into energy. We347

had better look for a conserved energy for our infalling dust bubble. Equation348

(12) is our guide: At a given r-coordinate every particle of dust in the349

collapsing bubble falls inward at the same rate, so the measure of the total350

shell energy Eshell of the bubble at a given r-coordinate is the sum over the351

individual particles of the dust bubble. Clearly from (12), successive shell352

observers at successively smaller r-coordinates measure successively higher353

values of Eshell as the collapsing dust bubble falls past them, so we cannot use354

shell energy in the Birkhoff analysis.355

However, the Schwarzschild map energy E does remain constant during356

this collapse. So instead of the Newtonian expression (27) we have the trialEinstein says:
“Add E to Mstar

to get Mtotal

measured from
far away.”

357

general relativity replacement:358
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Mtotal = Mstar + E (Einstein) (28)

359

How do we know whether or not the total map energy E of the dust360

bubble is the correct constant to add to Mstar in order to yield the total mass361

Mtotal of the system? One check is that when the satellite/dust bubble is far362

from the star (r � 2Mtotal) but the remote test particle is still exterior to the363

dust bubble, then E → Eshell from (12). In addition, for a slow-moving364

satellite/dust bubble, E → Eshell → m, and we recover Newton’s formula (27),365

as we should in the limits r � 2M and v2
shell � 1. And when the satellite/dust366

bubble falls inward so that our stationary shell observer measures Eshell > m,367

then equation (28) remains valid, because E(≈ m) does not change. Note that368

Birkhoff’s Theorem is satisfied in this approximation.369

If (28) is correct, then general relativity merely replaces Newton’s m in370

(27) with total map energy E, a constant of motion for the satellite/bubble.371

Thus the mass of a star or black hole grows by the value of the map energy E372

of a stone or collapsing bubble that falls into it. The map energy of the stone373

is converted into gravitational mass. Earlier we called map energy E “a374

unicorn, a mythical beast.” Now we must admit that this unicorn can add its375

mass-equivalence to the mass of a star into which it falls.376

Objection 4. You checked equation (28) only in the Newtonian limit, where377

the remote dust bubble is at rest or falls inward with small kinetic energy. Is378

(28) valid for all values of E? Suppose that the dust bubble in Figure 4 is379

launched inward (or outward) at relativistic speed. In this case does total E380

still simply add to Mstar to give total mass Mtotal for the still more distant381

observer?382

Yes it does, but we have not displayed the proof, which requires solution of383

Einstein’s equations. Let a massive star collapse, then explode into a384

supernova. If this process is spherically symmetric, then a distant observer385

will detect no change in gravitational attraction in spite of the radical386

conversions among different forms of energy in the explosion. Actually, the387

distant observer has no way of knowing about these transformations388

before the outward-blasting bubble of radiation and neutrinos passes her.389

When that happens she will detect a decline in the gravitational390

acceleration of the local test particle because some of the original energy391

of the central attractor has been carried to an r-value greater than hers.392

Is the Birkhoff restriction to spherical symmetry important? It can be: AGravity waves
carry off energy.

393

satellite orbiting around or falling into a star or black hole will emit394

gravitational waves that carry away some energy, decreasing Mtotal. Chapter395

16 notes that a spherically symmetric distribution cannot emit gravitational396

waves, no matter how that spherical distribution pulses in or out. As a result,397

equation (28) is okay to use only when the emitted gravitational wave energy398
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is very much less than Mtotal. When that condition is met, the cases shown in399

Figures 3 and 4 are observationally indistinguishable.400

As long as gravitational wave emission is negligible and we are sufficientlyMeasuring E
from far away.

401

far away, we can, in principle, use (28) to measure the map energy E of402

anything circulating about, diving into, launching itself away from, or403

otherwise interacting with a center of attraction. Simply use Newtonian404

mechanics to carry out the measurement depicted in Figure 3, first with the405

satellite absent, second with the satellite in orbit near the star. Subtract the406

second value from the first for the acceleration (26) and use (28) to determine407

the value of E = Mtotal −Mstar. As in Box 2, this example shows that E—and408

not Eshell—includes effects of curved spacetime.409

6.6 OVER THE EDGE: ENTERING THE BLACK HOLE410

No jerk. No jolt. A hidden doom.411

Except for the singularity at r = 0, no feature of the black hole excites more412

curiosity than the event horizon at r = 2M. It is the point of no return beyond413

which no traveler can find the way back—or even send a signal—to the outside414

world. What is it like to fall into a black hole? No one from Earth has yet415

experienced it. Moreover, we predict that future explorers who do so will notPredict what
no one can verify.

416

be able to return to report their experiences or to transmit messages to us417

about their experience—so we believe! In spite of the impossibility of receiving418

a final report, there exists a well-developed and increasingly well-verified body419

of theory that makes clear predictions about our experience as we approach420

and cross the event horizon of a black hole. Here are some of those predictions.421

We are not “sucked into” a black hole. Unless we get close to itsWe are not sucked
into a black hole.

422

event horizon, a black hole will no more grab us than the Sun grabs Earth. If423

our Sun should suddenly collapse into a black hole without expelling any mass,424

Earth and the other planets would continue on their courses undisturbed (even425

though, after eight minutes, perpetual night would prevail for us on Earth!).426

The Schwarzschild solution (plus the Principle of Maximal Aging) would still427

continue to describe Earth’s worldline around our Sun, just as it does now. In428

Section 6.7, the appendix to the present chapter, you show that for an orbit at429

r-coordinate greater than about 300M , Newtonian mechanics predicts430

gravitational acceleration with an accuracy of about 0.3 percent. We will also431

find (Section 9.5) that no stable circular orbit is possible at r less than 6M.432

Even if we find ourselves at an r between 6M and the event horizon at 2M ,433

however, we can always escape the grip of the black hole, given sufficient434

rocket power. Only when we reach or cross the event horizon are we435

irrevocably swallowed, our fate sealed.436

We detect no special event as we fall inward through the event437

horizon. Even when we drop across the event horizon at r = 2M , weNo jolt as we
cross the
event horizon.

438

experience no shudder, jolt, or jar. True, tidal forces are ever-increasing as we439

fall inward, and this increase continues smoothly as we cross the event horizon.440

We are not suddenly squashed or torn apart at r = 2M , because the event441



March 30, 2020 16:33 Diving200330v1 Sheet number 18 Page number 6-17 AW Physics Macros

Section 6.6 Over the Edge: Entering the Black Hole 6-17

Box 4. Event Horizon vs. Particle Horizon
The event horizon around any black hole separates events
that can affect the future of observers outside the event
horizon from events that cannot do so. Barring quantum
mechanics, the event horizon never reveals what is hidden
behind it. (For a possible exception, see Box 5 on Hawking
radiation.)

We can now define a black hole more carefully: A black hole
is a singularity cloaked by an event horizon.

In Chapter 14 we learn about another kind of horizon, called a
particle horizon. Some astronomical objects are so far from

us that the light they have emitted since they were formed has
not yet reached us. In principle more and more such objects
swim into our distant field of view every day, as our cosmic
particle horizon sweeps past them. In contrast to the event
horizon, the particle horizon yields up its hidden information
to us—gradually!

In order to avoid confusion among these different kinds of
horizons, we try to be consistent in using the full name of the
event horizon that cloaks a black hole.

horizon is not a physical singularity, as explained in Box 3, Section 3.1. There442

is no sudden discontinuity in our experience as we pass through the event443

horizon.444

Inside the event horizon no shell frames are possible. Outside theNo shell frames
inside the
event horizon.

445

event horizon we have erected, in imagination, a set of nested spherical shells446

concentric to the black hole. We say “in imagination” because no known447

material is strong enough to withstand the “pull of gravity,” which increases448

without limit as we approach the event horizon from outside (Appendix).449

Locally such a stationary shell can be replaced by a spaceship with rockets450

blasting in the inward direction to keep it at the same r and φ coordinates.451

Inside the event horizon, however, nothing can remain at rest. No shell, no452

rocket ship can remain at constant r-coordinate there, however ferocious the453

blast of its engines. The material composing the original star, no matter how454

strong, was itself unable to resist the collapse that formed the black hole. The455

same irresistible collapse forbids any stationary structure or any motionless456

object inside the event horizon.457

“Outsiders” can send packages to “insiders.” Inside the eventPackages can move
inward, not outward.

458

horizon, different local frames can still move past one another with measurable459

relative speeds. For example, one traveler may drop from rest just outside the460

event horizon. An unpowered spaceship may fall in from far away. Another461

may be hurled inward from outside the event horizon. Light and radio waves462

can carry messages inward as well. We who have fallen inside the event horizon463

can still see the stars, though with directions, colors, and intensities that464

change as we fall (Chapters 11 through 13). Packages and communications465

sent inward across the event horizon? Yes. How about moving outward466

through the event horizon? No. Box 4 tells us—and Section 7.6467

demonstrates—that when a diver fires a light flash radially outward at the468

instant she passes inward through the event horizon, that light flash hovers at469

the same r-coordinate at the event horizon. Nothing moves faster than light,470

so if light cannot move outward through the event horizon, then packages and471

stones definitely cannot move outward there either.472
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Box 5. Escape from the Black Hole? Hawking Radiation
Einstein’s field equations predict that nothing, not even a
light signal, escapes from inside the event horizon of a black
hole. In 1973, Stephen Hawking demonstrated an exception
to this conclusion using quantum mechanics. For years
quantum mechanics had been known to predict that particle-
antiparticle pairs—such as an electron and a positron—
are continually being created and recombined in “empty”
space, despite the frigidity of the vacuum. These processes
have indirect, but significant and well-tested, observational
consequences. Never in cold flat spacetime, however, do
such events present themselves to direct observation. For
this reason the pairs receive the name “virtual particles.”
When such a particle-antiparticle pair is produced near, but
outside, the event horizon of a black hole, Hawking showed,
one member of the pair will occasionally be swallowed by

the black hole, while the other one escapes to a large r
coordinate—now a real particle. Escaped particles form what
is called Hawking radiation. Before particle emission we had
just the black hole; after particle emission we have the black
hole plus the distant real particle outside the horizon. In order
to conserve mass/energy, the mass of the black hole must
decrease in this process. This loss of mass causes the black
hole to “evaporate.” As the mass of the black hole decreases,
the loss rate grows until eventually it becomes explosive,
destroying the black hole. For a black hole of several solar
masses, however, Hawking’s theory predicts that the Earth-
time required to achieve this explosive state exceeds the age
of the Universe by a fantastic number of powers of ten. For
this reason we ignore Hawking radiation in our description of
black holes.

Inside the event horizon life goes on—for a while. Make a daring473

dive into an already mature black hole? No. We and our exploration teamSurf a collapsing
galaxy group.

474

want to be still more daring, to follow a black hole as it forms. We go to a475

multiple-galaxy system so crowded that it teeters on the verge of gravitational476

collapse. Soon after our arrival at the outskirts, it starts the actual collapse, at477

first slowly, then more and more rapidly. Soon a mighty avalanche thunders478

(silently!) toward the center from all directions, an avalanche of objects and479

radiation, a cataract of momentum-energy-pressure. The matter of the480

galaxies and with it our group of enterprising explorers pass smoothly across481

the event horizon at Schwarzschild r = 2M.482

From that moment onward we lose all possibility of signaling to the outer483

world. However, radio messages from that outside world, light from familiar484

stars, and packages fired after us at sufficiently high speed continue to reach485

us. Moreover, communications among us explorers take place now as they did486

before we crossed the event horizon. We share our findings with each other in“Publish and perish.” 487

the familiar categories of space and time. With our laptop computers we turn488

out an exciting journal of our observations, measurements, and conclusions.489

(Our motto: “Publish and perish.”)490

Tides become lethal. Nothing rivets our attention more than the tidalKiller tides. 491

forces that pull heads up and feet down with ever-increasing tension (Sections492

1.11 and 10.2). Before much time has passed on our wristwatch, we can493

predict, this differential pull will reach the point where we can no longer494

survive. Moreover, we can foretell still further ahead and with absolute495

certainty that there will be an instant of total crunch. In that crunch are496

swallowed up not only the stars beneath us, not only we explorers, but timeAfter crunch there
is no “after.”

497

itself. All worldlines inside the event horizon terminate on the singularity. For498

us an instant comes after which there is no “after.” Chapters 7 and 21 give499

more details of life inside the event horizon.500
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Box 6. Baked on the Shell?
As you stand on a spherical shell close to the event horizon
of a black hole, you are crushed by an unsupportable
local gravitational acceleration directed downward toward
the center (Appendix). If that is not enough, you are also
enveloped by an electromagnetic radiation field. William
G. Unruh used quantum field theory to show that the
temperature T of this radiation field (in degrees Kelvin)
experienced on the shell is given by the equation

T =
hgconv

4π2kBc
(29)

Here gconv is the local acceleration of gravity expressed
in conventional units, meters/second2; h is Planck’s
constant; c is the speed of light; and kB is Boltzmann’s
constant, which has the value 1.381 × 10−23 kilogram-
meters2/(second2degree Kelvin). The quantity kBT has the
unit joules and gives the average ambient thermal energy of
this radiation field. (The same radiation field surrounds you
when you accelerate at the rate gconv in flat spacetime.)

In the Appendix we derive an expression for the local
gravitational acceleration on a shell at r. Equation (46) gives
the magnitude of this acceleration, expressed in the unit
meter−1:

gshell =
gconv

c2
=
M

r2

(
1−

2M

r

)−1/2

(30)

Substitute gconv from (30) into (29) to obtain

T =
hc

4π2kB

M

r2

(
1−

2M

r

)−1/2

(31)

where M is in meters. This temperature increases without
limit as you approach the event horizon at r = 2M .
Therefore one would expect the radiation field near the event
horizon to shine brighter than any star when viewed by a
distant observer. Why doesn’t this happen? In a muted way it

does happen. Remember that radiation is gravitationally red-
shifted as it moves away from any center of attraction. Every
frequency is red-shifted by the factor (1− 2M/r)1/2, which
cancels the corresponding factor in (31). For radiation coming
from near the horizon, let r → 2M in the resulting equation.
The distant viewer sees the radiation temperature

TH =
hc

16π2kBM
(distant view of event horizon)

(32)

where M is in meters. The temperature TH is called
the Hawking temperature and characterizes the Hawking
radiation from a black hole (Box 5). Notice that this
temperature increases as the mass M of the black hole
decreases. Even for a black hole whose mass is only a few
times that of our Sun, this temperature is extremely low, so
from far away such a black hole really looks almost black.

The radiation field described by equations (29) through
(32), although perfectly normal, leads to strange conclusions.
Perhaps the strangest is that this radiation goes entirely
undetected by a free-fall observer. The diving traveler
observes no such radiation field, while for the shell observer
the radiation is a surrounding presence. This paradox cannot
be resolved using the classical general relativity theory used
in this book; see Kip Thorne’s Black Holes and Time Warps:
Einstein’s Outrageous Legacy, page 444.

How realistic is the danger of being baked on a shell
near the event horizon of a black hole? In answer, compute
the local acceleration of gravity for a shell where the radiation
field reaches a temperature equal to the freezing point of
water, 273 degrees Kelvin. From (29) you can show that
gconv = 6.7 × 1022 meters/second2, or almost 1022 times
the acceleration of gravity on Earth’s surface. Evidently we will
be crushed by gravity long before we are baked by radiation!

6.7 APPENDIX: INITIAL SHELL GRAVITATIONAL ACCELERATION FROM REST501

Unlimited gravitational acceleration on a shell near the event horizon.502

When you stand on a shell near a black hole, you experience gravity—a pullIs gravity real
or fictitious?

503

downward—just as you do on Earth. On the shell this gravity can be great:504

near the event horizon it increases without limit, as we shall see. On the other505

hand, “In general relativity . . . gravity is always a fictitious force which we506

can eliminate by changing to a local frame that is in free fall . . .” (inside the507

back cover). So is this “gravity” real? Every year falls kill and injure many508

people. Anything that can kill you is definitely real, not fictitious! Here we509

avoid philosophical issues by asking a practical question: “When the shell510

observer drops a stone from rest, what initial acceleration does he measure?”511
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Box 7. General relativity is a classical (non-quantum) theory.
Newton’s laws describe the motion of a stone in flat spacetime
at speeds very much less than the speed of light. For higher
speeds we need relativity. Newton’s laws correctly describe
slow-speed motion of a “stone” more massive than, say, a
proton. To describe behavior of smaller particles we need
quantum physics.

Does this mean that we have no further use for Newton’s
laws of motion? Not at all! Newton’s laws are classical, that
is non-quantum. In this book we repeatedly use Newton’s
mechanics as a simpler, more intuitive, and contrasting first
cut at prediction and observation. And with it we check every
prediction of relativity in the limit of slow speed and vanishing

spacetime curvature. We expect that Newton’s laws of motion
will be scientifically useful as long as humanity survives.

General relativity is also a classical—non-quantum—theory.
General relativity does not predict Hawking radiation (Box 5)
or the Hawking temperature (Box 6). These are predictions
of quantum field theory, predictions that we mention as
important asides to our classical analysis.

General relativity does not correctly represent every property
of the black hole, any more than Newton’s mechanics
correctly predicts the motion of fast-moving particles. Still,
we expect general relativity—like Newton’s mechanics—to be
scientifically useful as long as humanity survives.

To begin, we behave like an engineer: Use a thought experiment to definePractical experiment
to define gravity

512

what we mean by the initial gravitational acceleration of a stone dropped from513

rest on a shell at r0. Following this definition, wheel up the heavy machinery514

of general relativity to find the magnitude of the newly-defined acceleration515

experienced by a shell observer.516

Figure 5 presents the method for measuring quantities used to define517

initial gravitational acceleration on a shell. The shell is at map r0. At a shell518

distance |∆yshell| below the shell lies a stationary platform onto which the519

shell observer drops a stone. The time lapse ∆tshell for the drop is measured as520

follows:521

1. The shell observer starts his clock at the instant he drops the stone.Specific instructions
for experiment
to define gravity

522

FIGURE 5 Notation for thought experiment to define initial gravitational acceleration from
rest in a shell frame. The shell observer at r0 releases a stone from rest and measures its shell
time of fall ∆tshell onto a lower stationary platform that he measures to be a distance |∆yshell|
below the shell. From these observations he defines and calculates the value of the stone’s
initial acceleration gshell, equation (33).
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2. When the stone strikes the platform, it fires a laser flash upward to the523

shell clock.524

3. The shell observer determines the shell time lapse between drop and525

impact, ∆tshell, by deducting flash transit shell time from the time526

elapsed on his clock when he receives the laser flash.527

The shell observer calculates the “flash transit shell time” in Step 3 by528

dividing the shell distance |∆yshell| by the shell speed of light. (In an exercise529

of Chapter 3, you verified that the shell observer measures light to move at its530

conventional speed—value one—in an inertial frame.)531

The shell observer substitutes ∆yshell and ∆tshell into the expression thatDefine gshell 532

defines uniform acceleration gshell:533

∆yshell = −1

2
gshell∆t

2
shell (uniform gshell) (33)

Thus far our engineering definition of gshell has little to do with general534

relativity. The fussy procedure of this thought experiment reflects the care535

required when general relativity is added to the analysis, which we do now.536

What does the Schwarzschild mapmaker say about the acceleration of aMapmaker demands
constant map energy
for falling stone.

537

dropped stone? She insists that, whatever motion the free stone executes, its538

map energy E/m must remain a constant of motion. So start with the map539

energy of a stone bolted to the shell at r0. From map energy equation (15)540

with vshell = 0 and r = r0, we have:541

E

m
=

(
1− 2M

r0

)1/2

(stone released from rest at r0) (34)

Now release the stone from rest. The mapmaker insists that as the stone542

falls its map energy remains constant, so equate the right sides of (34) and (8),543

square the result, and solve for dτ2:544

dτ2 =

(
1− 2M

r0

)−1(
1− 2M

r

)2

dt2 (35)

Substitute this expression for dτ2 into the Schwarzschild metric for radial545

motion (dφ = 0), namely546

dτ2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 (36)

Divide corresponding sides of equations (36) and (35), then solve the resulting547

equation for (dr/dt)2:548 (
dr

dt

)2

=

(
1− 2M

r0

)−1(
1− 2M

r

)2(
2M

r
− 2M

r0

)
(from rest at r0)(37)
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We want the acceleration of the stone in Schwarzschild map coordinates.549

Take the derivative of both sides with respect to the t-coordinate and cancel550

the common factor 2(dr/dt) from both sides of the result to obtain:551

d2r

dt2
= −

(
M

r2

)(
1− 2M

r

)(
1− 2M

r0

)−1(
4M

r0
+ 1− 6M

r

)
(38)

This equation gives the map acceleration at r of a stone released from rest at552

r0. This acceleration depends on r, so is clearly not uniform as the stone falls,553

but decreases as r gets smaller, going to zero as r reaches the event horizon.554

We know that map acceleration is a unicorn, a result of Schwarzschild map555

coordinates, not measured by any inertial observer. We are interested in the556

initial acceleration at the instant of release from rest. Set r = r0 in equation557

(38), which then reduces to the relatively simple form:558 (
d2r

dt2

)
r0

= −M
r2
0

(
1− 2M

r0

)
(initial, from rest at r0) (39)

What is the meaning of this acceleration in Schwarzschild mapAcceleration
in map
coordinates

559

coordinates? It is only a spreadsheet entry, an accounting analysis by the560

mapmaker, not the result of a direct observation by anyone. Observation561

requires an experiment on the shell, which we have already designed, leading562

to the expression (33). What is the relation between our engineering definition563

of acceleration and acceleration (39) in Schwarzschild coordinates? To compare564

the two expressions, expand the Schwarzschild r-coordinate of the dropped565

stone close to the radial position r0 using a Taylor series for a short lapse ∆t:566

r = r0 +

(
dr

dt

)
r0

∆t+
1

2

(
d2r

dt2

)
r0

(∆t)2 +
1

6

(
d3r

dt3

)
r0

(∆t)3 + .... (40)

Because ∆t is small, we can disregard terms higher than quadratic in ∆t. This567

allows us to approximate uniform gravity (constant acceleration) and to568

compare mapmaker accounting entries with observed shell acceleration. Since569

we drop the stone from rest at r0, the initial map speed is zero: (dr/dt)r0 = 0.570

With these considerations, insert (39) into (40) and obtain:571

r − r0 = ∆r ≈ −1

2

[(
1− 2M

r0

)
M

r2
0

]
(∆t)2 (41)

This equation has a form similar to that of our experimental definition572

(33) of shell gravitational acceleration, except the earlier equation employs573

vertical shell separation ∆yshell and shell time lapse ∆tshell. Convert these to574

Schwarzschild quantities using standard transformations—equations (5.8) and575

(5.9):576

∆yshell =

(
1− 2M

r0

)−1/2

∆r and ∆t2shell =

(
1− 2M

r0

)
(∆t)2 (44)
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Sample Problems 2. Initial Gravitational Acceleration on a Shell
1. On a shell at r/M = 4 near a black hole, the initial

gravitational acceleration from rest is how many times that
predicted by Newton?

2. On a shell at r/M = 2.1 near a black hole, the initial
gravitational acceleration is how many times that predicted
by Newton?

3. What is the minimum value of r/M so that, at or outside
of that r-coordinate, Newton’s formula for gravitational
acceleration yields values that differ from Einstein’s by less
than ten percent? by less than one percent?

4. Compute the weight in pounds of a 100-kilogram astronaut
on the surface of a neutron star with mass equal to
1.4MSun and M/r0 = 2/5.

SOLUTIONS
1. At r/M = 4 the factor (1 − 2M/r)−1/2 in (46) predicts

a gravitational acceleration 21/2 = 1.41 times that
predicted by Newton.

2. Even at r/M = 2.1 the gravitational acceleration is still
the relatively mild multiple of 4.6 times the Newtonian
prediction.

3. Setting (1 − 2M/r)−1/2 = 1.1 yields r/M = 11.5.
At or outside this r-coordinate, Newton’s prediction will be

in error (it will be too low) by less than ten percent. At or
outside r/M = 100 Newton’s prediction will be too low by
less than one percent.

4. The Newtonian acceleration in conventional units is:

gNewton conv =

(
GMkg

c2r20

)
c2 =

(
M

r20

)
c2 (42)

=

(
M

r0

)2 c2

M
=

(
2

5

)2 c2

1.4×MSun

Insert values of c2 and MSun (in meters) to yield
gNewton conv ≈ 7.0× 1012 meters/second2. From (46),

weight = mgshell =

(
1−

4

5

)−1/2

mgNewton(43)

≈ 16× 1014 Newtons

One Newton = 0.225 pounds, so our astronaut weighs
approximately 3.5 × 1014 pounds, or 350 trillion pounds
(USA measure of weight). It is surprising that, even at the
surface of this neutron star, the general relativity result in
(43) is greater than Newton’s by the rather small factor
51/2 = 2.24.

With these substitutions, and after rearranging terms, equation (33) becomes:577

∆r = −1

2

[(
1− 2M

r0

)3/2

gshell

]
(∆t)2 (45)

As we go to the limit ∆t→ 0, the extra terms in (40) become increasingly578

negligible, so (41) approaches an equality and we can equate square-bracket579

expressions in (41) and (45). Replacing the notation r0 with r yields theInitial shell
acceleration

580

magnitude of the initial acceleration of a stone dropped from rest on a shell at581

any r-coordinate:582

gshell =

(
1− 2M

r

)−1/2
M

r2
(initial, drop from rest) (46)

583

Sample Problems 2 explore shell accelerations under different conditions. It is584

surprising how accurate Newton’s expression gNewton = M/r2 is even quite585

close to the event horizon of a black hole—an intellectual victory for Newton586

that we could hardly have anticipated.587

588

QUERY 1. Gravitational acceleration on Earth’s surface589
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Use values for the constants ME and rE for the Earth listed inside the front cover to show that590

equation (46) correctly predicts the value of the gravitational acceleration gE at Earth’s surface. Check591

your calculated values against those also listed inside the front cover.592

A. Show that in units of length this acceleration has the value gE = 1.09× 10−16 meter−1.593

B. Show that in conventional units this acceleration has the value gE,conv = 9.81 meters/second2.594

595

A GRAVITYLESS DAY596

I am sitting here 93 million miles from the sun on a rounded rock which597

is spinning at the rate of 1,000 miles an hour, and roaring through space598

to nobody-knows-where, to keep a rendezvous with nobody-knows-what . .599

. and my head pointing down into space with nothing between me and600

infinity but something called gravity which I can’t even understand, and601

which you can’t even buy anyplace so as to have some stored away for a602

gravityless day . . .603

—Russell Baker604

6.8 EXERCISES605

1. Diving from Rest at Infinity606

Black Hole Alpha has a mass M = 10 kilometers. A stone starting from rest607

far away falls radially into this black hole. In the following, express all speeds608

as a decimal fraction of the speed of light.609

A. What is the speed of the stone measured by the shell observer at610

r = 50 kilometers?611

B. Write down an expression for |dr/dt| of the stone as it passes r = 50612

kilometers?613

C. What is the speed of the stone measured by the shell observer at r = 25614

kilometers?615

D. Write down an expression for |dr/dt| of the stone as it passes r = 25616

kilometers?617

E. In two or three sentences, explain why the change in the speed between618

Parts A and C is qualitatively different from the change in |dr/dt|619

between Parts B and D.620

2. Maximum Raindrop |dr/dt|621

A stone is released from rest far from a black hole of mass M. The stone drops622

radially inward. Mapmaker records show that the the value of |dr/dt| of the623

stone initially increases but declines toward zero as the stone approaches the624
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event horizon. The value of |dr/dt| must therefore reach a maximum at some625

intermediate r. Find this r-value for this maximum. Find the numerical value626

of |dr/dt| at that r-value. Who measures this value?627

3. Hitting a Neutron Star628

A particular nonrotating neutron star has a mass M = 1.4 times the mass of629

the Sun and r = 10 kilometers. A stone starting from rest far away falls onto630

the surface of this neutron star.631

A. If this neutron star were a black hole, what would be the map r -value632

of its event horizon? What fraction is this of the r-value of the neutron633

star?634

B. With what speed does the stone hit the surface of the neutron star as635

measured by someone standing (!) on the surface?636

C. With what value of |dr/dt| does the stone hit the surface?637

D. With what kinetic energy per unit mass does the stone hit the surface638

according to the surface observer?639

Earlier it was thought that astronomical gamma-ray bursts might be caused by640

stones (asteroids) impacting neutron stars. Carry out a preliminary analysis of641

this hypothesis by assuming that the stone is made of iron. The impact kinetic642

energy is very much greater than the binding energy of iron atoms in the643

stone, greater than the energy needed to completely remove all 26 electrons644

from each iron atom, and greater even than the energy needed to shatter the645

iron nucleus into its component 26 protons and 30 neutrons. So we neglect all646

these binding energies in our estimate. The result is a vaporized gas of 26647

electrons and 56 nucleons (protons and neutrons) per incident iron atom. We648

want to find the average energy of photons (gamma rays) emitted by this gas.649

E. Explain briefly why, just after impact, the electrons have very much650

less kinetic energy than the nucleons. So in what follows we neglect the651

initial kinetic energy of the electron gas just after impact.652

F. The hot gas emits thermal radiation with characteristic photon energy653

approximately equal to the temperature. What is the characteristic654

energy of photons reaching a distant observer, in MeV?655

NOTE: It is now known that astronomical gamma-ray bursts release much656

more energy than an asteroid falling onto a neutron star. Gamma ray bursts657

are now thought to arise from the birth of new black holes in distant galaxies.658

4. A Stone Glued to the Shell Breaks Loose659

A stone of mass m glued to a shell at r0 has map energy given by equation660

(34). Later the glue fails so that the stone works loose and drops to the center661

of the black hole of mass M .662
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A. By what amount ∆M does the mass of the black hole increase?663

B. A distant observer measures the mass of black hole plus stone at rest at664

r0 using the method of Figure 3. How will the value of this total mass665

change after the stone has fallen into the black hole?666

C. Apply your result of Part A to find the numerical value of the constant667

K in the equation ∆M = Km for the three cases: (a) r0 � 2M , (b)668

r0 = 8M and (c) r0 is just outside the event horizon. In all cases the669

observer in Figure 3 is much farther away than r0.670

5. Wristwatch Time to the Center671

An astronaut drops from rest off a shell at r0. How long a time elapses, as672

measured on her wristwatch, between letting go and arriving at the center of673

the black hole? If she drops off the shell just outside the event horizon, what is674

her event-horizon-to-crunch wristwatch time?675

Several hints: The first goal is to find dr/dτ, the rate of change of r -coordinate676

with wristwatch time τ, in terms of r and r0. Then form an integral whose677

variable of integration is r/r0. The limits of integration are from r/r0 = 1 (the678

release point) to r/r0 = 0 (the center of the black hole). The integral is679

τ

M
= − 1

21/2

( r0

M

)3/2
0∫

1

(r/r0)
1/2

d (r/r0)

(1− r/r0)
1/2

(47)

Solve this integral using tricks, nothing but tricks: Simplify by making the680

substitution r/r0 = cos2ψ (The “angle” ψ is not measured anywhere; it is681

simply a variable of integration.) Then (1− r/r0)1/2 = sinψ and682

d(r/r0) = −2 cos ψ sinψ dψ The limits of integration are from ψ = 0 to683

ψ = π/2. With these substitutions, the integral for wristwatch time becomes684

τ

M
= 21/2

( r0

M

)3/2
π/2∫
0

cos2ψdψ (48)

= 21/2
( r0

M

)3/2
[
ψ

2
+

sin 2ψ

4

]∣∣∣∣π/2
0

Both sides of (48) are unitless. Complete the formal solution. For a black hole685

20 times the mass of the Sun, how many seconds of wristwatch time elapse686

between the drop from rest just outside the horizon to the singularity?687

6. Release a stone from rest688

You release a stone from rest on a shell of map coordinate r0.689
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A. Derive an expression for |dr/dt| of the stone as a function of r. Show690

that when the stone drops from rest far away, |dr/dt| reduces to the691

expression (22) for a raindrop. Find the r-value at which map speed is692

maximum and the expression for that maximum map speed. Verify that693

in the limit in which the stone is dropped from rest at infinity these694

expressions reduce to those found in Exercise 6.2 for the raindrop.695

B. Derive an expression for the shell velocity of the stone as a function of696

r. Show that in the limit in which the stone drops from rest far away,697

the shell velocity reduces to the expression (19) for a raindrop.698

C. Sketch graphs of shell speed vs. r similar to Figure 2 for the following699

values of r0:700

(a) r0/M = 10701

(b) r0/M = 6702

(c) r0/M = 3703

7. Hurl a stone inward from far away704

You hurl a stone radially inward with speed vfar from a remote location. (At a705

remote r where spacetime is flat, |dr/dt| equals shell speed.)706

A. Derive an expression for dr/dt of the stone as a function of r. Show707

that when you launch the stone from rest, dr/dt reduces to the708

expression (22) for a raindrop. Find the value of r at which |dr/dt| is709

maximum and the expression for |dr/dt|. Verify that in the limit in710

which the stone is dropped from rest at infinity these expressions711

reduce to those found in Exercise 6.2 for the raindrop.712

B. Derive an expression for the shell velocity of the stone as a function of713

r. Show that in the limit in which the stone drops from rest far away,714

the shell velocity reduces to the expression (19) for a raindrop.715

C. Sketch graphs of shell speed vs. r similar to Figure 2 for the following716

values of vfar:717

(a) vfar = 0.20718

(b) vfar = 0.60719

(c) vfar = 0.90720

8. All Possible Shell Speeds721

Think of a shell observer at any r > 2M . Consider the following three launch722

methods for a stone that passes him moving radially inward:(a) released at723

rest from a shell at r0 ≥ r, (b) released from rest at infinity, and (c) hurled724

radially inward from far away with initial speed 0 < |vfar| < 1. Show that,725

taken together, these three methods can result in all possible speeds726

0 ≤ |vshell| < 1 measured by this shell observer at r > 2M .727
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9. Only One Shell Speed—with the Value One—at the Event Horizon728

Show that the three kinds of radial launch of a stone described in Exercise 8729

yield the same shell speed, namely |vshell| = 1, as a limiting case when the730

stone moves inward across the event horizon. Your result shows that at the731

event horizon (as a limiting case): (a) You cannot make the shell-observed732

speed of a stone greater than that of light, no matter how fast you hurl it733

inward from far away. (b) You cannot make the shell-observed speed of the734

stone less than that of light, no matter how close to the event horizon you735

release it from rest.736

10. Energy from garbage using a black hole737

Define an advanced civilization as one that can carry out any engineering738

task not forbidden by the laws of physics. An advanced civilization wants to739

use a black hole as an energy source. Most useful is a “live” black hole, one740

that spins (Chapters 17 through 21), with rotation energy available for use.741

Unfortunately the nonrotating black hole that we study in this chapter is742

“dead:” no energy can be extracted from it (except for entirely negligible743

Hawking radiation, Box 5). Instead, our advanced civilization uses the dead744

(nonspinning) black hole to convert garbage to useful energy, as you analyze in745

this exercise.746

A bag of garbage of mass m drops from rest at a power station located at747

r0, onto a shell at r; a machine at the lower r brings the garbage to rest and748

converts all of the shell kinetic energy into a light flash. Express all energies749

requested below as fractions of the mass m of the garbage.750

A. What is the energy of the light flash measured on the shell where it is751

emitted?752

B. The machine now directs the resulting flash of light radially outward.753

What is the energy of this flash as it arrives back at the power station?754

C. Now the conversion machine at r releases the garbage so that it falls755

into the black hole. What is the increase ∆M in the mass of the black756

hole? What is its increase in mass if the conversion machine is757

located—as a limiting case—exactly at the event horizon?758

D. Find an expression for the efficiency of the resulting energy conversion,759

that is (output energy at the power station)/(input garbage mass m) as760

a function of the converter r and the r0 of the power station. What is761

the efficiency when the power station is far from the black hole,762

r0 →∞, and the conversion machine is on the shell at r = 3M?763

(Efficiency of mass-to-energy conversions in nuclear reactions on Earth764

is never greater than a fraction of one percent.)765

E. Optional: Check the conservation of map energy in all of the processes766

analyzed in this exercise.767

Comment 2. Decrease disorder with a black hole vacuum cleaner?768

Suppose that the neighborhood of a black hole is strewn with garbage. We tidy769
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up the vicinity by dumping the garbage into the black hole. This cleanup reduces770

disorder in the surroundings of the black hole. But wait! Powerful principles of771

thermodynamics and statistical mechanics demand that the disorder—technical772

name: entropy—of an isolated system (in this case, garbage plus black hole)773

cannot decrease. Therefore the disorder of the black hole itself must increase774

when we dump disordered garbage into it. Jacob Bekenstein and Stephen775

Hawking quantified this argument to define a measure of the entropy of a black776

hole, which turns out to be proportional to the Euclidean-calculated spherical777

“area” of the event horizon. See Kip S. Thorne, Black Holes and Time Warps,778

pages 422–448.779

11. Temperature of a Black Hole780

A Use equation (32) to find the temperature, when viewed from far away,781

of a black hole of mass five times the mass of the Sun.782

B. What is the mass of a black hole whose temperature, viewed from far783

away, is 1800 degrees Kelvin (the melting temperature of iron)?784

Express your answer as a fraction or multiple of the mass of Earth.785

(Equation (32) tells us that “smaller is hotter,” which leads to786

increased emission by a smaller black hole and therefore shorter life. If787

this analysis is correct, small black holes created in the Big Bang must788

have evaporated by now.)789
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