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Orbits of Light

Edmund Bertschinger & Edwin F. Taylor

Then the sun god Ra emerged out of primal chaos.

—Egyptian creation story

And at once Kiho made his eyes to glow with flame—and the
darkness became light.

—Tuamotuan (Polynesian) creation story

And God said, Let there be light: and there was light.

—first Biblical act of creation, Genesis 1:3

He bringeth them out of darkness unto light by His decree . . .
—Qur’an 5:16

Along with death came the Sun the Moon and the stars . . .

—Inuit creation story

11.1.8 TURN A STONE INTO A LIGHT FLASH
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Faster and faster, less and less mass

Thus far in this book almost all observers have been blind. Chapter 5 defined
the shell observer but did not predict what he sees when he looks at stars or
other objects outside his local inertial frame. The rain diver as she descends to
the singularity (Chapter 7) peers in just two opposite directions—radially
inward and radially outward. The explorer in her circular orbit around a black
hole (Chapter 8) does not report what she sees—neither the starry heavens
around her nor the black hole beneath her. In the present chapter we lay the
groundwork to cure this blindness: we plot orbits of light in global map
coordinates.

But this chapter still does not describe what any observer sees. Recall that
we make every measurement and observation in a local inertial frame. The
present chapter describes only map “starlight orbits,” for example the orbit

*Draft of Second Edition of Ezploring Black Holes: Introduction to General Relativity
Copyright © 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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« that connects remote Star X with an observer at (or passing through) map

« location Y. The following Chapter 12 will tell us in what direction an observer

s at Y looks to see Star X.

a9 What can we say about the global motion of light around, past, or into a

s spherically symmetric, nonspinning black hole? We ask here no small question:

s Almost every message from events in space comes to us by way of

s2 electromagnetic radiation of different frequencies. Fzceptions: cosmic rays,
Seeing is s neutrinos, and gravitational waves. A starlight orbit may deflect as it passes
not believing. s« close to a massive object. Near a black hole this deflection can be radical;

ss  starlight can even go into a circular orbit. This and the following chapter make

s clear that for an observer near a black hole, seeing is definitely not believing!

57 How do we plot the global orbit of light around a black hole? This is a

ss  new question; up until now we plotted light cones with short legs that sprout
Find orbits s from a single event. Now we want to “connect the dots,” the events along an
of light. o entire orbit of light that stretches from a specified distant star to a given local

¢t observer near a black hole.

6 The free stone has two global constants of motion along its worldline: map
Constant(s) of e energy F and map angular momentum L. Chapters 3 and 8 used the Principle
motion for light? e of Maximal Aging to derive map expressions for each of these global constants

s of motion. Can we use the Principle of Maximal Aging to find constant(s) of
e motion for a light flash?

o7 The Principle of Maximal Aging says that a stone chooses a path across
e an adjoining tiny pair of segments along its worldline such that its wristwatch
e time is a maximum between a fixed initial event as the stone enters the pair
7 and a fixed final event as it leaves the pair. But the Principle of Maximal

Principle of Maximal 7 Aging cannot apply directly to light, and for a fundamental reason: The aging
Agingdoes notapply . of a light flash along its worldline in a vacuum is automatically zero! Aging
directly to light. 7 dr equals zero along every differential increment of the light flash worldline.

n  Question: How can we possibly apply the Principle of Maximal Aging to light,
7 whose aging is automatically zero?

7 Answer: Sneak up on it! Start in flat spacetime far from a black hole.

77 Think of a series of faster and faster stones, each stone with a smaller mass

7 than the previous one. Let this series occur in such a way that the map energy

Adapt Principle 7 FE remains constant. Far from the black hole, map energy equals the
of Maximal Aging s measurable energy in a local inertial shell frame, in which the stone has
to light. o squared speed v3 . Take the limit of equation (28) in Section 1.7 as m — 0

2 and VUshell — 1:

P= Tm m light, /M > 1 1
= lim —-——~ = constant ight, r >

Ushell =1 (1 — Us2hell)1/2 ( & / ) ( )
Stone — light ss  The present chapter analyzes consequences of this limit-taking process in (1).
asm — 0

andv — 1
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/ A ® Stone
b = impact
parameter

___radially inward o 'est

particle
FAR FROM THE BLACK HOLE

FIGURE 1 Impact parameter b of a stone that approaches the black hole from a far away.
Far from the black hole, we define b as the perpendicular offset between the line of motion of the
approaching stone and the parallel line of motion of a test particle that makes a dive at constant
¢ into the black hole. Values of b and M determine whether or not the black hole captures the
incoming stone.

11.2.8 IMPACT PARAMETER b
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Impact parameter from map angular momentum and map enerqgy

Chapter 8 analyzed circular orbits of a stone around the black hole. Now we
want to describe more general orbits of both a stone and a light flash, so we
define an orbit.

DEFINITION 1. Orbit: Stone or light flash

An orbit is the worldline of a stone or light flash described by global
coordinates. An orbit need not be circular around an origin, it need not
be closed, it need not even remain in a bounded region of space.

A starlight orbit is a special case of the orbit:

DEFINITION 2. Starlight orbit
A starlight orbit is the orbit (Definition 1) of a light flash emitted by a star.

Think first about the orbit of a free stone far from the black hole—the
right side of Figure 1. Far from the black hole this orbit is straight. How do we
measure this orbit to verify that it is straight? As always, carry out
measurements in a local inertial frame. We choose a shell frame (Section 5.7).
Sufficiently far from the black hole this “local” shell frame can be quite large
in the sense that over a significant range of  and ¢ special relativity correctly
describes this orbit as a straight line. Now find a parallel straight line orbit
that—by trial and error—moves without deflection to the center of the black
hole (verified by measurement in a series of shell frames on both sides of
Figure 1).

In a local inertial shell frame far from the black hole, we can measure
perpendicular distances between parallel orbits. This leads to the definition of
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s the impact parameter, with the symbol b. In a preliminary definition, we
19 define the impact parameter of a stone far from the black hole:

110 DEFINITION 3. Impact parameter b of a stone (preliminary)
Preliminary m The impact parameter b of a stone is the perpendicular
definition: 112 distance—measured far from the black hole—between the straight orbit
impact parameter 13 of the free stone and the parallel straight orbit of a second stone (test
114 particle) that plunges at constant ¢ into the black hole.

145

QUERY 1. Every moving stone has an impact parameter
Show that every distant stone that changes global coordinates r or ¢ (or both) has an impact
parameter—even a stene that moves away from the black hole.

149

120 Thus far the definition of the impact parameter is purely geometric.
21 However, the right side of Figure 1 can be used to define angular momentum.
12 The angular momentum of the stone takes the simple form:

Ly = bparPrar (stone in distant—flat—spacetime) (2)

s where pg,y is the momentum of special relativity (Section 1.8). Equation (2)
Map angular s determines the value of L where r/M > 1, that is where spacetime is flat.
momentum L 125 However L is a map constant of motion, the same everywhere around the

s black hole. Therefore its value, calculated from (2) far from the black hole, is

127 the same close to the black hole.

128 Recall equation (39) for a stone in Section 1.9, with p defined in (2):
I\ 2
m? =FE? —p*=FE*— (b) (stone, flat spacetime) (3)
Impact parameter 129 Solve this equation for b, in which b and L are either both positive or both
of a stone 130 negative:
L .
b= (impact parameter for a stone, everywhere) (4)

(E2—m2)1/2

131

122 Both map energy E and map angular momentum L are map constants of

1 motion and m is an invariant quantity. Therefore equation (4) is valid close to
13« the black hole as well as far away. Even though it was derived assuming flat

1 spacetime, we take (4) to define b everywhere. Close to the black hole, b is no
s longer the perpendicular distance of Definition 3. But every orbit has an L and
1wz an F and therefore can be assigned a unique value of b.

138 For light, carry out the limit-taking process demanded in (1), with
139 constant E but decreasing m. The limit m — 0 defines the impact parameter
Impact parameter 1o for light:

of a light flash
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L
b= E (impact parameter of light, everywhere) (5)
141
142 This leads to the final definition of the impact parameter for a stone or a

13 light flash around a black hole:

14 DEFINITION 4. Impact parameter b
Definition: 145 The impact parameter b for a stone is given by (4) and for a light flash
impact parameter b 146 by (5).

N

147 Objection 1. You use two perfectly good constants of motion, L and £

148 and give a geometric interpretation for a combination of them. So what? |
149 can define a thousand combinations of L and E. Who cares? | didn’t need
150 any such combination for a stone. Why are you wasting my time?

.*

151 We introduce b because neither L alone or E alone will be helpful when

152 m — 0. Equations of motion for light derived below depend only on the

153 fraction L/E and no other combination. Global motion of a stone depends

154 on two constants of motion, L and E. Global motion of light is simpler,

185 completely described by one constant of motion, b = L/E. Rejoice!

156 We have defined impact parameter, but we have not yet predicted the

17 global motion of a light flash near the black hole. To obtain equations of
s motion for light, we again apply the limit-taking process of equation (1), in
1 this case to the equations of motion for a stone from Chapter 8.

11.3,l EQUATIONS OF MOTION FOR LIGHT
w1 A single constant of motion for light, namely b

Flat starlight 2 Light spreads out from a star as a spherical wave. We assume that every star
wavefront approaching 1 is so far away that as its starlight approaches our black hole—but still travels
the black hole . ... s in flat spacetime—it forms a flat wavefront (right side of Figure 2).

165 We already have another powerful way to describe starlight in flat
.. . is equivalent to s spacetime: as a bundle of parallel straight orbits. Figure 2 displays four
a bundle of parallel 7 starlight orbits from a single star, each with a different impact parameter b, as
straight orbits. s these orbits approach the black hole. Far from the black hole (right side of the

1o figure) these starlight orbits remain parallel to one another. Close to the black
wo  hole (left side of the figure) they diverge: Only the orbit with b/M = 0 remains

Close to the black w7 straight. Starlight Orbit 1 deflects but escapes; Starlight Orbit 2 enters a

hole, orbits from w2 circular orbit; Starlight Orbit 3 plunges to the center of the black hole.

the star are neither 173 Starlight Orbit 2 in Figure 2 is unique; it enters a circular orbit at

parallel nor straight. w7 1= 3M. We call this orbit critical and its impact parameter the critical impact
Critical impact s parameter, beritical- In Query 3 you show that the critical impact parameter

paraneter s has the value beitical = (27)1/2M.
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flat wavefront
from distant star

O——>
r/M

FAR FROM THE
BLACK HOLE

4

FIGURE 2 Jagged lines separate flat spacetime far from the black hole (on the right) from
curved spacetime near the black hole (on the left). The right side of this plot shows two ways to
visualize starlight orbits far from the black hole: first as as a set of straight parallel orbits, second
as a flat wavefront. On the left side of this plot, near the black hole, only the starlight orbit with
b/M = 0 remains straight, while starlight orbits 1 through 3, originally parallel, diverge: Starlight
Orbit 1 with the impact parameter b/ M = 7 deflects but escapes. Starlight Orbit 2 with the so-
called critical impact parameter beritical /M, €quation (28), becomes an unstable circular orbit at
r/M = 3. Starlight Orbit 3 with b/M = 4 crosses the event horizon and ends at the singularity.

We need general equations of motion of light, which we now derive using
the limiting process of equation (1). Start with equations of motion of a stone
from Section 8.3, written in slightly altered form:

ﬂ—j: E 2_ 1_% 1_|_L72 v (stone) (6)
dr m r m2r2 SLOLe
do L
% = W (StOne) (7)
2M
=
ar 1/2
dar g o\ [/ E\? oM L2 /
~ 4 —(1-=)(1+—
m r m r m2r?

Comment 1. Choice of signs for the motion of a stone

We choose the stone’s wristwatch time to advance as the stone moves along its
worldline. Therefore the upper (+) sign in (6) is for a stone with increasing  and
the lower (—) sign is for a stone with decreasing r. The =+ sign in the
denominator of equation (8) has the same meaning.

In order to describe the motion of light, we need to eliminate d7 from
these equations, because adjacent events along the worldline of a light flash
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Section 11.3 Equations of Motion for Light 11-7

have zero wristwatch time lapse between them: dr = 0. Multiply both sides of
(6) by the corresponding sides of (8), then factor out and cancel (E/m) from
the resulting numerator and denominator.

dr _ drdr
dT ~ dr dT

S B
v (2T (-2 (14 5]

Equation (1) requires that for light m — 0 while FE remains constant. Apply
these requirements to (9). The result is our first equation of motion for light:

P e 1)

L e

Carry out a similar procedure on equations (7) and (8): multiply their
corresponding sides d¢/dT = (d¢/dr)(dr/dT), factor out E/m in the
denominator, cancel m with one in the numerator, then let m — 0. The result
is our second equation of motion for light:

L 1 2M
@ B r2F r

T2 - (-2 ()
14+ — 1—-(1—-— —
r r rE

To construct our third equation of motion for light, combine (10) with (11):

dr_ (dr\(dT\ _ @E | (  2M\(L 2
o~ (ar) () =7 - (0-5) (%)
Equations (10) through (12) are the equations of motion for light. The choice
of signs in these equations is the same as for a stone, given in Comment 1.
Our three equations of motion for light contain a wonderful surprise: The
only quantity we need to describe the orbit of light is the ratio L/E. Meaning:
The orbit of light near a black hole is completely determined by the single
value of the ratio L/E instead of by the separate values of the map constants
of motion L and E. And equation (5) tells us that this ratio equals the impact
parameter for light.
Substitute the expression b = L/F into equations (10) through (12):

(stone) 9)

1/2

— (light) (11)

1/2
(light) (12)
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e
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h - (W)”ﬂl( (1 2>M) (bﬂ wo

% = j:% 1— <1 — 21\4) (i)Q] - (light)

206

207

An identical square-bracket expression appears multiple times in these
equations. To simplify them, define a new function F(b,r):

AW Physics Macros

(13)

(15)

208

F(b,r) = [1 2

v (1 - W)} i

r

(16)

209

so that equations of motion for light become:

(1 - QM) F(b,7)

210

dr r .
ﬁ = 2M 1/2 (hght)
1+ () F(b,r)
'
b (1 2M>
dp 2\ 1 .
T = VAN (light)
14+ <> F(b,r)
r
dr r? .

(19)

211
212
213
a1s  decreasing r.
215

216

The =+ signs in equations (17) through (19) have the same interpretation as in
(6) through (8) and also (10) through (12), namely the upper (4) sign
describes light with increasing r and the lower (—) describes light with

Chapters 9 and 10 use interactive software GRorbits to plot orbits of a
stone. GRorbits also integrates equations (17) through (19) for light. Given
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the value of b and initial location, the software plots the orbit and outputs a
spreadsheet with global coordinates (T, ¢) of events along the orbit.

Equations of motion for light look complicated. We now derive a simple
way to visualize the global r-motion of light using the effective potential,
modeled after the effective potential for a stone in Section 8.4.

11.4.8 EFFECTIVE POTENTIAL FOR LIGHT

223
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Describe global motion of light at a glance.

The present section sets up an effective potential for a light orbit in order to
visualize its r-component of motion simply and directly. Recall equation (21)
in Section 8.4 that relates the r-motion of a stone to its effective potential:

&) e

The key idea of this equation is that the first term on the right is a constant of
the stone’s motion—independent of location—while the second term is a
function of r—independent of the properties or motion of the stone. We
defined the second term to be the effective potential for a stone.

To make similar predictions about the r-motion of light, we seek an
equation with the same form as (20). To find this equation, square both sides
of (17), rearrange the results, and multiply through by (M /b)? to obtain:

() (-2) [ (2 o] (5 - (2

,
On the left side of (21) we define the function

= (412

and on the right side of (21) we substitute for F2(b,r) from (16).

M\? M2 M2 b 2M ,

2

1/2 2
1+ (21\4) F(b,r)| (light) (22)

Substitute the left sides of (22) and (23) into (21) and write the result as:
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Box 1. Use of the effective potential for a stone and for a light flash

Compare and contrast the forms and uses of effective  For a light flash:

potentials for a stone and for a light flash: e V depends on r alone.

dr\ 2 E\2 VAL (r) 2 e The turning point occurs where V/M = +M/b =
=(—) = (stone) (26)

ar +ME/L, not E alone.

m m

e |M/b| < |V/M]|is forbidden
2 2 2
A2 (%) = (M) _ (V(T) ) (light) (27) e When |M/b] > |V/M|, equation (27) gives |dr/dT|

b M in terms of r, b.
For a stone: What's the difference between the two cases?
e V1, depends on both L and r. For light, L has been removed from the effective potential and

combined with E; only b = L/E remains. Impact parameter

e The turning point occurs where Vi, = £ E. ) .
b can be taken completely out of the effective potential, so

e |E| < [Vi|is forbidden V depends only on r. This makes orbits of light simpler than
e When |E| > |VL], equation (26) gives |dr/dr| in  orbits of a stone. Only one constant of motion is needed, not
termsof r, L, E. two.

A%(b,7) (2)2 = (]\QQ — (Vj\(;)f (light) (24)

where (25) defines the square of the effective potential for light

(V]\(;)f _ M (1 _ 2M> (light) (25)

2s  Figure 3 plots positive values of the effective potential for light. In Query 2
2 you show that the coefficient A2(b,r) in equation (22) is well behaved when
20 light descends to the event horizon, provided b # 0.

241 Box 1 compares and contrasts effective potentials for light and for stones.

QUERY 2. Approaching the event horizon

What happens to thedeft side of (24) as r/M — 27, that is as light approaches the event horizon from
above? Just above the event horizon set r/M = 2(1 + ¢) where 0 < € < 1 and use our standard
approximation (insidesthe front cover) to show that coefficient A2(b,r) in (24) is well behaved even as
light descends to theevent horizon, provided b # 0.

48,

249 With the effective potential we can predict—at a glance—the r-component
Quick predictions with 250 of light motion. The first term, (M /b)?, on the right side of (24) is a constant
the effective potential 21  of motion, the same everywhere along the orbit. The second term is a function
22 of 7 and does not include b. Figure 3 and its caption also contain a preview of
253 turning points, which we analyze more fully in Section 11.4.
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Huge payoff: The right side of (24) does not include the energy or angular

momentum of light. One effective potential applies to light orbits of every
energy and every angular momentum. In particular, it applies to
electromagnetic radiation of all wavelengths: radio waves; microwaves;
infrared, visible, and ultraviolet light; X-rays; and gamma rays! (This result
assumes that the wavelength of light is small compared with the coordinate
separations over which spacetime curvature changes appreciably.)

QUERY 3. Critical.impact parameter
A. Show that thespeak of the effective potential occurs at r/M = 3.
B. Verify that thesso-called critical value of the impact parameter at r/M = 3 is

bcritical

M

265

= (27)"/% = 5.196 152 42 (light, critical impact parameter) (28)

C. From Figure 3«wread off approximate values of b/M and r/M for the circular orbit. Compare
these values with the analytic results of Items A and B.

~

Effective potentials
reveals turning
points.

Definitions:
Plunge Orbit
Bounce Obit
Trapped Orbit

269

270

27

282

283

284

285

286

287

288

289

Both the effective potential for light and effective potentials for stones

enable us to find the r-coordinate at which the r-component of motion goes to
zero, which occurs for a circular orbit and also at what we call a turning point

(Section 8.4 and Section 11.5).

DEFINITION 5. Plunge Orbit, Bounce Orbit, Trapped Orbit
Figure 3 sorts all light orbits near a black hole into three categories,
which we give names to simplify our analysis:

e Plunge Orbit: A plunge orbit is an incoming or outgoing orbit with
|b] < beritical that passes above the peak of the effective potential
curve in Figure 3. A starlight Plunge Orbit is—by definition—an
incoming orbit that plunges through the event horizon to the
singularity. Outside the event horizon light can, in principle, move in
either direction along the plunge orbit shown. We call this a plunge
orbit, whether r decreases or increases.

e Bounce Orbit: A bounce orbit is an incoming or outgoing orbit with
[b] > beritical. The bounce orbit exists only to the right of the
effective potential in Figure 3 and below its peak. A starlight
Bounce Orbit is—by definition—an orbit that initially moves inward,
then reverses its r-component of motion—its r-coordinate
bounces—at a turning point on the outer edge of the effective
potential, while its ¢-component of motion continues. After the
bounce, the light moves outward on the same horizontal line in the
figure, and escapes to infinity. A Bounce Orbit cannot reach the
singularity.
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V(M
A @  Mb=1/4 ?

025+ 4————<»>—————————<>— Plunge —

I

15 Light circles on .

%l§ knife-edge at r = 3M " Orbits
0.2 Ei% / M/ gitical = 1/(27)
A |
|
|
0-15‘<7'/ ® Mb=17

I

Trapped inner | \ Outer turning point Bounce

turning 1

Orbits 0.1-{ point Orbits

FORBIDDEN/ ¢
I ¢ 5 v

FIGURE 3 Examples of the three categories into which we sort all orbits (Definition 5). Horizontal
Line (1): a Plunge Orbit with M /b = 1/4 that enters the black hole. Horizontal Line (2): the orbit with
M /beritical = 1/(27) 1/2 that reaches the peak of the effective potential—marked with a little filled circle—
and enters an unstable circular orbit there. Horizontal Line (3):a Bounce Orbit with M /b = 1/7 approaches
the black hole, reverses its r-motion at the outer turning point (Section 11.6), and moves away from the
black hole. The Trapped Orbit with M /b = 1/7 originates in the narrow horizontal region between the
event horizon and the effective potential curve and moves inward through the event horizon.

1
1
[
1
1
I
1
I
1
!
|

2

203 e Trapped Orbit: A trapped orbit is an orbit with |b| > beyitical t0 the
294 left of the effective potential in Figure 3 and below its peak. No

295 starlight orbit can be a Trapped Orbit. An initially outgoing Trapped
296 Orbit outside the event horizon reverses its r-component of motion
297 at the inner turning point on the inner edge of the effective potential.
298 Every Trapped Orbit reaches the singularity unless intercepted.

20 The horizontal line for M /bcyitical in Figure 3 is the dividing line between these
so different categories of orbits. Figure 4 shows Plunge and Bounce Orbits;
sr  Figure 5 shows two Trapped Orbits.

11.5:8 TURNING POINTS
ws  The r-motion of light can reverse at a turning point.

w4 At a turning point the r-component of motion goes to zero, while the
ws  ¢@-component of motion continues. Little filled squares in Figures 3 through 5
ws mark what we call outer and inner turning points.
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Definitions:
Turning point
Outer turning point
Inner turning point
Circular orbit poin

Turning point
subscript: tp
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b/M= 4
b/M = 5.19610
turning——— ¢
points
b/M = 5.19620
o
b/M=7

FIGURE 4 Top two panels: Plunge Orbits. Bottom two panels: Bounce Orbits, each with a little filled
square at the turning point (Section 11.4). Middle two panels: b-values straddle beyitical /M = 5.19615...,
for which the orbit enters a knife-edge circular orbit.

DEFINITION 6. Turning Point
A turning point is the r-value at which the right side of equation (24)
equals zero, where M /b equals the value of the effective potential.

e An outer turning point is to the right and below the peak of the
effective potential (see Figure 3).

e An inner turning point is to the left and below this peak.The peak
itself is the location of the unstable (knife-edge) circular orbit of
light.

e A circular orbit point is the r-value at which the effective potential
is maximum. This is the r-location of an unstable (knife-edge)
circular orbit for light.

We use the subscript tp to label the r-coordinate of a turning point.
Ezample: In Figure 3, Orbit 3 with |b/M| = 7 reverses its r-motion at
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I%M =+6 __—turning point
L 4
»
0 2 3 r/M”
b/M =-6

FIGURE 5 Two Trapped Orbits that originate from the same point just outside the event horizon at
r/M = 27 (little open circle). One orbit has b/M = -6 with an inner turning point (little filled square); the
other has b/M = —6 and no turning point. Both orbits reach the singularity at »/M = 0. Figure 6 adds
labels to this plot.

@ Ty = 5.617M. Any outgoing light with |b/M| = 7 that arrives at the inner
@1 turning point at ryp inner = 2.225M thereafter moves with dr < 0 and enters
w2 the black hole.

a2 Equations (24) and (25) tell us that the turning point 7y, the

22 r-coordinate at which dr/dT = 0 and motion is purely tangential, occurs for
w5 the value of b given by:

Tep /M
b/M = iLl (given rp, find b) (29)
/2
2M
Ttp
326 Comment 2. No turning point inside the event horizon
Turning points 327 Equation (29) guarantees that there can be no turning point for light inside the
only for b > b2 e 228 event horizon, because b/M on the left side is necessarily a real quantity, while
329 the right side of (29) is imaginary for r¢p, < 2M.
w  Equation (29) gives us the value of b when we know the r-coordinate ry;, of the
Derive 7 s turning point. More often, we know the value of b and want to find the
from b. sz r-coordinate of the turning point. In that case, convert (29) into a cubic

s equation in ryp:
Tfp —b*ryp + 2MB* =0 (given b, find 7yp) (30)

234

QUERY 4. Optionel: Some consequences of turning points.

A. From equations (24) and (25) show that a light orbit with a given value of b cannot exist in a
range of r-coordinates determined by the following inequality:

3 — b 4+ 2Mb? <0 (region with no light orbits ) (31)
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B. Show that ineguality (31) describes the shaded region under the effective potential curve in
Figure 3. In oher words, light cannot penetrate the effective potential curve.

240

Find the 342
turning points 343
344

345

346

347
348
349
350
351

352

35

Equation (30) is cubic—includes a third power of ry,. Cubic equations can be
difficult to solve. Here are analytic solutions of (30). The first two yield r
values of the outer and inner turning points, respectively, such as those in
Figure 3. In Query 4 you show that the third solution is real but negative, so
cannot represent the always-positive map r-coordinate:

4 -1

1
Tip = 3M 5 ~cos (v —120°) (32)

(Outer turning points lie at » > 3M.)
1-1

1
Tip, inner = M 5 —cos (1 +120°) (33)
(Inner turning points lie between r/M = 2 and r/M = 3.)
- 1 _1
rNo = 3M 5~ cos z/)} (34)

(Yields negative r: not physical.)

For all three solutions, ¢ depends on b as follows:

2
= éarccos (54[;];/[ — 1> (16| > beritical, 0 < <) (35)
We take what is called the principle value of the arccos z, that is the angle
between 0 and 7 radians whose cosine is z. Recall that the magnitude of the
cosine is never greater than one. Therefore turning points exist only when the
arccos function (35) exists, that is when b > b2, ., or when the horizontal
line for (M/b)? in Figure 3 is at or below the peak of the effective potential.
This makes graphical, as well as analytic, sense.

QUERY 5. Unphysical third solution
Show that the third sslution (34) yields a negative value for r, which cannot represent the non-negative

r-coordinate. 356

a5

35

QUERY 6. Examples of turning points

A. For the outerssnd inner turning points of the orbit with |b/M| = 7, derive the numerical values
Tip = 0.617TMsand 7¢p inner = 2.225M. Use Figure 3 to verify these r-coordinates approximately.

B. Show that F(#zr) = 0 at the turning points.
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turning point
rtp/M =§.37
(])tp= 63

+
Fgpc/M=2

src=0

Fobs /M =1 7 Tobs/M

_ o
q)obs =189
0= =-6
-154°

FIGURE 6 Elaboration of Figure 5. Two Trapped Orbits originate from just outside the event horizon
at rgrc/M = 2T, ¢sre = 0. The counterclockwise orbit, with b/M = +6, rises to a turning point at
(rep/M = 2.37, ¢tp = 63°), then falls back through the event horizon to arrive at the singularity at map
angle ¢o = +279°. The clockwise orbit with b/M = —6 crosses the horizon immediately and reaches
the singularity at the map angle ¢g = —154°. The event X locates a falling observer that intercepts the
counterclockwise light orbit at (rops/M = 1, ¢ops = 189°).

C. An orbit withedmpact parameter |b/M| & beyitical /M = (27)'/? circles at r ~ 3M for a while.
Then it “fallsseff the knife-edge,” either spiraling inward or returning outward to r/M > 1. In
the second case the turning r-coordinate is ry, /M =~ 3, but where on that circle is the turning
point? 366

28

26

QUERY 7. Infinitesimpact parameter
A. From equatiorn(29), find two different conditions that lead to |b/M| — oo.

B. In Figure 3, what horizontal line corresponds to (M/b)? — 0 or |b/M| — 0o? Point out two
places on the graph (one a limiting case) where (V (r)/M)? reaches this line.

3

11.6.8 STARLIGHT ORBIT: FROM STAR TO OBSERVER
as  Starlight orbit must reach me.

Which orbit(s) ss  Which light orbit(s) connect(s) a particular star to a given map location near
connect(s) the star sz the black hole? This question is important because sooner or later we want to
with the observer? s predict in what direction one of the many possible inertial observers at that

s map location looks to see a particular star. But an observer cannot see light
s that does not reach him or her. The central goal of this chapter is to find the
w1 global path of an orbit that connects distant Star X to a given map location
2 Y, whatever the motion may be of an observer at rest or moving through that
s location.
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¢ =70.07°
/ ¢ =70.07°

Primary
Beam

b/M=-8

0=0 3y /M

observer P location:
(robsP M=8, q)obsP: 0)

Beam A passes
outward across
shell /M=8

Turning
> point
a7
/,,—-"'/’ observer Q location:
///// (robsQ/M= 8, ¢obsQ)
FIGURE 7 Starlight orbit A with impact parameter /M = —8 moves in a clockwise

direction to connect the star at map angle ¢ = 70.07° to observer P located at (robsp /M =
8, dobsp = 0). The starlight orbit proceeds to observer Q, crossing outward through the shell
at the same robsq/M = Tobsp /M = 8 but at a different value ¢onsp, to be determined.

?

° Objection 2. Ha, gotcha! You say that the observer can be at any
coordinate rq1s. But inside the event horizon nothing can stand still in
global coordinates. Therefore you cannot have an observer at rons < 2M.

-

You are correct: No observer can remain at constant r inside the event
horizon. However Chapters 6, 7, and 12 describe the rain observer who
starts from rest far from the black hole and drops to its center. This rain
observer receives starlight even inside the event horizon. To predict the
spectacular, ever-changing rain observer’s pre-doom panoramas (Chapter
12), we must know which orbit(s) from every star reach(es) her there.

The orbit labeled A in Figure 7 connects a distant star to a point with map
location (7obs/M = 8, pons = 0) where we will later place one of many possible
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ss Observers. This figure introduces the map angle ¢, of the distant star. The
Map angle ¢oo ws subscript infinity, oo, reminds us that the star lies far from the black hole.
to a star

®oo = (map angle to a distant star, this angle measured (36)

counterclockwise from the direction ¢ = 0)

% Section 11.7 shows that many orbits—in principle an infinite number of
Primary orbit ss orbits—from each star arrive at the map location of any observer. How do we

w9 choose which orbit to follow? Answer: We discover that there is a single

w0 most-direct orbit between star and observer, an orbit whose spatial path is the

w1 least deflected in map coordinates. We call this the primary orbit and give it

w2 most of our attention, often simply calling it “the orbit.”

Primary orbit m What primary orbit connects the star at given map angle ¢, most
between star we directly with the observer at map location (robs, Pobs = 0)7 This is an

and map location w5 important question with a complicated answer. So start with an example.

of the observer 406 Figure 7 shows the interactive software GRorbits plot of a primary Bounce

w7 Orbit between a star at map angle ¢, = 70.07° and an observer at map
ws location (Tobs = 8M, Pobs = 0). Result: The orbit with impact parameter
w  b/M = —8 connects this observer with the star at map angle ¢, = 70.07°.

410 The incoming orbit in Figure 7 sweeps clockwise past the observer at

ar r/M =8, reaches a turning point at smaller r-coordinate, then crosses the
Incoming orbit may sz /M = 8 shell a second time, now in an outgoing direction. Two observers
move out again s located at different points along the same shell can see the same orbit from the

across the same shell. ,;, sgme star.

11.7:8 INTEGRATE THE STARLIGHT ORBIT
w6 An exact and immediate result

a7 Our goal is to plot @oo — Pons for starlight as a function of rops for a given

Goal: To plot ws  value of the impact parameter b. To accomplish this, integrate d¢/dr directly.
Poo — Pobs a9 Figure 7 shows two cases. Case I: The orbit reaches the observer before the
for starlight «20 turning point. Case II: The obit reaches the observer after the turning point.

« Both cases integrate equation (19).

Tobs [
Boo — obs = / S F b (37)
ase I: observer before turning point

C I: ob befi ing poi
Ttp b 1 Tobs b 1
¢oo - (bobs = B sz (ba ’/’)dT + TigF (b7 ’I")d’l" (38)

(Case II: observer after turning point)

w2 Figure 8 displays the result of these integrals. The vertical axis “unrolls” the
423 ¢-angle.
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PYY Objection 3. How do you carry out these integrals? Function F'(b,r) in

425 (16) is complicated; these integrations must be difficult.

2 @ Modern numerical methods evaluate these integrals to high accuracy. We

427 do not pause here to describe these methods.
Plunge Orbit 428 Figure 3 previewed the summary message of Figure 8: An incoming orbit
has small [b|. 2o with small magnitude of |b| plunges through the event horizon to the
Bounce Orbit w0 singularity. An incoming orbit with a large magnitude of |b| deflects and

has large |b|. w1 returns outward again. An incoming orbit with the particular intermediate
w2 value +beitical circles temporarily at » = 3M, then either continues ingoing or

w3 becomes outgoing.

?

FEYE ] Objection 4. You are not telling us the whole story! Orbits in most figures
435 of this chapter have arrows on them. Every arrow tells us the direction of
436 motion of light at that place along the orbit. But motion involves increments
437 in the T'-coordinate. Your equations that lead to these figures do not

438 contain global T'. Therefore these equations can give us only the curves
439 themselves, without arrows.

.‘

440 Yes and no. Equation (5) defines b as L/ E, so the sign of the impact

441 parameter is the same as the sign of L. This means that the motion of light

442 is counterclockwise for positive values of b and clockwise for negative

443 values. So equations (38) and (39) do give us the directions of motion

444 (arrow directions) simply from the signs of b/M in those equations.

445 Indeed, these equations do not tell us the map position of each light flash

446 as a function of the T'-coordinate. But we are interested in the plot of a

447 steady starlight orbit, which does not vary with T'.

as8 Sample Problems 2 illustrate uses of Figure 8.

449 Comment 3. Every black hole redirects to every observer multiple orbits

450 from every star.

451 You can use Figure 8 to find the value b of an orbit that connects any distant star
452 (—180° < ¢ < +180°) to a map location on some circle of any r-coordinate
453 around the black hole. Whoa! Does this mean that the black hole never obscures
454 any star in the heavens for an observer near it? Yes, and more: The following

455 section and Figure 10 show that every black hole in the visible Universe redirects
456 multiple orbits from every single star in the heavens to an observer at every

457 single map location.

11.8H MULTIPLE STARLIGHT ORBITS FROM EVERY STAR
w0 An infinite number of orbits that appear fainter and fainter to an observer.

wo It is remarkable that every map location near a black hole receives multiple
One star: w1 orbits—in principle an infinite number of orbits—from a single star, and thus
Infinite images?
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FIGURE 8 Difference in map angles between a distant star and the observer at map location
(robs/M, ¢obs) derived for an orbit of impact parameter b/M from that star. To reduce clutter, we define
b* = b/M. Arrows on the curves tell whether the starlight is incoming or outgoing; at a turning point the
orbit changes from incoming to outgoing.

w2 from every star in the heavens. Figure 9 replots the primary orbit of Figure 7
«s  and adds two additional orbits, called higher-order orbits from the same

w4 star. By trial and error, the interactive software program GRorbits finds values
ws b/M = +5.4600 and b/M = —5.2180 for these additional orbits from the same

w6 star.
Higher-order 457 In Figure 9, the higher-order orbit with b/M = +5.4600 moves around the
orbits s black hole counterclockwise and approaches the map location

w (r/M =38, $ =0) from below. This orbit lacks 70.07° of making a complete

a0 circuit around the black hole. Therefore the total angle to the same star is
oo = —(360° — 70.07°) = —289.93°.

472 The next higher-order orbit with /M = —5.2180 moves around the black
a3 hole clockwise and approaches the map location (r/M = 8, ¢ = 0) from above.
s This orbit makes a complete circuit around the black hole, plus 70.07°, for a
a5 total of 430.07°. Therefore the total angle to the same star is

7 Poo = +(360° + 70.07°) = +430.07°.

a7 Figure 10 extends the vertical scale of Figure 8 to show orbits with
Each observer a8 b-values close to the critical value that circle several times around the black
receives many a9 hole before they either escape outward or plunge on inward. The upward and
orbits from w0 downward vertical scales in Figure 10 extend indefinitely, leading to more and
every star. e more orbits with b-values on either side of beyitical/M = (27)1/2 = 5.196152....

w2 Conclusion: An observer at each r-coordinate rqps receives multiple orbits—in
ss  principle an infinite number of orbits—from every star in the heavens.
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Sample Problems 1. Orbits that reach /M =3

Think of orbits with different b-values that reach the observer the curves b/M = —1 and b/M = —2. Therefore the

map location at (rops/M = 3, ¢obs = 0). Use Figure 8 to Plunge Orbit with b &~ —1.6 connects the star at map

provide approximate answer the following questions. angle oo = +30° with the map location (robs/M =
37 qbobs = 0)

A. What is the b-value of the orbit that comes from the star at D. What is the boval f th bit th ¢ h
map angle ¢oo = +60°? Solution A: Look at the vertical ' at is t e. -value o tI e or 't_t at cheSs Iro.m tDe.
dashed line at 7ops/M = 3. This line intersects with _srt;r at nggalltlse rrr:adp ?nge %OM_ :903 : olution h-
the horizontal line oo = +60° very close to the curve h g vertllcT ashe _me TObs/ _I mters;]ects the
b/M = —3, at the point marked G. So this is the b-value bo;\l/z[oria 'Ze T‘l:]oo . '_gl? lvery close tr? ! E cur\sa
of the Plunge Orbit that connects the star at map angle / = 4 I ekp93|t|ve -va Lr:e nlwez:(ns tl at the orbit
oo = +60° with the observer at (rops /M = 3, dope = moves counterclockwise around the black hole.

0). E. an orbit comes from the opposite side of the black hole, at

B. What is the b-value of the orbit that comes from the star $oo = 180°. What is the b-value of this orbit? Solution
at map angle ¢ = +90°? Solution B: The vertical E: Both ¢oo = +180° and ¢oo = —180° are map
dashed line at ro1,s /M = 3 intersects the horizontal line angles to a star on the other side of the black hole. The
$oo = +90° very close to the Plunge Orbit b/M = —4. vertical dashed line 7,15 /M = 3 intersects the horizontal

C. What is the b-value of the orbit that comes from the star lines ¢oo = =£180° approximately half way between
at map angle oo = +30°? Solution C: The vertical b/M = £5andb/M = +(27)'/2 = £5.196. Therefore
dashed line rops /M = 3 intersects with the horizontal line the b-values of these two Plunge Orbits are approximately

~ = +30° about six-tenths of the separation between b ~ £5.1. Optional: Sketch this orbit.

Sample Problems 2. Orbits from a single star that reach observers at different

r-coordinates

Orbits with different b-values from the star at map angle at these different r-coordinates. We estimate the b-values to

$o = +60° reach observers at different r-coordinates  one decimal place.

anng_the line ¢ = 0. What are these b-values at r- o Atrone/M = 12, b/M ~ —10.9, the point marked

coordinates rops/M = 12, 8, 4, 2, and 1? In each case F in the fiqure: a Bounce Orbit

say whether the orbit is a Plunge Orbit, a Bounce Orbit, or a gure;

Trapped Orbit. o Atrops/M = 8,b/M =~ —7.3, a Bounce Orbit

o Atrons/M =4,b/M =~ —3.8, a Plunge Orbit

Solution: All of the orbits are from a star; therefore none A M =2 b/M 2.0. 2 Pl Orbi

of them can be a Trapped Orbit. In Figure 8, look at the o Atrops/M =2,b/M =~ —2.0, a Plunge Orbit

intersections of horizontal line ¢ = +60° with vertical lines o Atrops/M =1,b/M ~ —1.2, a Plunge Orbit

484 Look at the little square white boxes on the vertical line at /M = 8 in

ws  Figure 10. Three of the little white boxes on the vertical line at r/M = 8

ss correspond to the three starlight orbits displayed in Figure 9. Other little boxes
w7 represent more of the multiple higher-order orbits between this star and this
w8 observer. Each little box is offset vertically by £360° from its nearest neighbor.

489

QUERY 8. Optional: Classify primary and higher-order orbits from a star.
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FIGURE 9 Three of the infinite number of orbits of light that, in principle, arrive at the
same observer from a single star. For the primary orbit with b/M = —8, the star angle is ¢oc =
70.07° (as in Figure 7). For the second orbit, with b/M = +5.4600, the star angle (dashed
arc) is g0 = —(360° — 70.07°) = —289.93°. For the third orbit, with b/M = —5.2180, the
star angle (angle-arc not shown) is ¢ = (360° + 70.07°) = +430.07°. All three orbits come
from the same star, but the observer sees three different images in three different directions.

Classify the primarysand higher-order starlight orbit as a Plunge Orbit or a Bounce Orbit. Figure 10
may be useful. Remimeer: This analysis says nothing about the state of motion of the observer at that
map location: he mawsbe at rest there; she may dive or orbit past that map location.

A. Show that forsevery observer inside /M = 3, all starlight orbits are Plunge Orbits.

B. Show that forsevery observer outside r/M = 3, starlight orbits are either Plunge Orbits or
Bounce Orbitss

C. At any r/M >3, what is the value of b/M that divides Plunge Orbits from Bounce Orbits?

D. Find an equation for the mazimum magnitude of the impact parameter b/M of a Bounce Orbit
that an obserwer on the shell of a given r-coordinate r/M > 3 can see?

E. Show that forsevery observer at r/M > 3, every higher-order orbit is an outgoing Bounce Orbit.
F. Can a primarsor higher-order starlight orbit be a Trapped Orbit? Explain your answer.

502
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FIGURE 10 Expanded vertical scale for starlight orbits of Figure 8. The observer is at
map location (robs/M, dobs). New feature of this plot: Orbits with b* ~ Lbritical/ M follow the
vertical line at r/M = 3 (they circulate at r/M = 3) before they either return to /M > 1
or plunge into the black hole. Result: Multiple orbits—in principle an infinite number of orbits—
from every star arrive at each observer, cross every possible vertical line in the figure. Example:
Three of the little white boxes on the vertical line at /M = 8 correspond to the three starlight
orbits displayed in Figure 9.

Higher-order orbits that go around the black hole more and more times
are less and less intense when they arrive at the observer. There is always
some spread in the orbit, so the more times an orbit circles the black hole, the
more it spreads out transverse to its direction of motion and the smaller the
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FIGURE 11 Forbidden region for light. Near the non-spinning black hole, this forbidden
region separates our world, above the forbidden region, from another world, below the forbidden
region.

sov fraction of photons in the initial orbit that enter the detector at the final map
ss location. Chapter 12 shows that the shell observer also sees higher-order orbits
sis  bunched closer and closer together in the observed direction. Overall result:

sio  Higher and higher order orbits lead to images that get fainter and fainter and

s smear into one another. As a result, an observer sees separately only a few of

sz the infinite number of orbits that, in principle, arrive from each star.

sta Strange results follow from equation (24), which expresses (dr/dT)? in

s terms of the difference (M /b)? — (V (r)/M)?. Differentials dr and dT are both

sis real, so dr/dT must be real. In other words (dr/dT)? must be positive.

sie  Conclusion: (M/b)> — (V(r)/M)? must be positive. A consequence of this

sz condition is that either M /b > +V (r)/M or M/b < —V(r)/M. The result is a
sie. forbidden region where light cannot exist, as shown in Figure 11. Compare

sis.  corresponding Figure 5 in Section 8.4 for the stone and review the text that

Two worlds, s20 accompanies that figure. Near the black hole the forbidden region for light
separated for the 21 separates our world (above the forbidden region) from another world (below
non-spinning 22 the forbidden region). We can move between these worlds only by entering and
black hole

s23  then exiting the event horizon—mnot possible for a non-spinning black hole.

sz« However, we will find that for the spinning black hole a trip from the

sss  corresponding upper region to the corresponding lower region may be possible.
26 John Archibald Wheeler’s radical conservatism says, “Follow the equations

s»  wherever they lead, no matter how strange the result.”
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11.9;8 EXERCISES

29 Note: In the exercises the word approzrimately means that the requested
so  number may be estimated from a figure in this chapter.

st 1. Thought question: Shadow of a Black Hole?

s22 According to legend, a vampire has no reflection in a mirror and casts no

s.3. shadow. When illuminated from one side by a distant incoming flat wave, does
ss«  a black hole cast a shadow on the other side? Think of a possible shadow on a
s flat plane located far away from the black hole where spacetime is flat.

s 2. Values of b for orbits that arrive at r,},s /M = 6.

sv Repeat parts A through E of Sample Problems 2 for orbits that reach the
s, observer at map location (rops/M = 6, dops = 0). Classify each orbit as
s incoming, outgoing, or tangential.

s0 3. Orbits that reach observers at different r-coordinates from the star at map
sa  angle ¢, = —120°.

s« Repeat Sample Problems 2 for a star at map angle ¢o, = —120°.

ss 4. The visual size of a black hole

s« Figure 10 shows the b-values of beams that escape or are captured by the
ss  black hole. The smallest b-value of a beam that can escape is

56 |beritical] = (27)/2M. Some light from every star circles temporarily on this
sz unstable orbit at » = 3M. Because this is a knife-edge orbit, it continually
s sheds light beams that “fall off” to move either inward or outward.

T
A
bcritical
TO EARTH
r > >
AT rEarth
bcritical
4 >
BLACK HOLE AT
THE CENTER OF
OUR GALAXY

FIGURE 12 Schematic diagram showing the visual size of the black hole Sagittarius A*
located at the center of our galaxy, assumed (incorrectly) to be non-spinning. The text shows
that all possible parallel straight beams form a three-dimensional cylinder directed toward the
observer on Earth.
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"Earth = 26 000 light-years

2bcri'(ical
0 observer
Earth on Earth

Sgr A* at our
galaxy center

FIGURE 13 Critical beams from Sgr A* form a long cone as seen from Earth

549 Consider outward light beams that enter the eye of a distant observer on
sso  Earth. Figure 12 shows two such beams on one [r, ¢] slice through the center of
st the black hole. But the same distant observer sees a similar pair of beams that
s2  lie on each of an infinite number of similar slices rotated around the r-axis in
sss  Figure 12. The resulting set of beams form a cylinder observed by the Earth
s« observer.

555 To speak more carefully, the beams we see on Earth do not move ezactly
sss  on a cylinder, but rather on a very long cone with its apex at the Earth

s (Figure 13). As a result, we on Earth see the black hole as a ring. What angle
sss does this ring subtend at our eye on Earth?

559 Answer this question for the monster black hole called Sagittarius A*

so  (abbreviation: SgrA*) with mass Mggra =~ 4 X 108 Mgun that lies at the center
st of our galaxy, about 26 000 light-year from Earth. Label this distance rgayth.
sz Assume (incorrectly) that SgrA* is a nonspinning black hole. Derive and

ss justify an expression for the angular size Ogartn of this black hole observed

s« from Earth. (An exercise in Chapter 20 carries out a more realistic analysis

s that takes account of the spin of this black hole.)

566 A. From Figure 13, derive the following expression for the very small angle
567 aEarth.
2(27)/2 Mg gep
gEarth ~ ()—gr (7" > MSgrA) (39)
TEarth
568 B. Insert into (39) values for Msggra and Earth’s r-coordinate separation
569 from the black hole of rgap¢n light years. The following are results to
570 one significant digit. Find each result to two significant digits:
Ofarth ~ 2 x 10719 radian (40)
~1x1078 degree
~5x107° arcsecond
~ 50 microarcseconds
571 Comment 4. Microwaves, not visible light
572 Dust between Earth and the spinning black hole at the center of our galaxy
573 absorbs visible light. Microwaves pass through this dust, so our detectors on

574 Earth are microwave dishes distributed over the surface of Earth.
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5. The “incoming map floodlight”

Define an incoming map floodlight as a lamp at a given r-coordinate
Tinlamp that emits all light beams that are ingoing at that »—that is, all beams
with a negative r-coordinate differential, dr < 0.

A. An incoming map floodlight at ripjamp/M = 12 emits light that might
have come from stars with approximately what range of map angles
Doo?

B. An incoming map floodlight at ripjamp/M = 6 emits light that might
have come from stars with approximately what range of map angles
Doo?

C. An incoming map floodlight at riyjamp/M = 3 emits light that may have
come from stars with approximately what range of map angles ¢, 7

D. An incoming map floodlight at 7iniamp/M = 1 emits light that may have
come from stars with approximately what range of map angles ¢.7

E. Can the incoming map floodlight at 7iniamp/M = 6 be at rest in global
coordinates? Can the incoming map floodlight at rinjamp/M =1 be at
rest in global coordinates?

6. The “outgoing map floodlight”

Define an outgoing map floodlight as a lamp at a given r-coordinate,
Toutlamp, that emits all light beams that are outgoing at that
r-coordinate—that is, all beams with a positive r-coordinate differential,
dr > 0.

A. An outgoing map floodlight at royglamp/M = 8 emits light that might
have come from stars with approximately what range of map angles
Doo?

B. An outgoing map floodlight at routiamp/M = 5 emits light that may
have come from stars with approximately what range of map angles
boo?

C. An outgoing map floodlight at routiamp/M = 3 emits light that may
have come from stars with approximately what range of map angles
Doo?

D. Is there a range of r-coordinates in which the outgoing map floodlight
is useless? Hint: look at Figure 10.

7. Newton’s plot of map angle difference.

Make a rough sketch (don’t sweat the details) of Figure 8 for orbits of light in
Newtonian mechanics, in which spacetime is flat around the center of
attraction and light is fast particle. What “Newtonian assumptions” do you
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sz make about the path of light under this attraction? (We have no record that
s13  Newton himself made any prediction about the effect of his “gravitational
sta  force” on the orbits of light.)

11.10:M REFERENCES

ets  Initial quotes:

617 Egyptian creation quote from
st M=http:/www.aldokkan.com/religion/creation.htm/=

619 Tuamotuan creation quote from The Myths of Creation by Charles H. Long,
620 George Braziller, New York, 1963, pages 173 and 179.

621 Inuit creation quote from The Power of Stars—How Celestial Observations
622 Have Shaped Civilization by Bryan E. Penprasem, New York, Springer 2011,
623 page 97.

e« The interactive GRorbits program that plots orbits of light is available at
625 website http://stuleja.org/grorbits/

e Download File Name: Ch110rbitsOfLight170511v1.pdf



