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C H A P T E R

11 Orbits of Light19

Edmund Bertschinger & Edwin F. Taylor *
20

Then the sun god Ra emerged out of primal chaos.21

—Egyptian creation story22

And at once Kiho made his eyes to glow with flame—and the23

darkness became light.24

—Tuamotuan (Polynesian) creation story25

And God said, Let there be light: and there was light.26

—first Biblical act of creation, Genesis 1:327

He bringeth them out of darkness unto light by His decree . . .28

—Qur’an 5:1629

Along with death came the Sun the Moon and the stars . . .30

—Inuit creation story31

11.1 TURN A STONE INTO A LIGHT FLASH32

Faster and faster, less and less mass33

Thus far in this book almost all observers have been blind. Chapter 5 defined34

the shell observer but did not predict what he sees when he looks at stars or35

other objects outside his local inertial frame. The rain diver as she descends toSo far, observers
are blind.

36

the singularity (Chapter 7) peers in just two opposite directions—radially37

inward and radially outward. The explorer in her circular orbit around a black38

hole (Chapter 8) does not report what she sees—neither the starry heavens39

around her nor the black hole beneath her. In the present chapter we lay the40

groundwork to cure this blindness: we plot orbits of light in global map41

coordinates.42

But this chapter still does not describe what any observer sees. Recall thatNo local observation
in this chapter

43

we make every measurement and observation in a local inertial frame. The44

present chapter describes only map “starlight orbits,” for example the orbit45

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. This draft may be duplicated for personal and class use.
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that connects remote Star X with an observer at (or passing through) map46

location Y. The following Chapter 12 will tell us in what direction an observer47

at Y looks to see Star X.48

What can we say about the global motion of light around, past, or into a49

spherically symmetric, nonspinning black hole? We ask here no small question:50

Almost every message from events in space comes to us by way of51

electromagnetic radiation of different frequencies. Exceptions: cosmic rays,52

neutrinos, and gravitational waves. A starlight orbit may deflect as it passesSeeing is
not believing.

53

close to a massive object. Near a black hole this deflection can be radical;54

starlight can even go into a circular orbit. This and the following chapter make55

clear that for an observer near a black hole, seeing is definitely not believing!56

How do we plot the global orbit of light around a black hole? This is a57

new question; up until now we plotted light cones with short legs that sprout58

from a single event. Now we want to “connect the dots,” the events along anFind orbits
of light.

59

entire orbit of light that stretches from a specified distant star to a given local60

observer near a black hole.61

The free stone has two global constants of motion along its worldline: map62

energy E and map angular momentum L. Chapters 3 and 8 used the PrincipleConstant(s) of
motion for light?

63

of Maximal Aging to derive map expressions for each of these global constants64

of motion. Can we use the Principle of Maximal Aging to find constant(s) of65

motion for a light flash?66

The Principle of Maximal Aging says that a stone chooses a path across67

an adjoining tiny pair of segments along its worldline such that its wristwatch68

time is a maximum between a fixed initial event as the stone enters the pair69

and a fixed final event as it leaves the pair. But the Principle of Maximal70

Aging cannot apply directly to light, and for a fundamental reason: The agingPrinciple of Maximal
Aging does not apply
directly to light.

71

of a light flash along its worldline in a vacuum is automatically zero! Aging72

dτ equals zero along every differential increment of the light flash worldline.73

Question: How can we possibly apply the Principle of Maximal Aging to light,74

whose aging is automatically zero?75

Answer: Sneak up on it! Start in flat spacetime far from a black hole.76

Think of a series of faster and faster stones, each stone with a smaller mass77

than the previous one. Let this series occur in such a way that the map energy78

E remains constant. Far from the black hole, map energy equals theAdapt Principle
of Maximal Aging
to light.

79

measurable energy in a local inertial shell frame, in which the stone has80

squared speed v2shell. Take the limit of equation (28) in Section 1.7 as m→ 081

and vshell → 1:82

E =
m→0

lim
vshell→1

m

(1− v2shell)1/2
= constant (light, r/M � 1) (1)

The present chapter analyzes consequences of this limit-taking process in (1).Stone→ light
as m→ 0
and v → 1

83
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Test
particle

b = impact
parameter

radially inward

Stone

FAR FROM THE BLACK HOLE 

FIGURE 1 Impact parameter b of a stone that approaches the black hole from a far away.
Far from the black hole, we define b as the perpendicular offset between the line of motion of the
approaching stone and the parallel line of motion of a test particle that makes a dive at constant
φ into the black hole. Values of b and M determine whether or not the black hole captures the
incoming stone.

11.2 IMPACT PARAMETER b84

Impact parameter from map angular momentum and map energy85

Chapter 8 analyzed circular orbits of a stone around the black hole. Now we86

want to describe more general orbits of both a stone and a light flash, so we87

define an orbit.88

DEFINITION 1. Orbit: Stone or light flash89

An orbit is the worldline of a stone or light flash described by globalDefinition:
orbit

90

coordinates. An orbit need not be circular around an origin, it need not91

be closed, it need not even remain in a bounded region of space.92

A starlight orbit is a special case of the orbit:93

DEFINITION 2. Starlight orbit94

A starlight orbit is the orbit (Definition 1) of a light flash emitted by a star.Definition:
starlight orbit

95

Think first about the orbit of a free stone far from the black hole—the96

right side of Figure 1. Far from the black hole this orbit is straight. How do we97

measure this orbit to verify that it is straight? As always, carry out98

measurements in a local inertial frame. We choose a shell frame (Section 5.7).99

Sufficiently far from the black hole this “local” shell frame can be quite large“Straight line”
verified in local
shell frame.

100

in the sense that over a significant range of r and φ special relativity correctly101

describes this orbit as a straight line. Now find a parallel straight line orbit102

that—by trial and error—moves without deflection to the center of the black103

hole (verified by measurement in a series of shell frames on both sides of104

Figure 1).105

In a local inertial shell frame far from the black hole, we can measure106

perpendicular distances between parallel orbits. This leads to the definition of107
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the impact parameter, with the symbol b. In a preliminary definition, we108

define the impact parameter of a stone far from the black hole:109

DEFINITION 3. Impact parameter b of a stone (preliminary)110

The impact parameter b of a stone is the perpendicularPreliminary
definition:
impact parameter

111

distance—measured far from the black hole—between the straight orbit112

of the free stone and the parallel straight orbit of a second stone (test113

particle) that plunges at constant φ into the black hole.114

115

QUERY 1. Every moving stone has an impact parameter116

Show that every distant stone that changes global coordinates r or φ (or both) has an impact117

parameter—even a stone that moves away from the black hole.118

119

Thus far the definition of the impact parameter is purely geometric.120

However, the right side of Figure 1 can be used to define angular momentum.121

The angular momentum of the stone takes the simple form:122

Lfar ≡ bfarpfar (stone in distant—flat—spacetime) (2)

where pfar is the momentum of special relativity (Section 1.8). Equation (2)123

determines the value of L where r/M � 1, that is where spacetime is flat.Map angular
momentum L

124

However L is a map constant of motion, the same everywhere around the125

black hole. Therefore its value, calculated from (2) far from the black hole, is126

the same close to the black hole.127

Recall equation (39) for a stone in Section 1.9, with p defined in (2):128

m2 = E2 − p2 = E2 −
(
L

b

)2

(stone, flat spacetime) (3)

Solve this equation for b, in which b and L are either both positive or bothImpact parameter
of a stone

129

negative:130

b ≡ L

(E2 −m2)
1/2

(impact parameter for a stone, everywhere) (4)

131

Both map energy E and map angular momentum L are map constants of132

motion and m is an invariant quantity. Therefore equation (4) is valid close to133

the black hole as well as far away. Even though it was derived assuming flat134

spacetime, we take (4) to define b everywhere. Close to the black hole, b is no135

longer the perpendicular distance of Definition 3. But every orbit has an L and136

an E and therefore can be assigned a unique value of b.137

For light, carry out the limit-taking process demanded in (1), with138

constant E but decreasing m. The limit m→ 0 defines the impact parameter139

for light:Impact parameter
of a light flash

140
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b ≡ L

E
(impact parameter of light, everywhere) (5)

141

This leads to the final definition of the impact parameter for a stone or a142

light flash around a black hole:143

DEFINITION 4. Impact parameter b144

The impact parameter b for a stone is given by (4) and for a light flashDefinition:
impact parameter b

145

by (5).146

Objection 1. You use two perfectly good constants of motion, L and E147

and give a geometric interpretation for a combination of them. So what? I148

can define a thousand combinations of L and E. Who cares? I didn’t need149

any such combination for a stone. Why are you wasting my time?150

We introduce b because neither L alone or E alone will be helpful when151

m→ 0. Equations of motion for light derived below depend only on the152

fraction L/E and no other combination. Global motion of a stone depends153

on two constants of motion, L and E. Global motion of light is simpler,154

completely described by one constant of motion, b ≡ L/E. Rejoice!155

We have defined impact parameter, but we have not yet predicted the156

global motion of a light flash near the black hole. To obtain equations of157

motion for light, we again apply the limit-taking process of equation (1), in158

this case to the equations of motion for a stone from Chapter 8.159

11.3 EQUATIONS OF MOTION FOR LIGHT160

A single constant of motion for light, namely b161

Light spreads out from a star as a spherical wave. We assume that every starFlat starlight
wavefront approaching
the black hole . . .

162

is so far away that as its starlight approaches our black hole—but still travels163

in flat spacetime—it forms a flat wavefront (right side of Figure 2).164

We already have another powerful way to describe starlight in flat165

spacetime: as a bundle of parallel straight orbits. Figure 2 displays four. . . is equivalent to
a bundle of parallel
straight orbits.

166

starlight orbits from a single star, each with a different impact parameter b, as167

these orbits approach the black hole. Far from the black hole (right side of the168

figure) these starlight orbits remain parallel to one another. Close to the black169

hole (left side of the figure) they diverge: Only the orbit with b/M = 0 remains170

straight. Starlight Orbit 1 deflects but escapes; Starlight Orbit 2 enters aClose to the black
hole, orbits from
the star are neither
parallel nor straight.

171

circular orbit; Starlight Orbit 3 plunges to the center of the black hole.172

Starlight Orbit 2 in Figure 2 is unique; it enters a circular orbit at173

r = 3M . We call this orbit critical and its impact parameter the critical impact174

parameter, bcritical. In Query 3 you show that the critical impact parameterCritical impact
paraneter

175

has the value bcritical = (27)1/2M .176
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FIGURE 2 Jagged lines separate flat spacetime far from the black hole (on the right) from
curved spacetime near the black hole (on the left). The right side of this plot shows two ways to
visualize starlight orbits far from the black hole: first as as a set of straight parallel orbits, second
as a flat wavefront. On the left side of this plot, near the black hole, only the starlight orbit with
b/M = 0 remains straight, while starlight orbits 1 through 3, originally parallel, diverge: Starlight
Orbit 1 with the impact parameter b/M = 7 deflects but escapes. Starlight Orbit 2 with the so-
called critical impact parameter bcritical/M , equation (28), becomes an unstable circular orbit at
r/M = 3. Starlight Orbit 3 with b/M = 4 crosses the event horizon and ends at the singularity.

We need general equations of motion of light, which we now derive using177

the limiting process of equation (1). Start with equations of motion of a stone178

from Section 8.3, written in slightly altered form:179

dr

dτ
= ±

[(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)]1/2
(stone) (6)

dφ

dτ
=

L

mr2
(stone) (7)

dτ

dT
=

(
1− 2M

r

)
E

m
±
(

2M

r

)1/2
[(

E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)]1/2 (8)

Comment 1. Choice of signs for the motion of a stone180

We choose the stone’s wristwatch time to advance as the stone moves along its181

worldline. Therefore the upper (+) sign in (6) is for a stone with increasing r and182

the lower (−) sign is for a stone with decreasing r. The ± sign in the183

denominator of equation (8) has the same meaning.184

In order to describe the motion of light, we need to eliminate dτ from185

these equations, because adjacent events along the worldline of a light flash186
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have zero wristwatch time lapse between them: dτ = 0. Multiply both sides of187

(6) by the corresponding sides of (8), then factor out and cancel (E/m) from188

the resulting numerator and denominator.189

dr

dT
=
dr

dτ

dτ

dT
(stone) (9)

= ±

(
1− 2M

r

)[
1−

(m
E

)2(
1− 2M

r

)(
1 +

L2

m2r2

)]1/2
1±

(
2M

r

)1/2 [
1−

(m
E

)2(
1− 2M

r

)(
1 +

L2

m2r2

)]1/2
Equation (1) requires that for light m→ 0 while E remains constant. Apply190

these requirements to (9). The result is our first equation of motion for light:191

dr

dT
= ±

(
1− 2M

r

)[
1−

(
1− 2M

r

)(
L

rE

)2
]1/2

1±
(

2M

r

)1/2
[

1−
(

1− 2M

r

)(
L

rE

)2
]1/2 (light) (10)

Carry out a similar procedure on equations (7) and (8): multiply their192

corresponding sides dφ/dT = (dφ/dτ)(dτ/dT ), factor out E/m in the193

denominator, cancel m with one in the numerator, then let m→ 0. The result194

is our second equation of motion for light:195

dφ

dT
=

L

r2E

(
1− 2M

r

)

1±
(

2M

r

)1/2
[

1−
(

1− 2M

r

)(
L

rE

)2
]1/2 (light) (11)

To construct our third equation of motion for light, combine (10) with (11):196

dr

dφ
=

(
dr

dT

)(
dT

dφ

)
= ±r

2E

L

[
1−

(
1− 2M

r

)(
L

rE

)2
]1/2

(light) (12)

Equations (10) through (12) are the equations of motion for light. The choice197

of signs in these equations is the same as for a stone, given in Comment 1.198

Our three equations of motion for light contain a wonderful surprise: The199

only quantity we need to describe the orbit of light is the ratio L/E. Meaning:200

The orbit of light near a black hole is completely determined by the single201

value of the ratio L/E instead of by the separate values of the map constantsLight motion depends
on only L/E = b.

202

of motion L and E. And equation (5) tells us that this ratio equals the impact203

parameter for light.204

Substitute the expression b = L/E into equations (10) through (12):205
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dr

dT
= ±

(
1− 2M

r

)[
1−

(
1− 2M

r

)(
b

r

)2
]1/2

1±
(

2M

r

)1/2
[

1−
(

1− 2M

r

)(
b

r

)2
]1/2 (light) (13)

dφ

dT
=

b

r2

(
1− 2M

r

)

1±
(

2M

r

)1/2
[

1−
(

1− 2M

r

)(
b

r

)2
]1/2 (light) (14)

dr

dφ
= ±r

2

b

[
1−

(
1− 2M

r

)(
b

r

)2
]1/2

(light) (15)

An identical square-bracket expression appears multiple times in these206

equations. To simplify them, define a new function F (b, r):207

F (b, r) ≡
[
1− b2

r2

(
1− 2M

r

)]1/2
(light) (16)

208

so that equations of motion for light become:Equations of
motion for light

209

dr

dT
= ±

(
1− 2M

r

)
F (b, r)

1±
(

2M

r

)1/2

F (b, r)

(light) (17)

dφ

dT
=

b

r2

(
1− 2M

r

)
1±

(
2M

r

)1/2

F (b, r)

(light) (18)

dr

dφ
= ±r

2

b
F (b, r) (light) (19)

210

The ± signs in equations (17) through (19) have the same interpretation as in211

(6) through (8) and also (10) through (12), namely the upper (+) sign212

describes light with increasing r and the lower (−) describes light with213

decreasing r.214

Chapters 9 and 10 use interactive software GRorbits to plot orbits of a215

stone. GRorbits also integrates equations (17) through (19) for light. Given216
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the value of b and initial location, the software plots the orbit and outputs a217

spreadsheet with global coordinates (T, r, φ) of events along the orbit.218

Equations of motion for light look complicated. We now derive a simple219

way to visualize the global r-motion of light using the effective potential,220

modeled after the effective potential for a stone in Section 8.4.221

11.4 EFFECTIVE POTENTIAL FOR LIGHT222

Describe global motion of light at a glance.223

The present section sets up an effective potential for a light orbit in order to224

visualize its r-component of motion simply and directly. Recall equation (21)225

in Section 8.4 that relates the r-motion of a stone to its effective potential:226

(
dr

dτ

)2

=

(
E

m

)2

−
(
VL(r)

m

)2

(stone) (20)

The key idea of this equation is that the first term on the right is a constant of227

the stone’s motion—independent of location—while the second term is a228

function of r—independent of the properties or motion of the stone. We229

defined the second term to be the effective potential for a stone.230

To make similar predictions about the r-motion of light, we seek an231

equation with the same form as (20). To find this equation, square both sides232

of (17), rearrange the results, and multiply through by (M/b)2 to obtain:233

(
M

b

)2(
1− 2M

r

)−2 [
1±

(
2M

r

)1/2

F (b, r)

]2(
dr

dT

)2

=

(
M

b

)2

F 2(b, r)(21)

On the left side of (21) we define the function234

A2(b, r) ≡
(
M

b

)2(
1− 2M

r

)−2 [
1±

(
2M

r

)1/2

F (b, r)

]2
(light) (22)

and on the right side of (21) we substitute for F 2(b, r) from (16).235

(
M

b

)2

F 2(b, r) =
M2

b2
− M2

b2
b2

r2

(
1− 2M

r

)
(light) (23)

Substitute the left sides of (22) and (23) into (21) and write the result as:effective potential
for light

236
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Box 1. Use of the effective potential for a stone and for a light flash
Compare and contrast the forms and uses of effective
potentials for a stone and for a light flash:

(
dr

dτ

)2

=

(
E

m

)2

−
(
VL(r)

m

)2

(stone) (26)

A2

(
dr

dT

)2

=

(
M

b

)2

−
(
V (r)

M

)2

(light) (27)

For a stone:

• VL depends on both L and r.

• The turning point occurs where VL = ±E.

• |E| < |VL| is forbidden

• When |E| ≥ |VL|, equation (26) gives |dr/dτ | in
terms of r, L, E.

For a light flash:

• V depends on r alone.

• The turning point occurs where V/M = ±M/b =

±ME/L, not E alone.

• |M/b| < |V/M | is forbidden

• When |M/b| ≥ |V/M |, equation (27) gives |dr/dT |
in terms of r, b.

What’s the difference between the two cases?
For light,L has been removed from the effective potential and
combined with E; only b = L/E remains. Impact parameter
b can be taken completely out of the effective potential, so
V depends only on r. This makes orbits of light simpler than
orbits of a stone. Only one constant of motion is needed, not
two.

A2(b, r)

(
dr

dT

)2

=

(
M

b

)2

−
(
V (r)

M

)2

(light) (24)

where (25) defines the square of the effective potential for light

(
V (r)

M

)2

≡ M2

r2

(
1− 2M

r

)
(light) (25)

237

Figure 3 plots positive values of the effective potential for light. In Query 2238

you show that the coefficient A2(b, r) in equation (22) is well behaved when239

light descends to the event horizon, provided b 6= 0.240

Box 1 compares and contrasts effective potentials for light and for stones.241

242

QUERY 2. Approaching the event horizon243

What happens to the left side of (24) as r/M → 2+, that is as light approaches the event horizon from244

above? Just above the event horizon set r/M = 2(1 + ε) where 0 < ε� 1 and use our standard245

approximation (inside the front cover) to show that coefficient A2(b, r) in (24) is well behaved even as246

light descends to the event horizon, provided b 6= 0.247

248

With the effective potential we can predict—at a glance—the r-component249

of light motion. The first term, (M/b)2, on the right side of (24) is a constantQuick predictions with
the effective potential

250

of motion, the same everywhere along the orbit. The second term is a function251

of r and does not include b. Figure 3 and its caption also contain a preview of252

turning points, which we analyze more fully in Section 11.4.253
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Huge payoff: The right side of (24) does not include the energy or angular254

momentum of light. One effective potential applies to light orbits of everySame effective
potential for light of
EVERY energy
(EVERY wavelength)

255

energy and every angular momentum. In particular, it applies to256

electromagnetic radiation of all wavelengths: radio waves; microwaves;257

infrared, visible, and ultraviolet light; X-rays; and gamma rays! (This result258

assumes that the wavelength of light is small compared with the coordinate259

separations over which spacetime curvature changes appreciably.)260

261

QUERY 3. Critical impact parameter262

A. Show that the peak of the effective potential occurs at r/M = 3.263

B. Verify that the so-called critical value of the impact parameter at r/M = 3 is264

bcritical
M

= (27)
1/2

= 5.196 152 42 (light, critical impact parameter) (28)

265

C. From Figure 3 read off approximate values of b/M and r/M for the circular orbit. Compare266

these values with the analytic results of Items A and B.267

268

Both the effective potential for light and effective potentials for stonesEffective potentials
reveals turning
points.

269

enable us to find the r-coordinate at which the r-component of motion goes to270

zero, which occurs for a circular orbit and also at what we call a turning point271

(Section 8.4 and Section 11.5).272

DEFINITION 5. Plunge Orbit, Bounce Orbit, Trapped Orbit273

Figure 3 sorts all light orbits near a black hole into three categories,274

which we give names to simplify our analysis:275

• Plunge Orbit: A plunge orbit is an incoming or outgoing orbit with276

|b| < bcritical that passes above the peak of the effective potential277

curve in Figure 3. A starlight Plunge Orbit is—by definition—an278

incoming orbit that plunges through the event horizon to the279

singularity. Outside the event horizon light can, in principle, move in280

either direction along the plunge orbit shown. We call this a plunge281

orbit, whether r decreases or increases.282

• Bounce Orbit: A bounce orbit is an incoming or outgoing orbit with283

|b| > bcritical. The bounce orbit exists only to the right of the284

effective potential in Figure 3 and below its peak. A starlight285

Bounce Orbit is—by definition—an orbit that initially moves inward,286

then reverses its r-component of motion—its r-coordinateDefinitions:
Plunge Orbit
Bounce Obit
Trapped Orbit

287

bounces—at a turning point on the outer edge of the effective288

potential, while its φ-component of motion continues. After the289

bounce, the light moves outward on the same horizontal line in the290

figure, and escapes to infinity. A Bounce Orbit cannot reach the291

singularity.292
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FIGURE 3 Examples of the three categories into which we sort all orbits (Definition 5). Horizontal
Line (1): a Plunge Orbit with M/b = 1/4 that enters the black hole. Horizontal Line (2): the orbit with
M/bcritical = 1/(27)1/2 that reaches the peak of the effective potential—marked with a little filled circle—
and enters an unstable circular orbit there. Horizontal Line (3): a Bounce Orbit withM/b = 1/7 approaches
the black hole, reverses its r-motion at the outer turning point (Section 11.6), and moves away from the
black hole. The Trapped Orbit with M/b = 1/7 originates in the narrow horizontal region between the
event horizon and the effective potential curve and moves inward through the event horizon.

• Trapped Orbit: A trapped orbit is an orbit with |b| > bcritical to the293

left of the effective potential in Figure 3 and below its peak. No294

starlight orbit can be a Trapped Orbit. An initially outgoing Trapped295

Orbit outside the event horizon reverses its r-component of motion296

at the inner turning point on the inner edge of the effective potential.297

Every Trapped Orbit reaches the singularity unless intercepted.298

The horizontal line for M/bcritical in Figure 3 is the dividing line between these299

different categories of orbits. Figure 4 shows Plunge and Bounce Orbits;300

Figure 5 shows two Trapped Orbits.301

11.5 TURNING POINTS302

The r-motion of light can reverse at a turning point.303

At a turning point the r-component of motion goes to zero, while the304

φ-component of motion continues. Little filled squares in Figures 3 through 5305

mark what we call outer and inner turning points.306
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b/M =  7

b/M =  5.19620

b/M =  5.19610

turning 
points

b/M =  4

r0

FIGURE 4 Top two panels: Plunge Orbits. Bottom two panels: Bounce Orbits, each with a little filled
square at the turning point (Section 11.4). Middle two panels: b-values straddle bcritical/M = 5.19615...,
for which the orbit enters a knife-edge circular orbit.

DEFINITION 6. Turning Point307

A turning point is the r-value at which the right side of equation (24)308

equals zero, where M/b equals the value of the effective potential.309

• An outer turning point is to the right and below the peak of theDefinitions:
Turning point
Outer turning point
Inner turning point
Circular orbit poin

310

effective potential (see Figure 3).311

• An inner turning point is to the left and below this peak.The peak312

itself is the location of the unstable (knife-edge) circular orbit of313

light.314

• A circular orbit point is the r-value at which the effective potential315

is maximum. This is the r-location of an unstable (knife-edge)316

circular orbit for light.317

We use the subscript tp to label the r-coordinate of a turning point.318

Example: In Figure 3, Orbit 3 with |b/M | = 7 reverses its r-motion atTurning point
subscript: tp

319
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r/M
ii

20 3

b/M = +6

b/M  = -6

turning point

FIGURE 5 Two Trapped Orbits that originate from the same point just outside the event horizon at
r/M = 2+ (little open circle). One orbit has b/M = +6 with an inner turning point (little filled square); the
other has b/M = −6 and no turning point. Both orbits reach the singularity at r/M = 0. Figure 6 adds
labels to this plot.

rtp = 5.617M . Any outgoing light with |b/M | = 7 that arrives at the inner320

turning point at rtp, inner = 2.225M thereafter moves with dr < 0 and enters321

the black hole.322

Equations (24) and (25) tell us that the turning point rtp, the323

r-coordinate at which dr/dT = 0 and motion is purely tangential, occurs for324

the value of b given by:325

b/M = ± rtp/M(
1− 2M

rtp

)1/2
(given rtp, find b) (29)

Comment 2. No turning point inside the event horizon326

Equation (29) guarantees that there can be no turning point for light inside theTurning points
only for b2 > b2critical

327

event horizon, because b/M on the left side is necessarily a real quantity, while328

the right side of (29) is imaginary for rtp < 2M .329

Equation (29) gives us the value of b when we know the r-coordinate rtp of the330

turning point. More often, we know the value of b and want to find theDerive rtp
from b.

331

r-coordinate of the turning point. In that case, convert (29) into a cubic332

equation in rtp:333

r3tp − b2rtp + 2Mb2 = 0 (given b, find rtp) (30)

334

QUERY 4. Optional: Some consequences of turning points.335

A. From equations (24) and (25) show that a light orbit with a given value of b cannot exist in a336

range of r-coordinates determined by the following inequality:337

r3 − b2r + 2Mb2 < 0 (region with no light orbits ) (31)
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B. Show that inequality (31) describes the shaded region under the effective potential curve in338

Figure 3. In other words, light cannot penetrate the effective potential curve.339

340

Equation (30) is cubic—includes a third power of rtp. Cubic equations can be341

difficult to solve. Here are analytic solutions of (30). The first two yield rFind the
turning points

342

values of the outer and inner turning points, respectively, such as those in343

Figure 3. In Query 4 you show that the third solution is real but negative, so344

cannot represent the always-positive map r-coordinate:345

rtp = 3M

[
1

2
− cos (ψ − 120◦)

]−1
(32)

(Outer turning points lie at r > 3M.)

rtp, inner = 3M

[
1

2
− cos (ψ + 120◦)

]−1
(33)

(Inner turning points lie between r/M = 2 and r/M = 3.)

rNO = 3M

[
1

2
− cosψ

]−1
(34)

(Yields negative r: not physical.)

For all three solutions, ψ depends on b as follows:346

ψ ≡ 1

3
arccos

(
54M2

b2
− 1

)
(|b| ≥ bcritical, 0 ≤ ψ ≤ π) (35)

We take what is called the principle value of the arccos z, that is the angle347

between 0 and π radians whose cosine is z. Recall that the magnitude of the348

cosine is never greater than one. Therefore turning points exist only when the349

arccos function (35) exists, that is when b2 ≥ b2critical or when the horizontal350

line for (M/b)2 in Figure 3 is at or below the peak of the effective potential.351

This makes graphical, as well as analytic, sense.352

353

QUERY 5. Unphysical third solution354

Show that the third solution (34) yields a negative value for r, which cannot represent the non-negative355

r-coordinate. 356

357

358

QUERY 6. Examples of turning points359

A. For the outer and inner turning points of the orbit with |b/M | = 7, derive the numerical values360

rtp = 5.617M and rtp, inner = 2.225M . Use Figure 3 to verify these r-coordinates approximately.361

B. Show that F (b, r) = 0 at the turning points.362
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1 20

rsrc/M=2+

φsrc=0

robs/M

φ0 = +279o

φ0 =
-154o

3

b/M = -6

b/M  = +6

Xobs

turning point
r   /M = 2.37tp
φ   = 63o

tp

φobs = 189o
r              /M = 1obs

FIGURE 6 Elaboration of Figure 5. Two Trapped Orbits originate from just outside the event horizon
at rsrc/M = 2+, φsrc = 0. The counterclockwise orbit, with b/M = +6, rises to a turning point at
(rtp/M = 2.37, φtp = 63◦), then falls back through the event horizon to arrive at the singularity at map
angle φ0 = +279◦. The clockwise orbit with b/M = −6 crosses the horizon immediately and reaches
the singularity at the map angle φ0 = −154◦. The event X locates a falling observer that intercepts the
counterclockwise light orbit at (robs/M = 1, φobs = 189◦).

C. An orbit with impact parameter |b/M | ≈ bcritical/M = (27)1/2 circles at r ≈ 3M for a while.363

Then it “falls off the knife-edge,” either spiraling inward or returning outward to r/M � 1. In364

the second case the turning r-coordinate is rtp/M ≈ 3, but where on that circle is the turning365

point? 366

367

368

QUERY 7. Infinite impact parameter369

A. From equation (29), find two different conditions that lead to |b/M | → ∞.370

B. In Figure 3, what horizontal line corresponds to (M/b)2 → 0 or |b/M | → ∞? Point out two371

places on the graph (one a limiting case) where (V (r)/M)2 reaches this line.372

373

11.6 STARLIGHT ORBIT: FROM STAR TO OBSERVER374

Starlight orbit must reach me.375

Which light orbit(s) connect(s) a particular star to a given map location nearWhich orbit(s)
connect(s) the star
with the observer?

376

the black hole? This question is important because sooner or later we want to377

predict in what direction one of the many possible inertial observers at that378

map location looks to see a particular star. But an observer cannot see light379

that does not reach him or her. The central goal of this chapter is to find the380

global path of an orbit that connects distant Star X to a given map location381

Y, whatever the motion may be of an observer at rest or moving through that382

location.383
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Q

P

FIGURE 7 Starlight orbit A with impact parameter b/M = −8 moves in a clockwise
direction to connect the star at map angle φ∞ = 70.07◦ to observer P located at (robsP/M =
8, φobsP = 0). The starlight orbit proceeds to observer Q, crossing outward through the shell
at the same robsQ/M = robsP/M = 8 but at a different value φobsP, to be determined.

Objection 2. Ha, gotcha! You say that the observer can be at any384

coordinate robs. But inside the event horizon nothing can stand still in385

global coordinates. Therefore you cannot have an observer at robs < 2M .386

You are correct: No observer can remain at constant r inside the event387

horizon. However Chapters 6, 7, and 12 describe the rain observer who388

starts from rest far from the black hole and drops to its center. This rain389

observer receives starlight even inside the event horizon. To predict the390

spectacular, ever-changing rain observer’s pre-doom panoramas (Chapter391

12), we must know which orbit(s) from every star reach(es) her there.392

The orbit labeled A in Figure 7 connects a distant star to a point with map393

location (robs/M = 8, φobs = 0) where we will later place one of many possible394
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observers. This figure introduces the map angle φ∞ of the distant star. The395

subscript infinity, ∞, reminds us that the star lies far from the black hole.Map angle φ∞
to a star

396

φ∞ ≡ (map angle to a distant star, this angle measured (36)

counterclockwise from the direction φ = 0)

Section 11.7 shows that many orbits—in principle an infinite number of397

orbits—from each star arrive at the map location of any observer. How do wePrimary orbit 398

choose which orbit to follow? Answer: We discover that there is a single399

most-direct orbit between star and observer, an orbit whose spatial path is the400

least deflected in map coordinates. We call this the primary orbit and give it401

most of our attention, often simply calling it “the orbit.”402

What primary orbit connects the star at given map angle φ∞ mostPrimary orbit
between star
and map location
of the observer

403

directly with the observer at map location (robs, φobs = 0)? This is an404

important question with a complicated answer. So start with an example.405

Figure 7 shows the interactive software GRorbits plot of a primary Bounce406

Orbit between a star at map angle φ∞ = 70.07◦ and an observer at map407

location (robs = 8M,φobs = 0). Result: The orbit with impact parameter408

b/M = −8 connects this observer with the star at map angle φ∞ = 70.07◦.409

The incoming orbit in Figure 7 sweeps clockwise past the observer at410

r/M = 8, reaches a turning point at smaller r-coordinate, then crosses the411

r/M = 8 shell a second time, now in an outgoing direction. Two observersIncoming orbit may
move out again
across the same shell.

412

located at different points along the same shell can see the same orbit from the413

same star.414

11.7 INTEGRATE THE STARLIGHT ORBIT415

An exact and immediate result416

Our goal is to plot φ∞ − φobs for starlight as a function of robs for a given417

value of the impact parameter b. To accomplish this, integrate dφ/dr directly.Goal: To plot
φ∞ − φobs

for starlight

418

Figure 7 shows two cases. Case I: The orbit reaches the observer before the419

turning point. Case II: The obit reaches the observer after the turning point.420

Both cases integrate equation (19).421

φ∞ − φobs =

∫ robs

r=∞

b

r2
F−1(b, r)dr (37)

(Case I: observer before turning point)

φ∞ − φobs =

∫ rtp

r=∞

b

r2
F−1(b, r)dr +

∫ robs

rtp

b

r2
F−1(b, r)dr (38)

(Case II: observer after turning point)

Figure 8 displays the result of these integrals. The vertical axis “unrolls” the422

φ-angle.423



March 31, 2020 16:20 GlobalLightBeams200331v1 Sheet number 20 Page number 11-19 AW Physics Macros

Section 11.8 Multiple Starlight Orbits from Every Star 11-19

Objection 3. How do you carry out these integrals? Function F (b, r) in424

(16) is complicated; these integrations must be difficult.425

Modern numerical methods evaluate these integrals to high accuracy. We426

do not pause here to describe these methods.427

Figure 3 previewed the summary message of Figure 8: An incoming orbitPlunge Orbit
has small |b|.
Bounce Orbit
has large |b|.

428

with small magnitude of |b| plunges through the event horizon to the429

singularity. An incoming orbit with a large magnitude of |b| deflects and430

returns outward again. An incoming orbit with the particular intermediate431

value ±bcritical circles temporarily at r = 3M , then either continues ingoing or432

becomes outgoing.433

Objection 4. You are not telling us the whole story! Orbits in most figures434

of this chapter have arrows on them. Every arrow tells us the direction of435

motion of light at that place along the orbit. But motion involves increments436

in the T -coordinate. Your equations that lead to these figures do not437

contain global T . Therefore these equations can give us only the curves438

themselves, without arrows.439

Yes and no. Equation (5) defines b as L/E, so the sign of the impact440

parameter is the same as the sign of L. This means that the motion of light441

is counterclockwise for positive values of b and clockwise for negative442

values. So equations (38) and (39) do give us the directions of motion443

(arrow directions) simply from the signs of b/M in those equations.444

Indeed, these equations do not tell us the map position of each light flash445

as a function of the T -coordinate. But we are interested in the plot of a446

steady starlight orbit, which does not vary with T .447

Sample Problems 2 illustrate uses of Figure 8.448

Comment 3. Every black hole redirects to every observer multiple orbits449

from every star.450

You can use Figure 8 to find the value b of an orbit that connects any distant star451

(−180◦ < φ∞ ≤ +180◦) to a map location on some circle of any r-coordinate452

around the black hole. Whoa! Does this mean that the black hole never obscures453

any star in the heavens for an observer near it? Yes, and more: The following454

section and Figure 10 show that every black hole in the visible Universe redirects455

multiple orbits from every single star in the heavens to an observer at every456

single map location.457

11.8 MULTIPLE STARLIGHT ORBITS FROM EVERY STAR458

An infinite number of orbits that appear fainter and fainter to an observer.459

It is remarkable that every map location near a black hole receives multiple460

orbits—in principle an infinite number of orbits—from a single star, and thusOne star:
Infinite images?

461
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FIGURE 8 Difference in map angles between a distant star and the observer at map location
(robs/M, φobs) derived for an orbit of impact parameter b/M from that star. To reduce clutter, we define
b∗ ≡ b/M . Arrows on the curves tell whether the starlight is incoming or outgoing; at a turning point the
orbit changes from incoming to outgoing.

from every star in the heavens. Figure 9 replots the primary orbit of Figure 7462

and adds two additional orbits, called higher-order orbits from the same463

star. By trial and error, the interactive software program GRorbits finds values464

b/M = +5.4600 and b/M = −5.2180 for these additional orbits from the same465

star.466

In Figure 9, the higher-order orbit with b/M = +5.4600 moves around theHigher-order
orbits

467

black hole counterclockwise and approaches the map location468

(r/M = 8, φ = 0) from below. This orbit lacks 70.07◦ of making a complete469

circuit around the black hole. Therefore the total angle to the same star is470

φ∞ = −(360◦ − 70.07◦) = −289.93◦.471

The next higher-order orbit with b/M = −5.2180 moves around the black472

hole clockwise and approaches the map location (r/M = 8, φ = 0) from above.473

This orbit makes a complete circuit around the black hole, plus 70.07◦, for a474

total of 430.07◦. Therefore the total angle to the same star is475

φ∞ = +(360◦ + 70.07◦) = +430.07◦.476

Figure 10 extends the vertical scale of Figure 8 to show orbits with477

b-values close to the critical value that circle several times around the blackEach observer
receives many
orbits from
every star.

478

hole before they either escape outward or plunge on inward. The upward and479

downward vertical scales in Figure 10 extend indefinitely, leading to more and480

more orbits with b-values on either side of bcritical/M = (27)1/2 = 5.196152....481

Conclusion: An observer at each r-coordinate robs receives multiple orbits—in482

principle an infinite number of orbits—from every star in the heavens.483
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Sample Problems 1. Orbits that reach r/M = 3

Think of orbits with different b-values that reach the observer
map location at (robs/M = 3, φobs = 0). Use Figure 8 to
provide approximate answer the following questions.

A. What is the b-value of the orbit that comes from the star at
map angle φ∞ = +60◦? Solution A: Look at the vertical
dashed line at robs/M = 3. This line intersects with
the horizontal line φ∞ = +60◦ very close to the curve
b/M = −3, at the point marked G. So this is the b-value
of the Plunge Orbit that connects the star at map angle
φ∞ = +60◦ with the observer at (robs/M = 3, φobs =

0).

B. What is the b-value of the orbit that comes from the star
at map angle φ∞ = +90◦? Solution B: The vertical
dashed line at robs/M = 3 intersects the horizontal line
φ∞ = +90◦ very close to the Plunge Orbit b/M = −4.

C. What is the b-value of the orbit that comes from the star
at map angle φ∞ = +30◦? Solution C: The vertical
dashed line robs/M = 3 intersects with the horizontal line
φ∞ = +30◦ about six-tenths of the separation between

the curves b/M = −1 and b/M = −2. Therefore the
Plunge Orbit with b ≈ −1.6 connects the star at map
angle φ∞ = +30◦ with the map location (robs/M =

3, φobs = 0).

D. What is the b-value of the orbit that comes from the
star at negative map angle φ∞ = −90◦? Solution D:
The vertical dashed line robs/M = 3 intersects the
horizontal line φ∞ = −90◦ very close to the curve
b/M = +4. The positive b-value means that the orbit
moves counterclockwise around the black hole.

E. an orbit comes from the opposite side of the black hole, at
φ∞ = 180◦. What is the b-value of this orbit? Solution
E: Both φ∞ = +180◦ and φ∞ = −180◦ are map
angles to a star on the other side of the black hole. The
vertical dashed line robs/M = 3 intersects the horizontal
lines φ∞ = ±180◦ approximately half way between
b/M = ±5 and b/M = ±(27)1/2 = ±5.196. Therefore
the b-values of these two Plunge Orbits are approximately
b ≈ ±5.1. Optional: Sketch this orbit.

Sample Problems 2. Orbits from a single star that reach observers at different
r-coordinates

Orbits with different b-values from the star at map angle
φ∞ = +60◦ reach observers at different r-coordinates
along the line φ = 0. What are these b-values at r-
coordinates robs/M = 12, 8, 4, 2, and 1? In each case
say whether the orbit is a Plunge Orbit, a Bounce Orbit, or a
Trapped Orbit.

Solution: All of the orbits are from a star; therefore none
of them can be a Trapped Orbit. In Figure 8, look at the
intersections of horizontal line φ∞ = +60◦ with vertical lines

at these different r-coordinates. We estimate the b-values to
one decimal place.

• At robs/M = 12, b/M ≈ −10.9, the point marked
F in the figure; a Bounce Orbit

• At robs/M = 8, b/M ≈ −7.3, a Bounce Orbit

• At robs/M = 4, b/M ≈ −3.8, a Plunge Orbit

• At robs/M = 2, b/M ≈ −2.0, a Plunge Orbit

• At robs/M = 1, b/M ≈ −1.2, a Plunge Orbit

Look at the little square white boxes on the vertical line at r/M = 8 in484

Figure 10. Three of the little white boxes on the vertical line at r/M = 8485

correspond to the three starlight orbits displayed in Figure 9. Other little boxes486

represent more of the multiple higher-order orbits between this star and this487

observer. Each little box is offset vertically by ±360◦ from its nearest neighbor.488

489

QUERY 8. Optional: Classify primary and higher-order orbits from a star.490
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FIGURE 9 Three of the infinite number of orbits of light that, in principle, arrive at the
same observer from a single star. For the primary orbit with b/M = −8, the star angle is φ∞ =
70.07◦ (as in Figure 7). For the second orbit, with b/M = +5.4600, the star angle (dashed
arc) is φ∞ = −(360◦ − 70.07◦) = −289.93◦. For the third orbit, with b/M = −5.2180, the
star angle (angle-arc not shown) is φ∞ = (360◦ +70.07◦) = +430.07◦. All three orbits come
from the same star, but the observer sees three different images in three different directions.

Classify the primary and higher-order starlight orbit as a Plunge Orbit or a Bounce Orbit. Figure 10491

may be useful. Reminder: This analysis says nothing about the state of motion of the observer at that492

map location: he may be at rest there; she may dive or orbit past that map location.493

A. Show that for every observer inside r/M = 3, all starlight orbits are Plunge Orbits.494

B. Show that for every observer outside r/M = 3, starlight orbits are either Plunge Orbits or495

Bounce Orbits.496

C. At any r/M > 3, what is the value of b/M that divides Plunge Orbits from Bounce Orbits?497

D. Find an equation for the maximum magnitude of the impact parameter b/M of a Bounce Orbit498

that an observer on the shell of a given r-coordinate r/M > 3 can see?499

E. Show that for every observer at r/M > 3, every higher-order orbit is an outgoing Bounce Orbit.500

F. Can a primary or higher-order starlight orbit be a Trapped Orbit? Explain your answer.501

502
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FIGURE 10 Expanded vertical scale for starlight orbits of Figure 8. The observer is at
map location (robs/M, φobs). New feature of this plot: Orbits with b∗ ≈ ±bcritical/M follow the
vertical line at r/M = 3 (they circulate at r/M = 3) before they either return to r/M � 1
or plunge into the black hole. Result: Multiple orbits—in principle an infinite number of orbits—
from every star arrive at each observer, cross every possible vertical line in the figure. Example:
Three of the little white boxes on the vertical line at r/M = 8 correspond to the three starlight
orbits displayed in Figure 9.

Higher-order orbits that go around the black hole more and more times503

are less and less intense when they arrive at the observer. There is alwaysHigher-order orbits
have fainter,
smeared images.

504

some spread in the orbit, so the more times an orbit circles the black hole, the505

more it spreads out transverse to its direction of motion and the smaller the506
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FIGURE 11 Forbidden region for light. Near the non-spinning black hole, this forbidden
region separates our world, above the forbidden region, from another world, below the forbidden
region.

fraction of photons in the initial orbit that enter the detector at the final map507

location. Chapter 12 shows that the shell observer also sees higher-order orbits508

bunched closer and closer together in the observed direction. Overall result:509

Higher and higher order orbits lead to images that get fainter and fainter and510

smear into one another. As a result, an observer sees separately only a few of511

the infinite number of orbits that, in principle, arrive from each star.512

Strange results follow from equation (24), which expresses (dr/dT )2 in513

terms of the difference (M/b)2 − (V (r)/M)2. Differentials dr and dT are both514

real, so dr/dT must be real. In other words (dr/dT )2 must be positive.515

Conclusion: (M/b)2 − (V (r)/M)2 must be positive. A consequence of this516

condition is that either M/b > +V (r)/M or M/b < −V (r)/M . The result is a517

forbidden region where light cannot exist, as shown in Figure 11. Compare518

corresponding Figure 5 in Section 8.4 for the stone and review the text that519

accompanies that figure. Near the black hole the forbidden region for lightTwo worlds,
separated for the
non-spinning
black hole

520

separates our world (above the forbidden region) from another world (below521

the forbidden region). We can move between these worlds only by entering and522

then exiting the event horizon—not possible for a non-spinning black hole.523

However, we will find that for the spinning black hole a trip from the524

corresponding upper region to the corresponding lower region may be possible.525

John Archibald Wheeler’s radical conservatism says,“Follow the equations526

wherever they lead, no matter how strange the result.”527
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11.9 EXERCISES528

Note: In the exercises the word approximately means that the requested529

number may be estimated from a figure in this chapter.530

1. Thought question: Shadow of a Black Hole?531

According to legend, a vampire has no reflection in a mirror and casts no532

shadow. When illuminated from one side by a distant incoming flat wave, does533

a black hole cast a shadow on the other side? Think of a possible shadow on a534

flat plane located far away from the black hole where spacetime is flat.535

2. Values of b for orbits that arrive at robs/M = 6.536

Repeat parts A through E of Sample Problems 2 for orbits that reach the537

observer at map location (robs/M = 6, φobs = 0). Classify each orbit as538

incoming, outgoing, or tangential.539

3. Orbits that reach observers at different r-coordinates from the star at map540

angle φ∞ = −120◦.541

Repeat Sample Problems 2 for a star at map angle φ∞ = −120◦.542

4. The visual size of a black hole543

Figure 10 shows the b-values of beams that escape or are captured by the544

black hole. The smallest b-value of a beam that can escape is545

|bcritical| = (27)1/2M . Some light from every star circles temporarily on this546

unstable orbit at r = 3M . Because this is a knife-edge orbit, it continually547

sheds light beams that “fall off” to move either inward or outward.548

r
r=3M

bcritical

bcritical

BLACK HOLE AT 
THE CENTER OF 
OUR GALAXY

TO EARTH

AT rEarth

FIGURE 12 Schematic diagram showing the visual size of the black hole Sagittarius A∗

located at the center of our galaxy, assumed (incorrectly) to be non-spinning. The text shows
that all possible parallel straight beams form a three-dimensional cylinder directed toward the
observer on Earth.
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observer
on EarthSgr A* at our

galaxy center

2bcritical

θEarth

26 000 light-yearsrEarth =

FIGURE 13 Critical beams from Sgr A* form a long cone as seen from Earth

Consider outward light beams that enter the eye of a distant observer on549

Earth. Figure 12 shows two such beams on one [r, φ] slice through the center of550

the black hole. But the same distant observer sees a similar pair of beams that551

lie on each of an infinite number of similar slices rotated around the r-axis in552

Figure 12. The resulting set of beams form a cylinder observed by the Earth553

observer.554

To speak more carefully, the beams we see on Earth do not move exactly555

on a cylinder, but rather on a very long cone with its apex at the Earth556

(Figure 13). As a result, we on Earth see the black hole as a ring. What angle557

does this ring subtend at our eye on Earth?558

Answer this question for the monster black hole called Sagittarius A∗559

(abbreviation: SgrA∗) with mass MSgrA ≈ 4× 106MSun that lies at the center560

of our galaxy, about 26 000 light-year from Earth. Label this distance rEarth.561

Assume (incorrectly) that SgrA∗ is a nonspinning black hole. Derive and562

justify an expression for the angular size θEarth of this black hole observed563

from Earth. (An exercise in Chapter 20 carries out a more realistic analysis564

that takes account of the spin of this black hole.)565

A. From Figure 13, derive the following expression for the very small angle566

θEarth.567

θEarth ≈
2(27)1/2MSgrA

rEarth
(r �MSgrA) (39)

B. Insert into (39) values for MSgrA and Earth’s r-coordinate separation568

from the black hole of rEarth light years. The following are results to569

one significant digit. Find each result to two significant digits:570

θEarth ≈ 2× 10−10 radian (40)

≈ 1× 10−8 degree

≈ 5× 10−5 arcsecond

≈ 50 microarcseconds

Comment 4. Microwaves, not visible light571

Dust between Earth and the spinning black hole at the center of our galaxy572

absorbs visible light. Microwaves pass through this dust, so our detectors on573

Earth are microwave dishes distributed over the surface of Earth.574
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5. The “incoming map floodlight”575

Define an incoming map floodlight as a lamp at a given r-coordinate576

rinlamp that emits all light beams that are ingoing at that r—that is, all beams577

with a negative r-coordinate differential, dr < 0.578

A. An incoming map floodlight at rinlamp/M = 12 emits light that might579

have come from stars with approximately what range of map angles580

φ∞?581

B. An incoming map floodlight at rinlamp/M = 6 emits light that might582

have come from stars with approximately what range of map angles583

φ∞?584

C. An incoming map floodlight at rinlamp/M = 3 emits light that may have585

come from stars with approximately what range of map angles φ∞?586

D. An incoming map floodlight at rinlamp/M = 1 emits light that may have587

come from stars with approximately what range of map angles φ∞?588

E. Can the incoming map floodlight at rinlamp/M = 6 be at rest in global589

coordinates? Can the incoming map floodlight at rinlamp/M = 1 be at590

rest in global coordinates?591

6. The “outgoing map floodlight”592

Define an outgoing map floodlight as a lamp at a given r-coordinate,593

routlamp, that emits all light beams that are outgoing at that594

r-coordinate—that is, all beams with a positive r-coordinate differential,595

dr > 0.596

A. An outgoing map floodlight at routlamp/M = 8 emits light that might597

have come from stars with approximately what range of map angles598

φ∞?599

B. An outgoing map floodlight at routlamp/M = 5 emits light that may600

have come from stars with approximately what range of map angles601

φ∞?602

C. An outgoing map floodlight at routlamp/M = 3 emits light that may603

have come from stars with approximately what range of map angles604

φ∞?605

D. Is there a range of r-coordinates in which the outgoing map floodlight606

is useless? Hint: look at Figure 10.607

7. Newton’s plot of map angle difference.608

Make a rough sketch (don’t sweat the details) of Figure 8 for orbits of light in609

Newtonian mechanics, in which spacetime is flat around the center of610

attraction and light is fast particle. What “Newtonian assumptions” do you611
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make about the path of light under this attraction? (We have no record that612

Newton himself made any prediction about the effect of his “gravitational613

force” on the orbits of light.)614
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