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Circular Orbits around the Spinning
Black Hole

Edmund Bertschinger & Edwin F. Taylor

The Mevlevi Order, founded in 1273 by Jalal ad-Din
Muhammad Rumi’s followers, perform their “dance” and
musical ceremony known as the Sama, which involves the
whirling from which the order acquires its nickname, Whirling
Dervish. The Sama represents a mystical journey of
humanity’s spiritual ascent. Turning towards the truth, the
follower grows through love, deserts ego, finds the truth, and
arrives at the “Perfect.”

—Wikipedia, The Free Encyclopedia [edited]

18.1:H REPRISE: THE DORAN METRIC
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Prepare for a trip into the spinning black hole

“What’s it like to fall into a black hole?” Our first twelve chapters developed
answers to this question for the non-spinning black hole. We could not give
details until Chapter 12, because we needed the background provided by
earlier chapters. “What is it like to fall into a spinning black hole?” Again, we
cannot give details until Chapter 21, because we need the background
provided by Chapters 17 through 20.

But we can say this now: Falling into the spinning black hole has many
more possibilities—and is much more interesting—than falling into the
non-spinning black hole. To reach this conclusion we study orbits of stones and
light. The present chapter examines circular orbits of a stone around the
spinning black hole.

We find that around the spinning black hole, most of the circular orbits
are unstable. An unpowered spaceship can perch temporarily in an unstable
circular orbit on its way to a stable circular orbit (Section 18.8).

In the accretion disk (Section 18.9), gas and dust slowly cascade down
through a series of (semi-)stable circular orbits of decreasing r, each successive
orbit with slightly smaller orbital energy. Electromagnetic radiation carries
away the energy difference between orbits (Section 18.9). We can detect this

*Draft of Second Edition of Ezploring Black Holes: Introduction to General Relativity
Copyright © 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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Doran global metric

Two equations
in three unknowns
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emitted energy at our location far from the black hole. Eventually however, no
circular orbit exists for smaller r, and the accreted material spirals inward
across the event horizon.

To begin, recall the Doran global metric in the equatorial plane of the
isolated spinning black hole—equations (4) and (5) in Section 17.2:

9 1/2 1/2 2
2M

0<® <27

dr? = dT? — (r* +a?)d®* (1)

—oo<T <o, 0<r<oo, (Doran, equatorial plane)

The black hole spin parameter a = J/M, with J the angular momentum of the
black hole (Section 17.2). The spin parameter a has the unit meter. In Query 1
of Section 17.2 you multiplied out (1) to obtain:

d72:(1—2M>dT2—2<
r

oMr \ /2 oM
7"2) dTdr + 2a () dTd®
+a r

(2)

r2
oMy \ 2 r?
+2a (| —— drd® — (| ——— ) dr* — R*d®?
,'a2 + a2 7.2 +G;2
—c0o<T <00, 0<r<oo, 0<® <27 (Doran, equatorial plane)

Equation (6) in Box 1 defines the symbol R.

Comment 1. Heavy algebra

This chapter requires a great deal of algebra to derive many of its equations,
algebra that we mostly omit. Question: Would more advanced mathematics—for
example tensors—make these derivations simpler? Answer: We don't think so,
but you can try!

18.2.:H EQUATIONS OF MOTION FOR A STONE; TWO EFFECTIVE POTENTIALS
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Algebra orgies lead to powerful results.

Our first task is to find equations of motion for a stone in Doran coordinates.
Equation (103) for E/m in Section 17.9 and equation (110) for L/m in Section
17.10 give us two linear equations in the three unknowns d7'/dr, dr/dr, and
d®/dr. Solve them to find dT'/dr and d®/dr as functions of E/m, L/m and
dr/dr. The result is two equations of motion for the stone, both of them
functions of the still-undetermined expression for dr/dr. Box 1, repeated from
Section 17.8, provides expressions for H, w, #, and R in the following
equations:



September 5, 2017 11:04 CircleOrbitsSpin170905v3

Sheet number 4 Page number 18-3 AW Physics Macrosl

Section 18.2 Equations of Motion for a Stone; two Effective Potentials 18-3

This box repeats Box 1 in Section 17.8.

Static limit from Section 17.3:
rg =2M

Reduced circumference from Section 17.2:
2Ma?
R2=r24d>+ e
r
Horizon function from Section 17.3:

H? = % (7’2 —2Mr+a2)
T

r% (r —rgn) (r —rcu)

(8)

where rg and rcp are r-values of the event and Cauchy
horizons, respectively, from Section 17.3.

Box 1. Useful Relations for the Spinning Black Hole

Ring omega from Section 17.3:

2Ma

= 11
Y= TR (11)
An equivalence from Section 17.3:
2M H\?
1- 22y RS2 = (T—) (12)
r R

Definition of o from Section 17.7:

IM 1/2
a = arcsin (—)
r

Definition of 3 from Section 17.8:

a

H] (0<a<n/2)(13)

M\ /2 /r2 4 g2\ /2
TEH _ a2 \/? hori = (T) (T R2a ) (14)
SV 1+ (1 — m) (event horizon) (9)
rou a2 \1/? ) Box 2 examines the values of some of these expressions at
YA =1- (1 - m) (Cauchy horizon) (10)  the event and Cauchy horizons.
dI  ( R\’ [(E-wL R d
= (rH) < mw ) + 7«/61)'—]2 df: (equations of motion) (3)
d® 1 ,_2M\ L 2MaE 2Mr \'? dr n
o _sm) = g == bl
dr  (rH)? r ) m r r2 + a2 dr
8 To find dr/dr on the right sides of these equations, divide both sides of
Find dr/dr, s the Doran metric (1) by d7?; into the result substitute dT'/dr and d®/dr from
the third equation s equations (3) and (4). Extensive algebra leads to the third equation of motion:
of motion.
1/2 L 1/2
d R (E—-V" E -V
R (L) <L> (stone) (15)d
dr r m m

87

88

black hole:

89

Here V= (r) are the effective potentials (two of them!) for the spinning

90

L2

1/2
2}32) (stone, effective potentials) (16)
m
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TWO effective ot The =+ sign in (16) chooses between the two effective potentials, while the +
potentials « sign in (15) tells us whether the stone moves to larger or smaller r. Note that
e the effective potentials are not real-valued (do not exist) at values of r that
s« make the horizon function H imaginary; namely between the event and
ss Cauchy horizons.

fery

QUERY 1. Effective potentials at selected r-values
Show the following:

A. The two effective potential functions become equal, V;"(r) = V;(r), at both horizons and at
r=0. 100

B. As r/M — oogithe two effective potentials become, respectively, V" (r)/m — +1 and
Vi (r)/m — +d.

10

N

104 Objection 1. Impossible! Item B in Query 1 says that the spinning black
105 hole has an effective potential that extends outward to infinity. No black
106 hole, spinning or non-spinning, can possibly be that powerful.

.‘

107 There is no problem with ;" (r): ltem B in Query 1 simply reaffirms that a
108 stone far from the black hole has V' (r) — 1, the special relativity result

108 in flat spacetime. For the case of V| (r) far from the black hole, read on!

110

QUERY 2. Map angular momentum of a stone when a — 0

Show that when a —® then d® — d¢ and R — r, so the angular momentum equation (110) in Section

17.10 reduces to the expression for the non-spinning black hole (Section 8.2):

L d
_ d8

=T (non-spinning black hole) (17)
-

145

QUERY 3. Expression for dr/dr for the non-spinning black hole

A. Show that when a — 0, equation (15) reduces to equation (19) in Section 8.3 for the
non-spinning hdack hole:

(j:f _ (i)z _ (‘2)2 _ <i>2 - (1 - 21”) (1 + m];;) (non-spinning BH) (18)

B. Show that when a — 0, then VLi(r) reduces to the single effective potential for a non-spinning
black hole in ®ection 8.4:
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Box 2. At the Horizons

What happens to our constants and variables at the event and 9 5
Cauchy horizons? Here’s a summary. (You can derive these r‘ta 1 (25)
expressions as a Query or exercise.) 2Mr

In the following, the subscript H stands for the value of that

quantity at either the event horizon or the Cauchy horizon. E — VL‘" 1/2 E-V 1/2 E —wylL 26
R(r) - Ry = 2M (Fig. 1, Section 17.2.) (22) m m - (26)
H(r) = Hy =0 (23) /
. R
W — WH = M (24) B= ( . ) 2 = Pfu=1 (27)
Vi (r oM\ /2 2 \'"?
() = <1 — > 1+ — (non-spinning black hole) (19)
m T m2r
Equations of motion 1z Use expressions (15) and (16) for dr/dr to complete the equations of

dT/dr and d®/dr s motion begun with (3) and (4), and rearrange the results to give the following
124 expressions. These extensive derivations use several expressions in Box 1.

dar  ( R\*[E-wL E-Vi\'"?rB-v\"?
7 Gn) |5 () (559) | e

m
do L sin? o

dr ~ mR2 a

m m m

1/2 _\1/2
EwLi;<E—VL+) <E—VL> ](21)

126

w27 In these equations, the plus sign in front of 8 or 1/8 corresponds to an
128 increasing r-value and the minus sign to a decreasing r-value.

18.3:M USING EFFECTIVE POTENTIALS

130 Where to go, where to stop, where to bounce, where to stay

w1 Every equation of motion—(15), (20), and (21)—contains the following
122 expression, which must be real if the stone can move, or even exist, with that
133 map energy E:

E-VIN"? E—v—\"?
(L) <L> must be real. (28)

m m
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Equations of motion
must be real.

Definition:
Forbidden energy
region
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FIGURE 1 Effective potentials V;(r) and Vi (r) for a stone with L/m = 5M
orbiting a spinning black hole with spin parameter a/M = (3/4)1/2. Turning points
(Definition 2) lie on the effective potential curves: a little filled circle at the r-value of
an unstable circular orbit; a little open circle at the r-value of a stable circular orbit;
a rotated little black square at a bounce point. Figure 2 shows a magnified view of
effective potentials inside the Cauchy horizon.

From (16), Vi (r) > V; (r) at every r-value where effective potentials
exist. Expression (28) is real at these r-values when either E > Vi (r) or
E < V[ (r). In contrast, expression (28) is imaginary in regions where map
energy lies between the effective potentials, that is where V" (r) > E > V[ (r).
The stone cannot move, or even exist, with map energy F in that region. We
say that this is a forbidden map energy region (Definition 1).

Figures 1 and 2 plot the two effective potentials from (16) for given values
a/M = (3/4)'/2? and L/(mM) = 5, along with several values of the stone’s
map energy. These figures illustrate forbidden map energy regions, which we
now define.

DEFINITION 1. Forbidden map energy region

A forbidden map energy region (which we often call simply a
forbidden region) is a region between the ;™ (r) and V; ' (r) effective
potential curves on the V£ () /m vs r /M plot. Why forbidden? Because
if the map energy E/m of the stone did lie in this region, its equations of
motion would be imaginary or complex.
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A L/(mM) =5
6 4 aM = (3/4)12
VE(r)/m
and 5.5
E/m
5_
454
4 |
0 0.1 0.2 03 0.4 05 MM

FIGURE 2 Magnified view of the pair of effective potentials in Figure 1 inside the
Cauchy horizon. Little filled circles at points a and ¢ show r-values for unstable circular
orbits; the rotated filled square symbol locates a bounce point.

Figures 1 and 2 exhibit not only forbidden map energy regions but also what
we call turning points, which we subdivide into circle points and bounce points.
(Recall similar definitions in Section 8.4 for the non-spinning black hole.)

DEFINITION 2. Turning point, circle point, and bounce point

A turning point is a point on the Vi (r) /m vs /M curve for which
either £ = VL+ or E = V[ . Ata turning point dr/dr = 0—equation
(15). Examples: points labeled a through h in Figure 1. We distinguish
two kinds of turning points: circle point and bounce point.

A circle point is a turning point at a maximum or minimum of the
effective potential. At a circle point dr/dr = 0 and remains zero, at least
temporarily, so a stone at a circle point is in an unstable or stable circular
orbit. We plot a circle point as a little filled circle (at an unstable circular
orbit) or a little open circle (at a stable circular orbit). See Definition 3.
Examples: points labeled a, c, d, f, g, and h in Figure 1.

A bounce point is a turning point that is not at a maximum or minimum
of the effective potential. At a bounce point, dr/dr = 0 for an instant but
then reverses sign. We plot a bounce point as a little filled rotated square
(a diamond). Examples: points b, and e in Figure 1 and point b in Figure
2.

Return to the circle point. There are two different kinds of circular orbits:
stable and unstable.

DEFINITION 3. Stable and unstable circular orbits
A stone occupies a stable circular orbit when it lies at a circle point in
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173 the V;=(r)/m vs. r/M diagram at which displacement either right or
174 left, while keeping E/m constant puts it inside a forbidden map energy
175 region. We plot a stable circular orbit location as a little open circle.
176 Examples: points f and h in Figure 1.
Definition: Unstable 177 The stone occupies an unstable circular orbit when it lies at a circle
circular orbit 178 point in the V;*(r) /m vs. r/M diagram at which displacement either
179 right or left, while keeping E/m constant does not put it inside a
180 forbidden map energy region in that diagram. We often call an unstable
181 circular orbit a knife-edge orbit to emphasize its instability. We plot an
182 unstable circular orbit location as a little filled circle. Examples: points a,
183 ¢, d, and g in Figure 1.

1 Table 18.1 expresses these definitions analytically. Table 18.2 lists details for
185 turning points in Figures 1 and 2.

)

186 @ Objection 2. Stop! Figure 1 shows circular orbits g and h at negative map
187 energies, negative-energy orbits cannot exist. Everyone knows that energy
188 must be a positive quantity. Circular orbits at points g and h in Figure 1

189 cannot exist!

.‘

190 Beware of phrases such as “everyone knows.” First, even in Newton’s

191 mechanics we can choose the zero of gravitational energy at any height in
192 a gravitational field; then the potential energy of a stationary stone at any
193 lower height becomes negative. Second, in general relativity the map

194 energy is typically not measurable; it's a constant of motion that can be

195 negative without physical consequence. Chapter 19 gives formulas for the
196 energy of a free stone measured in a local inertial frame, which yields a
197 positive frame energy even for a negative map energy.

*~J

198 Objection 3. Phooey! Your whole analysis is a fantasy! Even Figures 1

199 and 2 describe structures inside the event horizon that no observer can
200 possibly see or measure. Physical theory has to be “falsifiable:” it must be
201 vulnerable to disproof by observation.

.*

202 In principle (or possibly in the future) we can observe and measure these

203 results: Someone who rides a free stone inward across the event horizon
204 can make measurements to verify results of this theory. Let an astronaut
205 initially outside the event horizon have positive map energy above the

206 forbidden map energy region. Chapter 21 describes a set of maneuvers
207 inside the event horizon that brings this astronaut back out through the
208 event horizon with negative map energy. Then she can report on her

209 measurements during her earlier descent. More generally, a scientific

210 theory often predicts what we will observe when new conditions or

211 improved equipment become available.
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TABLE 18.1 Classification of Circular Orbits using VLi

When F = VLJr and When E =V, and
dV;" /dr =0, then the orbit is | dV; /dr = 0, then the orbit is
STABLE if d°V;' /dr? > 0, but | STABLE if d2V; /dr? < 0, but
UNSTABLE if 2V, /dr? < 0. | UNSTABLE if d°V; /drZ > 0.

TABLE 18.2 Map Energies of Circular Orbits with L/(mM) =5 and
a/M = (3/4)*/? (Figures 1 and 2). Circle orbit Type numbers from equations

(31)-(39).

| Circular orbit letter: r/M-value | Type: E/m-value, unstable or stable |
Point a: /M = 0.0341 Type 1: Ep/m = 5.8329, unstable
Point ¢: /M = 0.4660 Type 2: Ec/m = 4.3472, unstable
Point d: r/M = 1.6963 Type 1: Ep/m = 1.7148, unstable
Point f: /M = 22.744 Type 1: Ep/m = 0.9785, STABLE
Point g: r/M = 5.2469 Type 3: Eg/m = —1.0258, unstable
Point h: /M = 19.7855 Type 3: Eg/m = —0.9767, STABLE

212

QUERY 4. Application of Table 18.1
Which entries in Table 18.1 apply to circular orbits around the non-spinning black hole?

215

216 Comment 2. Two non-communicating regions

217 What goes on below the forbidden map energy region in Figure 1? This figure

218 implies, and equations show, that this forbidden map energy region extends as

219 far as r — oo. Apparently both stable and unstable circular orbits exist below the

220 forbidden map energy region. We have verified that no stone can exist in the

221 forbidden map energy region, and Chapter 20 demonstrates that light is similarly

222 forbidden to travel directly between an upper and lower region. Result: two

223 regions that cannot communicate directly with one another.

224 Map energy is negative below the forbidden map energy region, but that

2s mneed not worry us: nobody observes or measures map energy. You can show
2s that almost every (but not every) local inertial frame (defined in Chapter 17)
2z that exists above the forbidden region can exist below the forbidden region.

2s Indeed, for almost every (but not every) event that occurs at T, r, & above the
229 forbidden map energy region an event can occur at T, r, ® below this region.
230 Where are events that occur below the forbidden map energy region? Is

2s1  there an entire separate Universe there, a Universe we cannot see from ours?
22 Can we get to that Universe? Can we come back? Answers in Chapter 21!

18.4:8l FOUR TYPES OF CIRCULAR ORBITS
as  How many circular orbits, and of what types?

s The spinning black hole has (many!) more surprises for us. One of these is the
Multiple circular 26 existence of multiple distinct circular orbits at the same r-value. Figure 3 shows
orbits at the same r
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A \J
L/mM =
VT 138065 alM= (3/4)1/2
and

E/m 10—

75— 2|5 =&
OIN C N
S|= o=
(v e >0
ol|c o<
5+ 1 TWO circular

L/mM = 13.8065

orbits at /M = 4

-2.5—as

FIGURE 3 Two different effective potentials for a spinning black hole, each of which
leads to a circular orbit at /M = 4, one stable and the other unstable. Numbers 1
through 3 indicate circular orbit Types from equations (31) through (38). Figure 4
shows the possibility of four circular orbits at r/M = 4. The label q refers to the
same orbit in Figure 13. In order to display all turning points clearly, we do not shade
forbidden map energy regions in this plot.

27 two different effective potentials for a spinning black hole with a/M = (3/4)'/2

2s  that lead to two different circular orbits at /M = 4. Note that these occur for
s two different (positive) values of the map angular momentum L/(mM). Even
20 more astonishing, Figure 4 shows a total of four circular orbits at r/M = 4,

a1 two for the pair of positive values of L/(mM) in Figure 3 plus two more for

22 the corresponding negative values of these map angular momenta.

24

QUERY 5. Numbes of circular orbits at given r: Newton and the non-spinning black hole

Both the non-spinning black hole and the spherically symmetric center of attraction of Newton’s
mechanics are spherigally symmetric, which allows an unlimited number of differently oriented [r, @]
slices through the centers of these objects on which circular orbits can exist. On a single one of these
slices, 248

A. Newton: For what values of r do circular orbits exist?
B. Newton: Howamany distinct circular orbits exist at that r?

C. Newton: If yoar answer to Item B predicts more than one circular orbit, what determines the
difference between circular orbits at that r-value?

D. Repeat Items2A through C for the non-spinning black hole.

254
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L/mM = 13.8065

aM= (3/4)12

FOUR circular

orbits at /M = 4
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FIGURE 4 Four different effective potentials for a spinning black hole with a/M =
(3/4)'/2, all of which have circular orbits at /M = 4, two stable and two unstable.
This figure adds to Figure 3 effective potential curves for negative values of the stone’s
angular momentum. Effective potentials for L/(mM) = £+13.8065 inside the Cauchy
horizon lie beyond the vertical range of this plot. The number on each circular orbit
symbol gives its Type. We do not shade forbidden map energy regions, in order to
display all turning points clearly.

We want to derive general expressions for map energies and map angular
momenta of circular orbits around a spinning black hole. Definition 2 tells us
that a circular orbit occurs at r-values for which either E = V{(r) and
dViH(r)/dr =0 or E =V (r) and dV; (r)/dr = 0. Between the event horizon
and the Cauchy horizon the third equation of motion (15) is imaginary, so
carries no physical meaning there. In addition, circular orbits near the
horizons lie separated in r-value from the horizons, illustrated in Figures 1 and
2 (Query 6). Now we turn these qualitative observations into analytical and
numerical results.

QUERY 6. Circulas orbits avoid horizons and the singularity.
In this Query you shew that the circular orbits do not exist at the singularity or at the two horizons.

A. Show that thesslope of each effective potential function increases without limit (dViE/dr — o)
at both horizeas and at r = 0.

B. The slope of the effective potential is zero at the r-value of every circular orbit. Item A tells us
that this slopenqis vertical at three r-values: both horizons and the singularity. The effective
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potentials aresgontinuous at these three r-values and at the nearest circle points. Circular orbits
are impossiblerat each horizon and at the singularity.

2

Generating equation 27 To find all r-values of circular orbits, set the derivatives of the two

for circular orbits o5 functions Vi (r) and Vi (r) equal to zero and from them derive an equation
s that contains all terms containing L. Result: an expression for the value of L
oz for a circular orbit (if any) at that r-value. Equations (29) and (30) are the
28 generating equations for circular orbits.

C

+AL =B (L2 + m2R2)1/2 +
(L2 + m2R2)1/2

(29)

279 where the + symbol matches that in the superscript of VLi, and symbols A, B,
20 (' stand for the following functions of a and r:

dw d (rH Ma?\ rH
A=—— B=—|— =m?(r— — ) —
dr’ dr <R2>’ C=m <T r2 ) o G0

QUERY 7. Optional: Derive the generating equation for circular orbits.
Carry out the derivation of equations (29) and (30).

234

231

85,

QUERY 8. Pairs of solutions

A. Show that when L = +L; is a solution of (29) with E = V;"(r), then L = —L; is also a solution
at the same rawith £ =V (r). Conclusion: Circular orbits come in pairs.

B. Identify all sueh pairs in Figure 4.

C. Show also tha#ethe orbits in a pair are either both stable or both unstable. Hint: Use a
symmetry argsiment.

Q2

20 Solve equation (29) for L/m as a function of r. Lots of algebra yields two
Four circular 20« solutions for L/m. For each of these solutions set E = V" or E = V[ at this
orbit types 25 value of r. Result: four types of circular orbits described by the following

26 equations. (Section 18.5 defines the labels on the right sides of these
27 equations.)
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xe TYPE 1 for E = VL+(T‘)

AW Physics Macios

(L) _ (M>1/2 r2 4 a% — 2a(Mr)/2
M/ Type1 r [r2 — 3Mr + 2a(Mr)'/?] 1z

299

<E> Vit (r) r2 — 2Mr + a(Mr)/?
Type 1 m r[r? = 3Mr + 2a(Mr)'/?]

1/2

(forward, prograde) (31)

(forward, prograde)32)

s0 TYPE 2 fOI‘ E = VL7 (7")

(), 523
m Type 2 m m Typel
301

(backward, prograde)

(backward, prograde)

(33)

(34)

2 TYPE 3 for £ = VL_ (T)

(L) B (M)l/2 r2 + a® + 2a(Mr)'/?
™M/ Type3 r [r? — 3Mr — 2a(Mr)'/?]

303

(backward, retrograde) (35)

1/2

E Vi~ 2 _9Mr — a(Mr)'/?
() = L (r) -7 r— a(Mr) 72 (backward, retrograde36)

M/ Types m r[r? = 3Mr — 2a(Mr)'/?]

s TYPE 4 for E = VL+ (T‘)

(), 2-)
m Type4 m m Type3

305

(forward, retrograde)

(forward, retrograde)

(37)

(38)

306

QUERY 9. Pairs of map energies and map angular momenta

Show that Figure 4 illustrates the results of Query 8. As a result, show that Type 1 implies the

existence of Type 2 and also that Type 3 implies the existence of Type 4.

210
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A

LT aM = (3/4)172
VE0/fn |, [Enim=58329
and - ¢
E/m
=(8
% 2l
Eo/m = 4.3472 ‘ G Ep/m=1.7148
25 —as5
§> é 1 L/(mM) = +5
3k
{ob—fos—{1 15} K >
\—I—‘ ] P \—1—‘ 35
r/'M
2 n
—25 | [-En/m = -4.3472
> C | Ep/m =-1.7148
1
L | L(mwm)
5 /| e
< < <
2 —
-EA/m =-5.8329
—7.5 4

FIGURE 5 Extension of Figure 1 to positive and negative values of angular
momentum: L/(mM) = £5 to show the relation between Types 1 and 2 circular
orbits. Reverse the sign of L to reverse the sign of E at the same r-value (Query 8).
A stone of map energy Ea and L/(mM) = +5 (horizontal line at the top of the plot)
goes into a Type 1 circular orbit, which is distinct from the Type 2 circular orbit with
E = —FE, at the same r (bottom of the plot). Similarly for other circular orbits at the
same r-values but of different types.

211

QUERY 10. Otherpairs of solutions

A. Show that when we change w to —w in (16), then Vi (r) becomes —V;  (r) and Vi (r) becomes
_VL+ (’I") 314

B. From Item A snd equation (11), show that when we change a to —a in (31) and (32)—that is,
when the black hole spins in the opposite sense—then a circular orbit of Type 1 becomes a
circular orbit @f Type 3 at the same r-value.

C. Likewise, showsthat when we change a to —a in (33) and (34), then a Type 2 circular orbit
becomes a Tygqe 4 circular orbit at the same r-value.

220
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321 Comment 3. Convenient to define four types of circular orbits

322 Queries 8 through 10 show that reversing the sign of the orbital angular

323 momentum of a stone and/or the spin parameter of the black hole yield new

324 circular orbits. Result: We can derive from Type 1 the other three types of circular

325 orbits for a given absolute value of the black hole spin parameter |a/M]|. It is

326 informative, however, to consider each of the four types separately.

a7 How many circular orbits exist at r for the spinning black hole with a

ws  given value of a/M?7 To answer this question, look at equations (31) through
How many 2 (38). Map energy and map angular momentum of the stone must be real, so
circular orbits a0 orbits exist only at r-values where functions inside the square roots in the
atagiven r? a1 denominators of these equations are positive:

7% — 3Mr + 2a(M7)/? > 0 (where orbits exist for Types 1 and 2) (39)
r2 —3Mr — 2a(Mr)"/? > 0 (where orbits exist for Types 3 and 4) (40)

a2 From these inequalities we can sort out the r-locations at which different
How many s circular orbit types exist. As r — oo, both inequalities (39) and (40) are
circular orbits sss  satisfied, so all four types of circular orbits exist far from the black hole. At
at various w5 some intermediate values of r (but outside the event horizon) inequality (39) is
values of ? s satisfied, but inequality (40) is not satisfied, so only prograde orbits exist at

s those r-values. Only prograde orbits exist inside the Cauchy horizon, as in

s Figure 2 (Table 1). Finally, a region exists in which even

w12 —3Mr + 2a(Mr)'/? <0, so no circular orbits can exist in that region. Each
a0 of these conditions depends on the value of the black hole’s spin parameter

sr a/M. Figure 6 plots these results for different values of a/M.

342 Comment 4. Orbits of light

343 The r-values where equations (39) and (40) become equalities are places

344 where the denominators vanish in equations (31) through (38). Multiply both

345 sides of each of these equations through by m, the mass of the orbiting stone.

346 Then circular orbits can exist with the corresponding values of E and L if, and

347 only if, m — 0. Therefore, these are r-values for circular orbits of light (Figure 6).

348 Chapter 20 explores orbits of light in greater generality.

a9 Which of these circular orbits are stable? Figures such as 2 and 4 preview

w0 the result that all circular orbits inside the Cauchy horizon are unstable.

1 Sections 18.6 through 18.8 pursue the stability question after we investigate
2 further the differences among Types 1 through 4 circular orbits outside the
ss event horizon. In this process we will finally define prograde vs. retrograde
w4 circular orbits and forward vs. backward circular orbits.

18.5:8 MAP d7'/dr AND MAP d®/dT FOR CIRCULAR ORBITS
ws Add Doran ® and T to the specification of circular orbits.
dT'/dr and d®/dr s7  Look again at equations of motion (20) and (21). The final term on the right

for circular orbits s side of each of these equations equals zero for the special case of a circular
se orbit, for which either ¥ = VLJr or B =V:
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TWO circular orbits

REGIONSAand C: —
— (prograde only)
REGION B: ZERQO circular orbits
A _ FOUR circular orbits
a/M REGION D: | | | | (both prograde and retrograde)
1+
:@ l,‘ ~ 7
0.75 /
Vi ] /
0.5 15 Bl ——IC— [D]
i /
0.25 i 7
=l
O [4] {{IE Eﬂ F F5| | W 45 4
0 1 2 3 4 45 1M

FIGURE 6 This figure uses inequalities (39) and (40) to answer the question, “How
many circular orbits of a stone exist at a given r for different values of the spin
parameter a/M?” In Region B, zero circular orbits exist. In Regions A and C, only
Type 1 and Type 2 (prograde) circular orbits exist. In Region D, all four types of
circular orbits exist. Circular orbits along the curves that divide regions are photon

orbits (Comment 4).

(circular orbit)

(circular orbit)

dr _ (R (E-wl

dr  \rH m

@_ L sina (E—wL
dr ~ mR2 a m

Four types of
dT'/dr and d®/dT

360

361

362

)

(41)

(42)

Now plug values of L/m and E/m from (31) through (38) into equations
(41) and (42). This leads to expressions for dT'/dr and d®/dr for the four
types of circular orbits in in Section 18.4:
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s TYPE 1 for E = VL+

364

366

368

(£>Type1 - [r2 — 3;7’a+(24a/(2\)/[1:;/2] i porand,prosrade) (1)
(ﬁ)Typel = 7% (forward, prograde)  (44)
w TYPE 2 for B = Vi~
(flj;) Type 2 - <(Z>Type1 (backvard, prograde) )
(ji) i =+ <Z§> (backward, prograde) (46)
ype 2 Type 1
w TYPE 3 for E =V
(i?;)T 3 _ = ;];+ a(é\/[(/];)l/;/z]l/2 (backward, retrograde) (47)
ype r2 —3Mr — 2a(Mr
(ﬁ)Typeg _ — :]_\/.;r()j\;i)lﬂ (backward, retrograde) (48)
% TYPE 4 for E = V"
(i?;)T ) = (((i;;)T (forward, retrograde) (49)
ype ype3
(zil(YI)’)Tpr =+ <§)Typeg (forward, retrograde) (50)

370

s Note: Equations for d®/dT, with dT in the denominator, are not

sz typographical errors: We choose to solve for d®/dT, not for d®/dr, for two

ws  reasons: Minor reason: Equations for d®/dT are simpler than equations for

s d®/dr. Major reason: This choice simplifies the categories. Type 1 and 2

ws  circular orbits (labeled prograde) always have d®/dT > 0, while Type 3 and 4
o circular orbits (labeled retrograde) always have d®/dT < 0.

2

QUERY 11. Plus er minus? Signs of important expressions
A. From the requirement that r2 — 3Mr — 2a(Mr)*/? > 0 for Types 3 and 4 circular orbits, show
that —r2 + a(dr)/? < 0.
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B. As a result, show that for Types 3 and 4 circular orbits, we have d®/dT < 0 for all values of r.
C. Show that (d%{d7)s < 0 for all values of r, so (dT'/dr)s > 0 for all values of r.

28

Prograde and
retrograde orbits

Forward or
backward orbits
from sign of dT'/dr

Definition:
forward and
backward orbits

384

385

386

387

388

389

390

391

392

393

394

395
396
397
398
399
400

402
403
404
405
406
407

408

409

410

411

412

413

415

416

417

418

419

420

421

This analysis leads to definitions of prograde and retrograde orbits.

DEFINITION 4. Prograde and retrograde orbits

We divide circular orbits into two classes, prograde and retrograde. In
a prograde orbit the stone “revolves in the direction that the black hole
rotates” in global Doran coordinates so that d®/dT > 0, while in a
retrograde orbit the stone revolves in the opposite direction, d®/dT < 0.
Note that the condition d®/dT = 0 for the raindrop worldline (Section
17.7) marks the separation between prograde and retrograde orbits. As
shown in Figure 6, retrograde orbits exist only outside the event horizon,
while prograde orbits exist inside the Cauchy horizon as well as outside

the event horizon.

N

Objection 4. Your definitions of prograde and retrograde orbits are nothing
but manipulations of Doran map coordinates ® and T'. You keep saying
that we cannot observe map coordinates directly. Worse: Except for
wristwatch time T, this chapter uses only map coordinates. Your messy
results tell us nothing about what we can see and measure as we move
near a spinning black hole. Stop wasting our time!

.*

Nice objection! We use global constants of motion to discover possible
motions of a stone. For example, we now know how many circular
orbits—zero, two, or four—can exist at each r-value around a black hole
with given spin parameter a. This significant achievement says nothing
whatsoever about what you will see as you ride an unpowered rocket ship
in any circular orbit. Such predictions require analysis of orbits of light near
the spinning black hole. Hang on: Visual results arrive in future chapters!

The other pair of labels attached to circular orbits, forward or backward,
derive from the sign of dT'/dr. We have chosen the stone’s wristwatch time 7
to increase—to make dr1 positive—as the stone proceeds along its worldline
(Comment 7, Section 1.11). So the sign of dT" determines the sign of dT'/dr. If

dT'/dr > 0, then T also runs forward along the worldline of that stone. In

contrast if dT'/dr < 0 then T runs backward along that worldline. This leads

to definitions of forward and backward orbits.

DEFINITION 5. Forward and backward orbits

Along a forward orbit, d7"/dr > 0, so both T" and 7 increase as the
stone proceeds along its worldline. Along a backward orbit,

dT/dr < 0, so T increases and T' decreases as the stone proceeds
along its worldline.

The concept of a global rain T (or global Schwarzschild ¢ for a

non-spinning black hole) that runs backward along a stone’s worldline is
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TABLE 18.3 Signs of circular orbit quantities
| Type | E= | E/m | L/m | dT/dr| d®/dT] d®/dr|

1 15 + + + + +
2 |V | F ¥ - + -~
3 Vi — + - - +
4 Vi + - + - -

Types 1 and 2 for L/m and E/m: Upper sign for orbits outside the

event horizon, either sign for orbits inside the Cauchy horizon. Type 3

and 4 orbits exist only outside the event horizon.
w22 nothing new. Figure 8 in Section 3.7 displayed the worldline of Stone B inside
w23 the event horizon along whose worldline Schwarzschild global ¢ runs backward.
2« No contradiction results; nobody measures these global coordinate differences.

Global T can 425 For the spinning black hole there are two new results: First new result:
run either forward w2 The orbits that run forward and backward in T' come in pairs: if one exists,
or backward 27 the other exists at the same r, with opposite signs of E/m and

along a worldline. w2 L/m—equations (32) through (37). Second new result: For a spinning black

w2 hole, global T can run backward along a stone’s worldline even outside the
w0 event horizon, indeed, all the way out: r/M — oo.

431 Comment 5. ALWAYS forward? ALWAYS backward?

a2 Avre orbits with £ = V{ (r) always forward? Are orbits with F = V, (r) always
433 backward? Yes to both questions—at least for circular orbits. These results follow
434 from (31) through (38) and (43) through (50). Can you fill in the argument?

QUERY 12. Orbit«spairs

A. Show that thessigns of dT'/dr and d®/dT in Table 18.3 agree with Definitions 4 and 5.
B. Show that forsgach pair of circular orbits in Query 8, one orbit is forward, the other is backward.

C. Show that forseqch pair of circular orbits in Query 10, one orbit is prograde, the other is
retrograde. o

441

442

QUERY 13. Moressigns of important expressions
A. Use Table 18.38:and the signs of L/m and E/m to verify the assignment of Types to the 6
circular orbitsdisted in Table 18.2.

B. Verify the signs of L/m and E/m in Table 18.3. Hint: To show that both signs are possible for
Types 1 and 2y examine Point ¢ in Table 18.2.

C. Verity the signs of dT'/dr and d®/dr in Table 3 using equations (43) to (50) and Query 11.

449
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450

QUERY 14. Elapsed AT and A7 for one circular orbit

A. Define one complete circular orbit to have A® = 2. Use equations (44), (46), (48), and (50) to
find the following expression for AT, the advance of Doran global T-coordinate, during one
circular orbit s

) +r2 4 a(Mr)'/? r\3?  a
AT'(one orbit) = £27 W] =27 M [:I: (M) + M] (51)

The =+ sign ousside the square brackets comes from +AT for forward and backward orbits and
the + sign insidle the square bracket for prograde and retrograde orbits.

B. Next, define owe complete circular orbit to have A® = 427 if d®/dr > 0 but A® = —27 if
d®/dr < 0. Then use all eight equations (43) through (50) to find the elapsed wristwatch time

AT: 459
1/2 1/2
r 2a

A7 (one orbit) = 27r

r? — 3Mr + 2a(Mr)'/?
Mr

with the plus for prograde and the minus for retrograde orbits.

C. Show that forsthe non-spinning black hole, equation (52) reduces to equation (37) in Section 8.5.
What happens.to the + sign in (52) in this reduction?

D. Answer one ofsthe initial questions on the first page of this chapter: Does black hole spin make
orbits go fasten? slower? Pay special attention to the meaning(s?) of the word “go” in that
question. 465

456,

467 In the following three sections we examine which circular orbits are stable
w8 and which are unstable: Section 18.6 for Newton’s circular orbits; Section 18.7
wo for circular orbits around the non-spinning black hole; Section 18.8 for circular
a0 orbits around the spinning black hole.

an Why do we care about stable circular orbits? Why are they important?

a2 Stable circular orbits are important to us for two primary reasons:

s WHY ARE STABLE CIRCULAR ORBITS IMPORTANT?

a7a 1. A stone perched at the peak of the effective potential does not stay

75 there long, so you do not observe unstable circular orbits in Nature. In
476 contrast, the accretion disk around the spinning black hole (Section

477 18.9) consists of a series of nested stable circular orbits which a stone
478 occupies in sequence as it radiates away its loss of orbital energy.

479 2. When we carry out an exploration program of the spinning black hole
480 (Chapter 19), we can temporarily perch our unpowered spaceship in an
481 unstable circular orbit on our way to somewhere else. “Somewhere else”
182 is often a stable circular orbit, from which we can make relaxed

483 observations without worry about falling off the effective potential

484 maximuin.
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FIGURE 7 Examples of effective potentials and the radii of Newton’s stable circular
orbits around a point mass. A stable orbit (little open circle) exists at the minimum
of each effective potential curve. The area under each effective potential is a forbidden
map energy region for the stone with that angular momentum.

18.6:@ STABILITY OF NEWTON’S CIRCULAR ORBITS

486

4

)

7

488

489

490

491

492

493

494

Angular momentum makes the world go ’round.

Begin the analysis of Newton’s circular orbits with his expression for the total
energy (kinetic plus potential) of a stone in a central gravitational field:

1 M
E=—-my?-2
2 r

(Newton, conservation of energy) (53)

Newton’s force law F' = ma demands that in a circular orbit the inward
gravitational force —mM /r? equals mass m times the inward acceleration
2
—v?/r:

M 2
L L R V (Newton force law, circular orbit) (54)

72 r

Newton defines the angular momentum of a stone in a circular orbit as its
radius r times its tangential linear momentum muv:

L=mrv (Newton, circular orbit) (55)
so that from (54):

L =m(Mr)'/? (Newton, circular orbit) (56)
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495 Figure 7 suggests that total orbital energy decreases with decreasing
s radius of the stable circular orbit. To check this, find an expression for v? from
w7 (55) and substitute the result into (53), thereby defining the effective potential:

2
VL(r) = 2:17“2 - mjw (Newton, effective potential) (57)
Newton: Total 498 Now substitute for L from (56) and rearrange the result to yield the
energy of a w0 energy of a stone in a circular orbit as a function of the radius of that orbit:
circular orbit
E=W(r)= %m;\/f - m7:7\/[ = _%mM (Newton, circular orbit energy(j58)
500 Figure 7 and our accompanying algebraic analysis tell us that Newton’s
Newton’s conclusion:  so1  effective potential has only one zero-slope point, and that one point is at a
Every circular orbit s2  minimum. Definition 3 then tells us that in Newton’s mechanics EVERY
is stable, allthe way &, circular orbit is stable. More: Newton’s circular orbits are stable all the way
downtor = 0. s« down to r = 0, or until the stone strikes the surface of a spherically symmetric
ss center of attraction.
506 Now suppose that a stone in a circular orbit encounters a little
Add a little sov  friction—perhaps from dust or a rarified atmosphere. This friction converts
friction. ss some orbital energy into heat, electromagnetic radiation, or other forms of

so  energy. Where does this converted energy come from? For Newton the only
sio source is the orbital energy of the stone. We analyze the result with a simple
st model: Assume that this loss of energy per orbit is minuscule, so the stone’s
stz orbit remains circular, but its radius changes slightly. How can we track

si3  changes in energy, angular momentum, and radius of the orbit during this

s process? Begin to answer these questions by differentiating both sides of (58):

dE lmM

e +2 > (sequence of Newton’s circular orbits) (59)

s Similarly, differentiate both sides of (56):

1/2
dL _ +2 (M> (sequence of Newton’s circular orbits) (60)
dr 2 \r
Circular orbit st6 Figure 7 shows what equations (59) and (60) tell us, namely that when the
E,L,andr sz energy of the circular orbit decreases, the angular momentum also decreases,
all decrease. se  as does the radius of the orbit.
519 Equations (59) and (60) imply that energy and angular momentum can
s20  change. How can this be?
521 The stone’s energy and angular momentum are constant for free-fall
External force: s2 motion, but they change if an external force is applied to the stone, whether
friction ss  this force arises from a rocket or from friction in an accretion disk. For a

s2« circular orbit, r, E/, and L are all related. As F and L change, the radius of
s the circular orbit changes. To see how, think of an incremental change AFE in
s energy. Equation (59) then implies that r changes by the amount
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dE\ "'
Ar = <d) AFE (Newton AND Einstein circular orbits)  (61)
r

We can adapt (60) to express the same change in radius between stable orbits
of different angular momentum:

dr\
Ar =~ (d) AL (Newton AND Einstein circular orbits)  (62)
r

To summarize: For Newton’s circular orbits, a small amount of friction
decreases the energy E and the angular momentum L of the orbiting stone
and causes it to move to smaller radii through a sequence of stable circular

orbits. Why stable? Because all Newton’s circular orbits are stable; every
circular orbit nests at a minimum of an effective potential (Figure 7).

; ”

[ Objection 5. Whoa! In this section you use the terms “radius,” “energy,”
and “angular momentum” without modifiers. But you keep saying that
these terms have no measurable meaning. Instead, you force us to use
modifiers such as “map energy,” "map angular momentum,” “shell frame

energy,” and so forth. Why did you use single-word terms that you label

forbidden? Follow your own rules!

.‘

These distinctions—important in general relativity—do not exist in
Newton’s mechanics. When carefully used, everyday terms are perfectly
accurate for Newton. So we have just enjoyed a short vacation from our
terminology rules for general relativity. Sorry, our little vacation is now over!

Comment 6. Wide application of Definitions 1 and 3

Our analysis of Newton'’s circular orbits uses Definition 1 (forbidden region) and
Definition 3 (stable and unstable orbits). The energy region under each of
Newton’s effective potential curves in Figure 7 is forbidden to the stone
(Definition 1), because in that region the stone’s kinetic energy would be
negative. The stable circular orbit (Definitition 3) nestles at the minimum of the
effective potential. These same definitions have wide usefulness: They apply to
circular orbits around the non-spinning black hole (Section 18.7) and around the
spinning black hole (Section 18.8).

QUERY 15. Timesfor one orbit according to Newton

A. From Newtonis equation for orbit speed in (54) and the circumference of a circle = 277 in flat
spacetime, shesw that for Newton the elapsed time for one circular orbit is:

At ) AT ) r \3/2
M(one orbit) = M(one orbit) = 2w (M) (Newton) (63)

B. Show that eqeations (51) and (52) both reduce to Newton’s result (63) when /M — oco.

55
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FIGURE 8 Effective potentials for the non-spinning black hole (repeat of Figure 4 in Section 8.4).
The area under each curve is the forbidden map energy region for a stone with that value of map angular
momentum. Little filled circles locate unstable circular orbits, little open circles locate stable circular orbits,
and the little half-filled circle locates a “half-stable” r1gco circular orbit, one that is “stable to the right and
unstable to the left.” A small amount of friction moves stable orbits downward and to the left along the
sequence of circled numbers 3 — 2 — 1 until » = rigco, after which the stone spirals inward across the
event horizon.

18.Z:H STABILITY OF CIRCULAR ORBITS: NON-SPINNING BLACK HOLE
sso  Add unstable circular orbits to stable circular orbits.

st Next analyze the stability of circular orbits around the non-spinning black
ss2 hole. Figure 8 replots the effective potential for several values of L from Figure

Non-spinning black sss 4 in Section 8.4. In Newton’s case, Figure 7, all curves have one minimum, the
hole: Stable s« location of a stable circular orbit. But for the spinning black hole, Figure 8,
circular orbits sss  the effective potential to the left of each minimum is radically different. In
exist for v > 6. s particular, Figure 8 exhibits the famous PIT in the potential of the

s7  non-spinning black hole. Unstable orbits exist at maxima of the effective

sss potential between this pit and the stable-orbit r-values, provided that

so  L/(mM) > (12)'/2. Points 4 and 5 are examples of this maximum. Unstable
s circular orbits are the new contribution of the non-spinning black hole.

571 To analyze circular orbits for the non-spinning black hole, let a/M — 0 in
sz equations (31) for E/m and (32) for L/m. Results:

E Z—2M
R e ek (circular orbits, non-spinning black hole)  (64)

mo oy (r2 —3M7°)1/2

L (M\'? r2

— — ——— (circular orbits, non-spinning black hole)(65
2

m (r2 —3M 7")1/

r
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E/m A

0.98—
NON-SPINNING BLACK HOLE
0'97—;
0.96—=
0.9526 —tss
0.95—+
0.9428 —=
0.94—
5 2 s | = [ f I Ly

|
0 — 9 12 15 18 "M
3 | fsco=6M

FIGURE 9 Plot of equation (64) for circular orbits around the non-spinning black
hole. Every point on this curve represents the map energy of a circular orbit. The curve
has a minimum (E/m)mia = (8/9)Y/2 = 0.9428 at rsco = 6M (little half-filled circle).
A horizontal line above this minimum at, say, E/m = 0.9526 fixes the r-value of an
unstable circular orbit (little filled circle) and also the r-value of a stable circular orbit
(little open circle).

sn These correspond to equations (58) and (56) in Newton’s case.

524

QUERY 16. Circudar orbits in Newton’s limit
Check (64) and (65) ¢ Newton’s limit /M — oo, that is M /r — 0.

A. Does (65) redaice to (56)7
B. Does (64) reduce to (58). Before doing the algebra, guess the answer by comparing the vertical
scales of Figures 7 and 8 and the number that E/m approaches as /M — oo.

C. Interpret the ghysical difference between Newton’s circular orbit energy (58) and the Newtonian
limit of circular orbit energy (64).

582

583 We want to trace the result of a little friction on these orbits. To follow an
s« analysis similar to that for Newton’s circular orbits in Section 18.6, take
ses  derivatives of both sides of (64) and (65) in Query 17.

586

QUERY 17. Non-spinning black hole: dE/dr and dL/dr for a sequence of circular orbits.

A. Differentiate ¢64) and (65) to obtain, for a non-spinning black hole:
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A

5.5 —= NON-SPINNING BLACK HOLE
L/(mM)
X
5—-5-
4 —+
3.6742

3.464—F>

3—+ p

0 25 5 7.5 | 10 lmb WIF 175 l 20

0 3 9 12 15 18 1M

Nsco= &M

FIGURE 10 Plot of equation (65) for circular orbits around the non-spinning black
hole. Every point on this curve represents the map angular momentum of a circular
orbit. This curve has a minimum [L/(mM)]min = (12)/? = 3.464 at risco = 6M (little
half-filled circle). A horizontal line above this minimum at, say, L/(mM) = 3.6742 fixes
the r-value of an unstable circular orbit (little filled circle) and a stable circular orbit
(little open circle).

dE _ mM(r—6M)
dr — 2r3(r — 3M)3/2
dL ~ mMY?(r —6M)

5= 20 3 (sequence of circular orbits) (67)
r_

(sequence of circular orbits) (66)

B. Show that when r >> M, these reduce to Newton’s results (59) and (60).

C. Show how Figure 8 reflects the result that the right sides of both equations (66) and (67) reverse
sign at r = 6.

592

593 Figure 9 plots E/m vs r/M from equation (64), while Figure 10 plots

s« L/m vs r/M from equation (65). These figures show what equations (66) and
s (67) describe: E and L have minima at r = 60 for circular orbits around a
s non-spinning black hole and both have positive slopes, dL/dr > 0 and

s dE/dr > 0, for r > 6 M. From Figure 8, orbits in this range of r-values are
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s stable because r-displacement in either direction at constant E moves the
se0  circle point into a forbidden map energy region (Definition 2).

600 Comment 7. Not another kind of effective potential

601 Figure 9 looks like an effective potential for the non-spinning black hole, but it is

602 not. Instead, it tells us the r-values of circular orbits for all possible values of

603 E/m

604 Now trace the consequences of a little friction for circular orbits around

s the non-spinning black hole. Start with a stone in a circular orbit at r» > 6.M
ws in Figures 9 and 10. Friction causes the orbit to lose both angular momentum

Add friction: o7 and energy. Because dL/dr > 0 and dE/dr > 0 for r > 6M, therefore both L
Shrinking orbits ws and E decrease when r decreases: the orbit shrinks, as confirmed by equations
for non-spinning oo (61) and (62).

black hole unstable 610 What happens after the orbit r-value reaches r = 6 M, where

for3M <r<6M. L/(mM) = (12)'/? = 3.4641 and E/m = (8/9)"/? = 0.94287 Answer: Friction
sz continues to drain angular momentum and energy. But dL/dr = 0 and
ss  dE/dr =0 for circular orbits at » = 6, so the stone can no longer change L
e« and F by changing its orbital r-value: No circular orbits exist for
o5 L/(mM) < (12)'/2 and E/m < (8/9)'/2. Equations (61) and (62) bear this
eis out: Ar is undefined at r = 6M.
617 To determine what happens next, see circled number 1 in Figure 8:
e1s  Displacement to the left does not move the circle point into a forbidden map
19 energy region. Instead, it leads to a continual decrease of r. Result: The stone
e spirals inward across the event horizon.

621 As long as dE/dr > 0 and dL/dr > 0 along a sequence of circular orbits,
For stable circular 22 the orbits are stable. Query 17 shows that dE/dr and dL/dr both change sign
orbit: dE/dr > 0 o3 at 7 = 6M, which marks the transition to unstable circular orbits. Comparing
and dL/dr >0 e« Figures 8 through 10, we see that circular orbits are unstable at r-values where

s dE/dr <0 and dL/dr < 0.

626 The smallest r-value of a stable circular orbit is called rigco. The subscript

ez ISCO stands for Innermost Stable Circular Orbit, defined in Section 8.5.

628 Recall that the ISCO is both stable and unstable: Increasing the r-value at

e the same energy puts the stone into a forbidden map energy region, but
w0 decreasing the r-value does not; the orbit is stable to increasing r, but unstable
e to decreasing r. We can call the rigco orbit a half-stable circular orbit.

?

62 @ Objection 6. Wrong again! You tell us that “Map quantities L. and E are
633 not measured quantities.” So how can you say that friction causes them to
634 decrease? Only physical quantities like velocity and energy in a local frame
635 have a measurable meaning. So you talk nonsense when you say that

636 friction causes (unmeasurable!) map quantities L and E to decrease!

.‘

637 Guilty as charged! Values of L and E are not directly measurable.

638 However, we can use global coordinates to predict, for example, the

639 energy Fgnen of the stone measured in a local inertial shell frame. For a
640 non-spinning black hole, the result shows that when the tangential velocity
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641 measured, for example, in the local shell frame decreases, then L

642 decreases, and vice versa. And when local Egnhen1 decreases, then map £
643 also decreases, and vice versa. Map angular momentum and map energy
644 serve as “proxies” for measurable quantities and both do decrease as

645 claimed. Chapter 19 carries out this analysis for a spinning black hole

646 using the ring frame.

18.8/M STABILITY OF CIRCULAR ORBITS: SPINNING BLACK HOLE
ws  Find four types of stable and unstable circular orbits.

ss  How many stable and unstable circular orbits exist around the spinning black

ss0  hole? We follow an analysis similar to the one for the non-spinning black hole

st (Section 18.7). But there is a complication: The spinning black hole has four
Four types of ez types of circular orbits, introduced in Section 18.4. The symmetry among
circular orbits for 3 these four types allows us to concentrate on the two types with positive map
spinning black hole. ¢, energy outside the event horizon, Type 1 and Type 4. (The other two types

ess are related to these by sign changes, described in Query 9.) Figure 11 plots

s effective potentials that show locations of two Type 1 circular orbits. Compare

e this plot with Figure 8 for the non-spinning black hole. Figure 12 plots

es effective potentials that show locations of two Type 4 circular orbits.

A

1.5 —+— L
V:/m C Spinning black1fl120Ie
nd £|] a/M = (3/4)
E/ L% :‘:‘3 Type 1 orbits
m

L/(mM) = 3

L/(mM) = 2.2085

L
L/(mM) = 1.5 f
0.5 —— L/(mM) =0

1

0 E 25 i 35 ! 45 ! )
. 2 3
12 eco =2.5373M M

FIGURE 11 Magnified view of the effective potential V;t (r) near the event horizon
for several values of L/(mM), showing r-values of two Type 1 (prograde) circular
orbits from (32). Compare with Figure 8. In this plot the forbidden map energy region
exists below and to the right of each curve for every value of map angular momentum,
including zero. The horizontal axis begins at r/M = 1 to hide the distraction of
unstable circular orbits inside the Cauchy horizon.
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+ A Spinning black hole
VL/m1 . I1e aM = (3/4)1/2
and | (B Ll(mM)F=-7 Type 4 orbits
5] e e
Em 1l 7 umm=-44153 g — —
2y T T
054 | [~ Umm=0
4S8N 1051 eRA rRaeEy A I
0 ;.! 24 I a2 I 48 I 56 I B4 ] 72 ! a8 98 I 104 )

11-5!\ 83 4 5 6 7 [rs,=8.6207M[10 /M
f

FIGURE 12 Magnified view of the effective potential V;'(r) near the event horizon
for several values of L/(mM), showing r-values of two Type 4 (retrograde) circular
orbits from (37).

659 Comment 8. Always a forbidden map energy region for spinning black hole
660 Figures 11 and 12 show that for a/M = (3/4)*/? the forbidden map energy

661 region exists for every value of the stone’s angular momentum, including zero.

662 This result is general: For every spinning black hole and for every value of the

663 stone’s angular momentum in orbit around it, every pair of effective potentials

664 V{~ (r) and V;T (r) embrace a forbidden map energy region.

665 Figure 13 plots E/m vs. r/M from Type 1 (prograde) and Type 4

s (retrograde) orbits for a/M = (3/4)'/? from equations (32) and (38). Figure 14
7 shows corresponding plots of L/(mM) vs. r/M from equations (31) and (37).
ss Sample horizontal lines show pairs of unstable and stable orbits at the same
s Inap energy or map angular momentum.

670 To see where and why circular orbits become unstable, start with the
Adding friction en stone in a stable prograde (Type 1) circular orbit at large r. Now introduce a
shrinks stable ez little friction that decreases the stone’s energy E. Figures 13 and 14 show
orbits for spinning s positive derivatives dL/dr > 0 and dE/dr > 0 for stable Type 1 orbits at large
black hole e 7. Then equations (61) and (62) tell us that the r-value of the orbit shrinks.

675 The condition for stability of Type 1 orbits is dE/dr > 0 and dL/dr >0
Orbits stable e from equations (31) and (32), or equivalently dV;"/dr = 0 and d?V;'/dr? >0
down to T1sco ez (Table 18.1). Either way gives, after lots of algebra, the inequality:

2 — 6Mr + 8a(Mr)'/? — 3d® > 0 (stable orbits, Types 1 and 2)  (68)

678 Although we derived equation (68) for Type 1, it is also valid for Type 2
e (E =V, and, outside the event horizon, L < 0). You can see this from Figure
e 4 and Query 8. Both stable and unstable circular orbits come in pairs.

68t The left hand side of equation (69) vanishes at only one r-value and is

ez negative for smaller r-values. The r-value of the innermost stable circular orbit
3 1S therefore given by the solution of this equation:
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Minimum
|L| and |E]|
at risco

risco for

retrograde orbits.

684

685

686

687

688

689

690

691

692

693

694

695

E:"mA
1.08—1+
SPINNING BLACK HOLE
‘ Type 4: aM = (3‘,4)1;'2
1 \retrograde
l . —————O0——
0.9606 e O -'__j_f_?_i_'__‘__‘_i.-----""
095+ | N
Type 1: B
!EIL' prograde
0.915 T p/ SLOPE POSITIVE
-
0.9+ | -
| ff"
| I
II ,-"’
0.8586 ¢/ SLOPE POSITIVE
0854 . : ! .
T e S AR ERRT
1 5 7.5 10 125 15 17.5 20 r'M

lsco=2.5373M Nsco=8.6207M

FIGURE 13 Map energy vs r for circular orbits outside the event horizon of the
spinning black hole with a/M = (3/4)'/2, from equation (32) for Type 1 and equation
(38) for Type 4, showing risco at the minima and one example of unstable and stable
orbits for each type. The prograde circular orbit labeled q at » = 1.95 and energy
E = 0.915M is the orbit labeled q in Figure 3; the figure above proves that orbit q in
Figure 3 is unstable.

risco — 6Mrisco + 8a (MTISCO)1/2 —3a®> =0 (prograde orbits)  (69)
Stable circular orbits exist only for r > risco-

For a stone in a Type 1 or 2 (prograde) circular orbit at r1sco, further
decrease of |L| or |E| can no longer result in a circular orbit, because |L| and
|E| have already reached their minimum values for circular orbits, shown in
Figures 13 and 14. To determine what happens next, look at the little
half-filled circle in Figure 11: Displacement of the stone to the left does not
move it into a forbidden map energy region. Instead, it leads to a continual
decrease of r. Result: The stone spirals inward, then crosses the event horizon!

Next turn attention to retrograde orbits, Types 3 and 4. It is simplest to
start with Type 4, E = Vi > 0 and L < 0 (Table 18.3). Then stability for
Type 3 follows as a “mirror image,” as was the case for prograde circular
orbits. At large r for Type 4, dE/dr > 0 (Figure 13), while dL/dr < 0 (Figure

AW Physics Macios
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A
10 — SPINNING BLACK HOLE
L/(mM) alM = (3/4)172
7.5— J
£
5 -d — O—— T |
II " prograde
22085 25=—\@©— (Type 1)
| [ | | | |
- 2 1 75 h a5 - 175 h P E ] 5
[1 5 |10 15 20 25 30 ™
Msco = Msco =
25— | 2.5373M [ 8.6207M |
-4.1453 = b
5 ™ — —
retrograde
75— ] (Type 4)
10——

FIGURE 14 Map angular momentum vs r for circular orbits outside the event
horizon of the spinning black hole with a/M = (3/4)'/?, from equation (31) for Type

1 and equation (37)

for Type 4, showing risco at the minima and one example of

unstable and stable orbits for each type. Points d and f along the horizontal line at
L/(mM) = +5 have the same labels in Figure 1 and Table 2.

s 14). Whether L is positive or negative, a little friction decreases |L|. Thus the
ez condition for stability is that there exists a circular orbit of slightly smaller r
sos and slightly smaller |L|; this condition requires that d|L|/dr > 0 and therefore

oo dL/dr <0 when L <0 in Figure 14.

700

701

702

703

704

705

706

707

708

709

710

r2 — 6Mr — 8a(Mr)'/? —3d% > 0

Comment 9. Signs of dE/dr and dL/dr for stable orbits

When E < 0, as in Type 3, the condition on E for stability becomes

d|E|/dr > 0. For both signs of E, the stability condition is d| E|/dr > 0, similar
to the condition d|L|/dr > 0 for stability. The reason for this is that a little friction
decreases both |L| and | E| regardless of the signs of L and E, and for orbits to
exist with smaller | L| and |E|, the graphs of |L(r)| and |E(r)| must have
positive slope with respect to r.

The stability condition for Type 4 circular orbits is dE/dr > 0 and
dL/dr < 0 from equations (37) and (38), or equivalently dV;"/dr = 0 and
d?V; /dr® > 0 (Table 18.1). Either way yields, after lots of algebra, the
inequality:

(stable orbits, Types 3 and 4)  (70)
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71 Although we derived equation (70) for Type 4 orbits, it is also valid for
72 Type 3. At r = risco, equation (70) becomes an equality.

7"12500 — 6Mrisco — Sa (M?“Isco)l/2 —3a2=0 (retrograde orbits)  (71)

73 As in Query 10, this result follows from the prograde case merely by changing
7a  the sign of a. We can solve the two equations (69) and (71) to find two
7s  expressions for a(risco)-

1 1/2 TISCO 1/2
a(risco) = +3 (Mr1sco) {4 - (3 o 2) (72)

7 The plus sign in this equation describes prograde orbits and the minus sign
77 describes retrograde orbits.

Limits on value 718 Black holes exist only for 0 < a/M < 1. Equation (72) then limits
of risco 79 prograde and retrograde orbits to to the following values of risco:
M <rigco < 6M (0 <a/M <1, prograde) (73)
6M < rigco < IM (0 < a/M <1, retrograde) (74)
720
721 The curves in Figure 15 plot a as a function of rigco from equation (72).
Values 722 Bardeen, Press, and Teukolsky solved (72) to give risco as a function of a, a
of risco 725 combination of three equations (see the references):
r
S =3 T (3 20) 3+ 2 +22))' 7 (75)

minus sign for prograde, plus sign for retrograde, and
Zy = (3a2/M2 + 22)"/* (76)

Zi=1+ (1=a2/M) P[4 a/ )P4 (1= a/p)' P ()

724

25

QUERY 18. Valuessof risco for a/M = (3/4)'/2. (Optional)
Use equations (75) through (77) to verify the following values of r15co for a spinning black hole with
G/M = (3/4)1/2 728

risco/M = 2.537331951 for prograde orbit (78)
risco/M = 8.620665097 for retrograde orbit

29

730 Summary: For circular orbits around a spinning black hole, a small
7 amount of friction decreases the absolute values of map energy and map
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REGION F: X ZERO stable circular orbits

REGION G:~~ ONE stable circular orbit

(prograde only}

REGION H:Z: TWO stable circular orbits

A (one prograde, one retrograde)
1.0

la/MI
0.75—
0.50—
0.25—
0

FIGURE 15 How many stable circular orbits exist at a given r for different values
of the spin parameter a/M? This figure uses inequalities (68) and (70) to answer that
question. The regions are separated by curves for risco from equations (69) and (71).
In Region F there are zero stable circular orbits; in Region G there is one stable
prograde circular orbit; in Region H there are two stable circular orbits, one prograde
and one retrograde. Compare this figure with Figure 6 for all circular orbits.

7z angular momentum, |F| and |L|, which causes the stone to occupy a sequence

Summary: 7 of stable circular orbits with decreasing r—until both |F| and |L| reach their
Sequence of stable 74 minima at r = rigco. Increasing black hole spin moves the ISCO inward from
circular orbits 7 risco = 6M to risco = M for prograde orbits and outward from rgco = 6M

7 10 rIsco = 9M for retrograde orbits (Figure 15). These results have profound
7z consequences for the accretion disk around the spinning black hole, which we
e explore in Section 18.10.

18.9:@ TIMING CIRCULAR ORBITS FROM A LARGE r

o On whose watch?

71 We are (thank goodness!) far from a spinning black hole. Surprise: We can

#2  mnevertheless hold a stopwatch on each circular orbit in the sequence of circular
7 orbits as a stone works its way inward through the accretion disk (Section

7 18.10). In practice we might observe a blob of incandescent matter as it moves
75 in each circular orbit. This section provides the background for such an

76 Observation.

747 Replace the circulating blob with an astronaut in a circular orbit who
76 emits a flash of light as she completes each orbit. Equation (52) tells us the
Flash-emitting 9 lapse ATemit on her wristwatch for one orbit, where we have added the

orbiter
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A

T/ M | (TA +ATrec)/ M
; Ta/M
! Identical slopes of worldlines
1 (identical r-map speed of
(TB "'ATemit)/M ' light) at every r-coordinate.
Ta/M E

| >
fg/M M /M

FIGURE 16 Schematic plot in Doran global coordinates of worldlines of two flashes
emitted by the Below emitter at the beginning and end of one circular orbit and
received by a distant Above observer. The lapse ATy e between receptions is equal to
the lapse ATemit between emissions. Similar plot for the Global Positioning System:
Figure 2 in Section 4.2.

70 subscript “emit” for clarity in what follows. How does the orbiter know that

7 she has completed one orbit? The pattern of stars she sees overhead repeats as
72 she returns to the same r, . We have not yet predicted this star pattern,

73 which depends on the observer’s orbit and the worldline of light from each

74 distant star to the observer. Still, we know that this visual pattern repeats, so
75 the observer can emit a flash at each repetition.

756 Equation (51) tells us the Doran coordinate lapse ATe,it between flash

77 emissions by the orbiter. A distant observer at rest in Doran coordinates

7 (dr/dT = d®/dT = 0) receives two sequential flashes emitted by the orbiter

70 and records his wristwatch time lapse Ao between these two receptions.

Timing these 760 At the location of this stationary distant observer the Doran metric
flashes from % reduces to dr2 = dT?. Therefore, the distant observer measures a time lapse
far away 762 ATree = AT between flashes, where AT, is the Doran coordinate lapse
73 between the receptions of sequential light flashes.
764 How is ATy related to ATemis? Light rays travel along curves r(7T') in

75 global coordinates. Let one light flash be emitted at r =7, and T'=T, and a
76 second one from the same r-value at T'= TA + ATemit (Figure 16). When are

77 these two flashes received by a distant observer stationary in Doran

78 coordinates?

769 We cannot answer this question without integrating the equation of

70 motion of light, but we can answer a simpler question: What is the difference

71 between two global T-values of reception by a distant observer? That is, how

72 18 ATyec related to AT ?

773 Figure 16 shows that at every value of r the curves r(T)—or equivalently

77 T(r)—have the same slope for two sequential light pulses emitted from the
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75 same global location. Therefore these curves are vertically displaced by the

76 same offset in Doran T at every r-value. As a result, AT ec = ATemit-

m This analysis leads to the prediction that the wristwatch time A7, for

78 one orbit measured by a distant observer at rest in Doran coordinates is equal
7s  to the lapse AT for one orbit given by equation (51). This answers the

70 question, “What is the wristwatch time lapse Ag,, for one circular orbit

7% measured by a distant observer?”

82

QUERY 19. Careful with wristwatch times!
Show that the wristwatch time AT, between reception of flashes for the distant observer is NOT equal
to the wristwatch time ATemit between emission of flashes for the orbiter.

26

787 Figure 17 shows X-ray pulses emitted by the spinning black hole labeled
Pulse emitter: s GR1915, with about 14 times the mass of the Sun located near the plane of
black hole GR1915 70 the galaxy about 40 light-years from us. A companion star feeds a pulse of
70 material to the accretion disk of GR1915. This pulse of matter heats to high
791 temperature and emits radiation whose pressure temporarily prevents more
72 matter from entering the accretion disk from the companion. After the
s accreted material drops into the black hole, a new blob enters the accretion
794 disk from the companion. The resulting “heartbeat” of X-rays are about 50
75 seconds apart.

18.10:8l THE ACCRETION DISK
7w Clircling toward doom

798 Section 8.6 constructed the toy model of an accretion disk around a

79 non-spinning black hole, but we have not observed a non-spinning black hole,

s0 much less one with an accretion disk. We do observe energetic radiation from

son  quasars, each of which appears to be a spinning black hole surrounded by an

sz accretion disk that emits this radiation. What creates this radiation?

w3 Interactions within the accretion disk are complex and defy simple analysis,
QUASAR: Emission s« but here is the basic idea: The accretion disk consists of dust and particles in

as material circles s orbit. This material changes energy as it moves inward through a sequence of
inward through ss circular orbits. The change in energy heats up the accretion disk, with
accretion disk. a7 consequent emission of radiation.

808 Assume that material in the accretion disk passes in sequence through a

s series of circular orbits. Initial circular orbits are at large r-values; their final
so  circular orbit is at rigco, after which the material spirals inward through the
s event horizon. We cannot see radiation emitted after stones and dust pass

sz through the event horizon. Now for some details.

Stone in distant 813 Start with a stone far from the black hole, a stone that moves so slowly in
circular orbit has s its circular orbit that it is effectively at rest in Doran global coordinates, with
E/m = 1and s initial map energy E/m = 1 and initial map angular momentum L/(mM) = 0.

L/(mM) = 0. ss  Consider this stone to be in a forward, prograde Type 1 circular orbit.
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FIGURE 17 Upper left corner: the spinning black hole GR1915-105 fed by material
from a companion star (not visible). Lower right corner: the “heartbeat” of emitted

X-rays.
817 For very large r, R — r and the Doran metric (2) becomes:
dr? — dT? — dr? — r?d®* (for r — o0) (79)
818 This is the metric of flat spacetime in which we can define local shell

19 coordinates: Atgpen = AT, Aysnen = Ar, and Axgpen = FAP. A stone at rest
s in this local frame must have (E/m)shen = 1 = E/m, where E/m is the map
e21 energy. Summary: Far from the black hole the directly measurable shell energy
sz (F/m)shen of a stone is equal to its Doran map energy E/m.

823 Next the stone loses map energy as it passes gradually inward through a
g4 series of circular orbits of decreasing r until it reaches the innermost stable

es circular orbit at risco. How much map energy does the stone lose during this
s process? Assume the material emits its change in map energy in the form of
sz radiation. What total radiated energy do we detect far from the black hole?
828 What is the map energy of the stone in the ISCO orbit just before it drops
g9 across the event horizon?
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830 When a/M = (3/4)'/2, equations (75) through (76) tell us that

s T1sco = 2.5373M so that from equation (32) E/m = 0.8586. Hence the

sz radiated energy is AE = (1 — 0.8586)m = 0.1414m.

633 In contrast, when a/M = 1, then equations (75) through (76) tell us that
s« 71500 = M so that from equation (32) E/m = 0. Hence the radiated energy is
ss  AF = m. The entire rest energy of the stone is emitted as radiation. No

ss  wonder the quasar shines so brightly!

23

QUERY 20. Moressypical emission of radiation

A more typical uppemsvalue of a/M for a spinning black hole is 0.85. Use Figure 15 to estimate
numerical value of rgeo for a/M = 0.85. Optional: Use equations (75) through (77) to calculate the
numerical value of rigco to four decimal digits in this case.

842

24

QUERY 21. Powercoutput of a quasar

A distant quasar swallows m = 10Mg,,, = ten times the mass of our Sun every Earth-year. Recall that
watts equals joules/second and, from special relativity,

AE[joules] = Am/[kilograms|c?[meters? /second?]. Assume that this quasar has a/M = 0.85.

A. How many watss of radiation does this quasar emit, according to our model?

B. Our Sun emitssradiation at the rate of approximately 4 x 1026 watts. The quasar is how many
times as brightas our Sun?

C. Compare youssanswer in Item B to the total radiation output of a galaxy of approximately 10'!
Sun-like starses:

85

54

QUERY 22. How leng does a quasar shine?

We see most quasarsssith large red shifts of their light, which means they were formed not long after
the Big Bang, aboutet4 x 10° years ago. A typical quasar is powered by a black hole of mass less than
10° solar masses. Explain, from the results of Query 21, what this says about the lifetime during which
the typical quasar shénes.

60,

18.14:l CHAPTER SUMMARY
w2 Key ideas of the chapter

Two effective ss The spinning black hole has not one but two effective potentials, which depend
potentials g4 ON the stone’s angular momentum and the spin parameter of the black hole.
ss Circular orbits of a stone are possible at maxima and minima of these effective
ss  potentials, which (for different values of the stone’s map angular momentum)



September 5, 2017 11:04 CircleOrbitsSpin170905v3 Sheet number 39 Page number 18-38 AW Physics Macios

18-38 Chapter 18 Circular Orbits around the Spinning Black Hole

g7 can occur at most r-values outside the event horizon and inside the Cauchy
ss  horizon.

Forbidden energy 869 Each pair of effective potentials encloses a forbidden map energy
region e region. A stone cannot have its map energy in a forbidden map energy region.
871 We divide circular orbits into two classes, prograde and retrograde. In a
ez prograde orbit the stone “revolves in the direction that the black hole rotates”
Prograde and s in global Doran coordinates, d®/dT > 0, while in a retrograde orbit the stone
retrograde orbits s Tevolves in the opposite direction, d®/dT < 0.
875 Most circular orbits around the spinning black hole are unstable; a few are

ere  stable. To analyze orbital stability, we trace the effects of a little friction,

sz which slowly decreases orbital r (leaving the orbit effectively circular), while it

s also decreases values of |L| and |E|. The r-value of the innermost stable
Stable circular orbits &7 circular orbit, labeled rigco, occurs when values of |L| and |E| for a circular

and the innermost g0 orbit reach their minima. When the circular orbit of a stone reaches rigco,
stable circular orbit o1 further loss of energy to friction leads the stone to spiral inward through the
sz event horizon.
883 In Nature a spinning black hole is surrounded by an accretion disk that

s« consists of material circulating in stable prograde circular orbits in the

ss equatorial plane. (Why prograde? Because a stone circulating in a prograde

ss  1ISCO has a much smaller map energy than a stone in a retrograde ISCO; see
Accretion disk s Figure 13.) Orbiting dust and particles emit energy in the form of

s  electromagnetic radiation as they descend gradually through circular orbits of

o decreasing r. A distant stationary observer measures this emitted radiation to

s have energy equal to the map energy E/m. We continue to observe this

sor  radiation as material spirals down from the minimum stable ISCO orbit, but

sz not after the material crosses the event horizon.

18.12:@ EXERCISES

s« 0. SOLVED EXERCISE. Add angular momentum to a maximum-spin black hole?

sss  Suppose that the spinning black hole has maximum spin: a/M = 1. Can you
sss increase this (maximum!) spin by sending into the black hole a stone with

s positive angular momentum? Try a specific example:

898 Figure 18 plots the effective potential for a black hole with maximal spin
so  a/M =1 and incoming stones with angular momentum L/(mM) =5 and

oo three different map energies, including Ec/M = 6, above the energy of the

w1 forbidden map energy regions. When it falls into the black hole, can this

w2 highest-energy stone increase the black hole spin beyond its maximum value?
ws Answer this question using the following steps.

E L

Z_6 d - = 80

m an mM (80)
904 A. When this stone enters the black hole, it changes the black hole’s mass

905 according to equation (28) in Section 6.5 and increases the black hole’s
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. r/M=0.0460
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FIGURE 18 Effective potentials Vi (r) and V{7 (r) for a stone with L/m = 5M in
orbit around a spinning black hole with maximum spin parameter a/M = 1. There
are two stable circular orbits at larger /M than the maximum in this diagram, one
prograde, one retrograde. Two of the dashed lines show map energies Fa /m and Es/m
of two stones that take up unstable circular orbits. Can a third stone, with Ec/m = 6
and angular momentum L/(mM) = 6 fall into this black hole and increase its angular
momentum above the maximum?

angular momentum beyond the old maximum in equation (2) in Section
17.1:

Mnew =M+ Estone and Jnew = M2 + Lstone (81)

B. Then equation (1) in Section 17.1 tells us that

Anew o L]new o M2+Lstone o 1+Lstone/M2 (82)
Mnew B Mgew B (M+Estone)2 N (1 +Est0ne/M)2

C. Now Lgtone and Egione are properties of the incoming stone, which has
mass m < M, therefore Lgone < M? and Estone < M, so we can
approximate (82) with the formula inside the front cover:
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(85)

The step from (83) to (84) neglects the product of two small quantities.

The final expression (85) is (slightly) smaller than the initial
(maximum) spin parameter a/M = 1.

For this example, the incoming stone does not increase the spin parameter of

the black hole. Why not? Because it increases the mass of the black hole,

which changes the value of its maximum spin.

1. Optional: Repeat exercise 0 with GRorbits

Use interactive GRorbits software to plot the analysis of Exercise 0

A.

B.

C.

Plot the case described in Exercise 0 with your choice of numerical

values for m < M and M = 10Mgun.

Repeat Item A for M = 107" Mgyu,. Describe how your results differ from

those in Item A?

Report what you have learned in this exercise that supplements or

reinforces results in Exercise 0.

2. Fast orbits!

Write a computer program to fill in Tables 18.4 and 18.5 for a spinning black
hole with a/M = (3/4)'/2. Write “None” in entries for which circular orbits do

not exist. Section 18.10 shows that a distant observer records a wristwatch
time equal to map AT for one circular orbit. In the table, “progr.” means

“prograde” and “retrogr.” means “retrograde”.

A. For a “small” black hole with mass M = 10Ms,, fill in entries in Table

18.4.

B. For a “large” black hole with mass M = 4 x 10%Msg,, (the approximate
mass of the spinning black hole at the center of our galaxy), fill in the

entries in Table 18.5.
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TABLE 18.4 “Small” black hole: “TIMES” for one orbit, in SECONDS

M = 1()1\48u11 T/M = T/M: T/M: ’I“/M = 'r‘/M =
0.2 2 6 10 20

| Newton time | | | | | |

Nonspin AT
Spin progr. At
Spin retrogr. At
Nonspin AT
Spin progr. AT
Spin retrogr. AT

NOTE: Spinning black hole has a/M = (3/4)'/2. Equation (52) for 7 and (51) for 7.

TABLE 18.5 “Large” black hole: “TIMES” for one orbit, in DAYS

M=4x10Mgy, | r/M= | r/M= [ r/M= [ r/M= | r/M =
0.2 2 6 10 20

| Newton time | | | | | |

Nonspin AT
Spin progr. At
Spin retrogr. At
Nonspin AT
Spin progr. AT
Spin retrogr. AT

NOTE: Spinning black hole has a/M = (3/4)'/2. Equation (52) for 7 and (51) for T.

« 3. Can a stone exist in a region where the effective potential is not real-valued?

@ In Section 18.2 we found from equation (16) that the effective potentials are
w10t real-valued (do not exist) at r-values for which the horizon function H is
w0 imaginary, namely between r¢ and rg. This seems to imply that the equation
sr  of motion (15) for dr/dr is complex-valued, so the stone cannot move or even
sz exist between the horizons. Demonstrate conclusively that the stone can exist
w3 and move between the two horizons.

«+ 4. Forbidden map energy region for non-spinning black hole?

ws Review the effective potential diagrams for the non-spinning black hole in
ws Chapter 8 Circular Orbits and answer the following questions without doing
w7 any calculation.

048 A. Show that a forbidden map energy region exists for the non-spinning
049 black hole.
950 B. Does this forbidden map energy region extend all the way to flat

951 spacetime, r — 00?
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o2 C. What is the experimental (observational) consequence—if any—of the
953 forbidden map energy region near the non-spinning black hole for an
954 observer far away where spacetime is flat?

055 D. Optional: Take the limit of equation (16) as a/M — 0 and

056 L/(mM) — 0. Plot the resulting effective potential curve for a stone
957 moving radially near a non-spinning black hole.

s 5. Forward time travel using a knife edge circular orbit of a spinning black hole.

s Review Exercise 7 in Chapter 8. The Space Administration is now accepting
w0 proposals for forward time travel that use a forward prograde knife-edge

e circular orbit around a spinning black hole with a/M = (3/2)'/2. They

w2 consider a satellite with a non-relativistic velocity far from the black hole so

ws that E/m a 1. While still far from the black hole, the spaceship captain uses
ss small rocket thrusts to achieve the value of map angular momentum L

s required so that V;/m = E/m = 1 on the peak of the V;"(r)/m curve.

966 A. Substitute the condition that V;"/m = 1 at the peak of the V;'(r)/m

%67 curve into equation (32). Solve the resulting equation for r.

s68 B. Substitute the solution of Item A into (31) to find the factor dr/dT" for
969 the spaceship in this knife-edge orbit. What speed in flat spacetime

970 gives the same time-stretch ratio?

o7t C. Compare d7/dT in Item B with the time-stretch ratio for the

o2 non-spinning black hole (Exercise 7, Item B in Chapter 8).

oz 6. Effect of friction when starting from an unstable circular orbit

os  Section 18.7 analyzes the motion of a stone that starts from a stable circular
o5 orbit at r > 6 M around a non-spinning black hole, and loses map energy and
o angular momentum through friction (see Figures 9 and 10). Use Figures 9 and
o7 10 to answer the following question: What happens if a stone is in an unstable
os circular orbit at » < 6M, then loses map energy and map angular momentum
os  in small steps through friction?

s 7. How many stable circular orbits are there for the non-spinning black hole?

w1 Figure 15 shows that at a/M = 0 regions F, G and H meet in a single point at
we /M = 6. Are there ZERO, ONE or TWO stable circular orbits there?

ss3 8. Circular orbits inside the Cauchy horizon

e Figures 11 through 14 all plot the horizontal r-axes for r/M > 1 in order to

ss avoid complications with the spacetime region between the singularity and the
s Cauchy horizon. Yet Figure 15 plots the horizontal axis all the way down to
w7 the singularity at /M = 0. Use Figures 1 and 2 to explain why the region

ws 0 <r/M <1 in Figure 15 is correct.
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9. Stone map energy and map angular momentum at the ISCO for a = M

Equation (69) shows that for the maximum-spin black hole, rigco = M. For
these values of a and r15c0, equations (31) and (32) give indeterminate values
(L/(mM))ryper = 0/0 and (E/m)1yper = 0/0.

To find the numerical values of L/m and E/m for this orbit, we need to set
r/M =1+ € and take the limit of equations (31) and (32) as e — 0. The
answer, to one significant digit, is L/(mM) = 1.2 and E/m = 0.6.

A. Find numerical values for L/(mM) and E/m to three significant digits.
[Warning: our familiar approximation inside the front cover does not
work everywhere in this case. Under the square root in the denominator
of the right side of (31) and (32) you need to include the second
(quadratic) term in the expansion, so that:
(r/M)Y?=(1+e)'?2~1—¢/2—¢€*/8

B. Optional. Plot V" (r)/m vs. r/M for the value of L/(mM) you
calculated in Item A. Check that the minimum of the effective potential
occurs at /M =1 at the value of E/m you obtained in Item A.

10. Two light cone diagrams for the maximally spinning black hole (a = M)

A. Review Sections 3.6 through 3.9 in Chapter 3 for the meaning of
spacetime slice, light cone diagram, and embedding diagram. Use the
technique outlined there to construct a light cone diagram, similar to
Figure 8 of Chapter 3, on the [r, T] slice of a spinning black hole with
a/M = 1.

B. Construct a light cone diagram on the [®,T] slice of a spinning black
hole with a/M = 1.

C. Answer the following questions for both light cones in Items A and B:
Why cannot a stone or spaceship remain static in Doran coordinates for
r < 2M? How can a stone or spaceship still escape to infinity from
r = 2M? Does the rotation of the black hole drag a stone or spaceship
at r = 2M inevitably along the direction in which the black hole spins?
Is your answer to this third question coordinate-free?
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FIGURE 19 A three-dimensional Doran coordinate r, ®,T plot of two light cones
near the maximally-spinning black hole a/M = 1.

11. Difficult! Three-dimensional light cone diagram for the maximally-spin
black hole

Figure 19 shows a three-dimensional Doran coordinate plot of two light cones
for the maximally-spinning black hole. Discuss the following characteristics of
these light cone plots/ plot.

A.

Both light cones start on the r/M axis. Why are they both deflected
inward in the r direction? Are they deflected in the ® direction? Why
or why not?

Why is the light cone that starts at r/M = 1 deflected more in the r
direction than the light cone that starts at r/M = 27

What is the physical difference between that part of the area at the top
of the r/M = 2 light cone whose lines lie in the r direction and the part
of that area whose lines lie in the ® direction? Why is there no
corresponding area of the /M =1 light cone lined in the r direction?

Does either light cone tell you that a circular orbit of a stone is possible
at that value of r/M? If not, why not? If so, what does it say about
that circular orbit?

Answer Item C in exercise 10 for the two lightcones of Figure 19.
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w7 12. Light cone diagrams for a spinning black hole with a/M = (3/2)'/2

1w Refer to your answers for Items A through C of exercise 10. The present
w3 exercise asks to you apply a similar analysis to a black hole with
1040 a/M: (3/2)1/2

1041 A. Repeat Item A of exercise 10 for a/M = (3/2)'/2.

1042 B. Ditto for Item B of exercise 10.

1043 C. In Section 17.8 we found from equations (77) through (79) the

1044 surprising result that local ring frames can exist between the Cauchy
1045 horizon and the singularity. Use the 3D light cone diagram of Item C to
1046 show how once a stone crosses the Cauchy horizon, in principle—that
1047 1s, without any mathematical analysis of particular orbits—the stone is
1048 not necessarily dragged further towards smaller r-values and into the
1049 singularity, but can remain in circular orbits.

1050 D. Knowing what you know from the present chapter, how many different
1051 circular orbits can there be for a free stone inside the Cauchy horizon?
1052 Why is your answer to this Item D different from your answer to Item
1053 C?

s« 13. Limiting values of constants and variables at the horizons

1ss  Derive expressions (22) through (27) in Box 2.

s 14. Stable circular orbits at /M = 9 for maximum-spin black hole

7 Equations (68) and (70) tell us that stable orbits come in pairs (prograde

s Types 1 and 2 always occur together, and retrograde Types 3 and 4 also

s always occur together). Figure 15 shows that for a maximum-spin black hole,
w0 17/M =9 is on the boundary between region G (where one prograde pair of
1w0s1  stable circular orbits exist) and region H (where two pairs of stable circular
s Orbits exist—one prograde, one retrograde).

e This argument implies that /M = 9 is the innermost stable circular orbit
s (ISCO) for retrograde (Types 3 and 4) orbits, but just an ordinary stable
1wes  circular orbit for prograde (Types 1 and 2) orbits.

e Use equations (31) through (38) for L/m and E/m and equation (16) for
1067 VLjE /m to verify the conclusion in the preceding paragraph.

wes 15. Orbiting in the direction of rotation of the black hole

e Out of the four types of circular orbits discussed in this chapter, in which
w0 type(s) does the stone actually orbit in the direction that the black hole
wn  rotates? Does this question have a coordinate-free meaning?
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w2 16. Circle points for the maximum-spin black hole

w  Table 2 shows the r/M and E/m values of circular orbits for a black hole with
s a/M = (3/2)/2 and a stone with a map angular momentum L/(mM) = 5.

w5 How were these numerical values calculated? Construct a similar table for

e stone moving with the same map angular momentum around a spinning black
w7 hole with a/M = 1. Display the effective potentials Vi (r) for this case in a

s plot similar to Figure 1.

ws 17. Possible orbits and their orbit parameters for a given a/M and /M

00 Use equations (31) through (38) and equations (43) through (50) to find all
s possible types of circular orbits and their values of L/(mM), E/m, dT'/dr,
w2 and d®/dT, for black hole spin a/M = (3/2)'/? at the following 7-coordinates.

a) r/M = 22.76. Check your result in Figure 1.
b) r/M = 19.87. Check your result in Figure 1.
)
)

1083

1084

—_— S~

¢
d

r/M = 4. Check your result in Figure 3.
r/M = 0.4475. Check your result in Figure 3.

1085

—~

1086
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