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C H A P T E R

18 Circular Orbits around the Spinning
Black Hole28

Edmund Bertschinger & Edwin F. Taylor *

The Mevlevi Order, founded in 1273 by Jalal ad-Din29

Muhammad Rumi’s followers, perform their “dance” and30

musical ceremony known as the Sama, which involves the31

whirling from which the order acquires its nickname, Whirling32

Dervish. The Sama represents a mystical journey of33

humanity’s spiritual ascent. Turning towards the truth, the34

follower grows through love, deserts ego, finds the truth, and35

arrives at the “Perfect.”36

—Wikipedia, The Free Encyclopedia [edited]37

18.1 REPRISE: THE DORAN METRIC38

Prepare for a trip into the spinning black hole39

“What’s it like to fall into a black hole?” Our first twelve chapters developed40

answers to this question for the non-spinning black hole. We could not givePrepare to fall
into a spinning
black hole.

41

details until Chapter 12, because we needed the background provided by42

earlier chapters. “What is it like to fall into a spinning black hole?” Again, we43

cannot give details until Chapter 21, because we need the background44

provided by Chapters 17 through 20.45

But we can say this now: Falling into the spinning black hole has manyThis chapter:
circular orbits

46

more possibilities—and is much more interesting—than falling into the47

non-spinning black hole. To reach this conclusion we study orbits of stones and48

light. The present chapter examines circular orbits of a stone around the49

spinning black hole.50

We find that around the spinning black hole, most of the circular orbits51

are unstable. An unpowered spaceship can perch temporarily in an unstableMost circular
orbits unstable

52

circular orbit on its way to a stable circular orbit (Section 18.8).53

In the accretion disk (Section 18.9), gas and dust slowly cascade down54

through a series of (semi-)stable circular orbits of decreasing r, each successiveBlazing accretion
disk: a sequence of
stable circular orbits

55

orbit with slightly smaller orbital energy. Electromagnetic radiation carries56

away the energy difference between orbits (Section 18.9). We can detect this57

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity

Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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18-2 Chapter 18 Circular Orbits around the Spinning Black Hole

emitted energy at our location far from the black hole. Eventually however, no58

circular orbit exists for smaller r, and the accreted material spirals inward59

across the event horizon.60

To begin, recall the Doran global metric in the equatorial plane of theDoran global metric 61

isolated spinning black hole—equations (4) and (5) in Section 17.2:62

dτ2 = dT 2 −

[(
r2

r2 + a2

)1/2

dr +

(
2M

r

)1/2

(dT − adΦ)

]2
−
(
r2 + a2

)
dΦ2 (1)

− ∞ < T <∞, 0 < r <∞, 0 ≤ Φ < 2π (Doran, equatorial plane)

63

The black hole spin parameter a ≡ J/M , with J the angular momentum of the64

black hole (Section 17.2). The spin parameter a has the unit meter. In Query 165

of Section 17.2 you multiplied out (1) to obtain:66

dτ2 =

(
1− 2M

r

)
dT 2 − 2

(
2Mr

r2 + a2

)1/2

dTdr + 2a

(
2M

r

)
dTdΦ (2)

+ 2a

(
2Mr

r2 + a2

)1/2

drdΦ−
(

r2

r2 + a2

)
dr2 −R2dΦ2

−∞ < T <∞, 0 < r <∞, 0 ≤ Φ < 2π (Doran, equatorial plane)

67

Equation (6) in Box 1 defines the symbol R.68

Comment 1. Heavy algebra69

This chapter requires a great deal of algebra to derive many of its equations,70

algebra that we mostly omit. Question: Would more advanced mathematics—for71

example tensors—make these derivations simpler? Answer: We don’t think so,72

but you can try!73

18.2 EQUATIONS OF MOTION FOR A STONE; TWO EFFECTIVE POTENTIALS74

Algebra orgies lead to powerful results.75

Our first task is to find equations of motion for a stone in Doran coordinates.76

Equation (103) for E/m in Section 17.9 and equation (110) for L/m in Section77

17.10 give us two linear equations in the three unknowns dT/dτ , dr/dτ , andTwo equations
in three unknowns

78

dΦ/dτ . Solve them to find dT/dτ and dΦ/dτ as functions of E/m, L/m and79

dr/dτ . The result is two equations of motion for the stone, both of them80

functions of the still-undetermined expression for dr/dτ . Box 1, repeated from81

Section 17.8, provides expressions for H, ω, β, and R in the following82

equations:83
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Box 1. Useful Relations for the Spinning Black Hole

This box repeats Box 1 in Section 17.8.

Static limit from Section 17.3:

rS = 2M (5)

Reduced circumference from Section 17.2:

R2 ≡ r2 + a2 +
2Ma2

r
(6)

Horizon function from Section 17.3:

H2 ≡
1

r2

(
r2 − 2Mr + a2

)
(7)

=
1

r2
(r − rEH) (r − rCH) (8)

where rEH and rCH are r-values of the event and Cauchy
horizons, respectively, from Section 17.3.

rEH

M
≡ 1 +

(
1−

a2

M2

)1/2

(event horizon) (9)

rCH

M
≡ 1−

(
1−

a2

M2

)1/2

(Cauchy horizon) (10)

Ring omega from Section 17.3:

ω ≡
2Ma

rR2
(11)

An equivalence from Section 17.3:

1−
2M

r
+R2ω2 =

(
rH

R

)2

(12)

Definition of α from Section 17.7:

α ≡ arcsin

[(
2M

r

)1/2 a

rH

]
(0 ≤ α ≤ π/2)(13)

Definition of β from Section 17.8:

β ≡
(
2M

r

)1/2 ( r2 + a2

R2

)1/2

(14)

Box 2 examines the values of some of these expressions at
the event and Cauchy horizons.

dT

dτ
=

(
R

rH

)2(
E − ωL
m

)
+

βR

rH2

dr

dτ
(equations of motion) (3)

dΦ

dτ
=

1

(rH)
2

[(
1− 2M

r

)
L

m
+

2Ma

r

E

m
+ a

(
2Mr

r2 + a2

)1/2
dr

dτ

]
(4)

To find dr/dτ on the right sides of these equations, divide both sides of84

the Doran metric (1) by dτ2; into the result substitute dT/dτ and dΦ/dτ fromFind dr/dτ ,
the third equation
of motion.

85

equations (3) and (4). Extensive algebra leads to the third equation of motion:86

dr

dτ
= ±R

r

(
E − V +

L

m

)1/2(
E − V −

L

m

)1/2

(stone) (15)q

87

Here V ±
L (r) are the effective potentials (two of them!) for the spinning88

black hole:89

V ±
L (r)

m
≡ ω L

m
± rH

R

(
1 +

L2

m2R2

)1/2

(stone, effective potentials) (16)

90
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The ± sign in (16) chooses between the two effective potentials, while the ±TWO effective
potentials

91

sign in (15) tells us whether the stone moves to larger or smaller r. Note that92

the effective potentials are not real-valued (do not exist) at values of r that93

make the horizon function H imaginary; namely between the event and94

Cauchy horizons.95

96

QUERY 1. Effective potentials at selected r-values97

Show the following: 98

A. The two effective potential functions become equal, V +
L (r) = V −

L (r), at both horizons and at99

r = 0. 100

B. As r/M →∞, the two effective potentials become, respectively, V +
L (r)/m→ +1 and101

V −
L (r)/m→ −1.102

103

Objection 1. Impossible! Item B in Query 1 says that the spinning black104

hole has an effective potential that extends outward to infinity. No black105

hole, spinning or non-spinning, can possibly be that powerful.106

There is no problem with V +
L (r): Item B in Query 1 simply reaffirms that a107

stone far from the black hole has V +
L (r)→ 1, the special relativity result108

in flat spacetime. For the case of V −
L (r) far from the black hole, read on!109

110

QUERY 2. Map angular momentum of a stone when a→ 0111

Show that when a→ 0 then dΦ→ dφ and R→ r, so the angular momentum equation (110) in Section112

17.10 reduces to the expression for the non-spinning black hole (Section 8.2):113

L

m
= r2

dφ

dτ
(non-spinning black hole) (17)

114

115

QUERY 3. Expression for dr/dτ for the non-spinning black hole116

A. Show that when a→ 0, equation (15) reduces to equation (19) in Section 8.3 for the117

non-spinning black hole:118(
dr

dτ

)2

=

(
E

m

)2

−
(
VL
m

)2

=

(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)
(non-spinning BH) (18)

B. Show that when a→ 0, then V ±
L (r) reduces to the single effective potential for a non-spinning119

black hole in Section 8.4:120
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Box 2. At the Horizons

What happens to our constants and variables at the event and
Cauchy horizons? Here’s a summary. (You can derive these
expressions as a Query or exercise.)

In the following, the subscript H stands for the value of that
quantity at either the event horizon or the Cauchy horizon.

R(r)→ RH = 2M (Fig. 1, Section 17.2.) (22)

H(r)→ HH = 0 (23)

ω → ωH =
a

2MrH
(24)

r2 + a2

2Mr
→ 1 (25)

(
E − V +

L

m

)1/2(
E − V −

L

m

)1/2

→
E − ωHL

m
(26)

β =

(
2M

r

)1/2 ( r2 + a2

R2

)1/2

→ βH = 1 (27)

VL(r)

m
≡
(

1− 2M

r

)1/2(
1 +

L2

m2r2

)1/2

(non-spinning black hole) (19)
121

Use expressions (15) and (16) for dr/dτ to complete the equations ofEquations of motion
dT/dτ and dΦ/dτ

122

motion begun with (3) and (4), and rearrange the results to give the following123

expressions. These extensive derivations use several expressions in Box 1.124

dT

dτ
=

(
R

rH

)2
[
E − ωL
m

± β
(
E − V +

L

m

)1/2(
E − V −

L

m

)1/2
]

(20)

125

dΦ

dτ
=

L

mR2
+

sin2 α

a

[
E − ωL
m

± 1

β

(
E − V +

L

m

)1/2(
E − V −

L

m

)1/2
]

(21)

126

In these equations, the plus sign in front of β or 1/β corresponds to an127

increasing r-value and the minus sign to a decreasing r-value.128

18.3 USING EFFECTIVE POTENTIALS129

Where to go, where to stop, where to bounce, where to stay130

Every equation of motion—(15), (20), and (21)—contains the following131

expression, which must be real if the stone can move, or even exist, with that132

map energy E:133 (
E − V +

L

m

)1/2(
E − V −

L

m

)1/2

must be real. (28)
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FIGURE 1 Effective potentials V +
L (r) and V −

L (r) for a stone with L/m = 5M
orbiting a spinning black hole with spin parameter a/M = (3/4)1/2. Turning points
(Definition 2) lie on the effective potential curves: a little filled circle at the r-value of
an unstable circular orbit; a little open circle at the r-value of a stable circular orbit;
a rotated little black square at a bounce point. Figure 2 shows a magnified view of
effective potentials inside the Cauchy horizon.

From (16), V +
L (r) > V −

L (r) at every r-value where effective potentialsEquations of motion
must be real.

134

exist. Expression (28) is real at these r-values when either E > V +
L (r) or135

E < V −
L (r). In contrast, expression (28) is imaginary in regions where map136

energy lies between the effective potentials, that is where V +
L (r) > E > V −

L (r).137

The stone cannot move, or even exist, with map energy E in that region. We138

say that this is a forbidden map energy region (Definition 1).139

Figures 1 and 2 plot the two effective potentials from (16) for given values140

a/M = (3/4)1/2 and L/(mM) = 5, along with several values of the stone’s141

map energy. These figures illustrate forbidden map energy regions, which we142

now define.143

DEFINITION 1. Forbidden map energy region144

A forbidden map energy region (which we often call simply a145

forbidden region) is a region between the V −
L (r) and V +

L (r) effective146

potential curves on the V ±
L (r)/m vs r/M plot. Why forbidden? BecauseDefinition:

Forbidden energy
region

147

if the map energy E/m of the stone did lie in this region, its equations of148

motion would be imaginary or complex.149
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FIGURE 2 Magnified view of the pair of effective potentials in Figure 1 inside the
Cauchy horizon. Little filled circles at points a and c show r-values for unstable circular
orbits; the rotated filled square symbol locates a bounce point.

Figures 1 and 2 exhibit not only forbidden map energy regions but also what150

we call turning points, which we subdivide into circle points and bounce points.151

(Recall similar definitions in Section 8.4 for the non-spinning black hole.)152

DEFINITION 2. Turning point, circle point, and bounce point153

A turning point is a point on the V ±
L (r)/m vs r/M curve for whichDefinition:

Turning point
154

either E = V +
L or E = V −

L . At a turning point dr/dτ = 0—equation155

(15). Examples: points labeled a through h in Figure 1. We distinguish156

two kinds of turning points: circle point and bounce point.157

A circle point is a turning point at a maximum or minimum of theDefinition:
Circle point

158

effective potential. At a circle point dr/dτ = 0 and remains zero, at least159

temporarily, so a stone at a circle point is in an unstable or stable circular160

orbit. We plot a circle point as a little filled circle (at an unstable circular161

orbit) or a little open circle (at a stable circular orbit). See Definition 3.162

Examples: points labeled a, c, d, f, g, and h in Figure 1.163

A bounce point is a turning point that is not at a maximum or minimumDefinition:
Bounce point

164

of the effective potential. At a bounce point, dr/dτ = 0 for an instant but165

then reverses sign. We plot a bounce point as a little filled rotated square166

(a diamond). Examples: points b, and e in Figure 1 and point b in Figure167

2.168

Return to the circle point. There are two different kinds of circular orbits:169

stable and unstable.170

DEFINITION 3. Stable and unstable circular orbits171

A stone occupies a stable circular orbit when it lies at a circle point inDefinition:Stable
circular orbit

172
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the V ±
L (r)/m vs. r/M diagram at which displacement either right or173

left, while keeping E/m constant puts it inside a forbidden map energy174

region. We plot a stable circular orbit location as a little open circle.175

Examples: points f and h in Figure 1.176

The stone occupies an unstable circular orbit when it lies at a circleDefinition: Unstable
circular orbit

177

point in the V ±
L (r)/m vs. r/M diagram at which displacement either178

right or left, while keeping E/m constant does not put it inside a179

forbidden map energy region in that diagram. We often call an unstable180

circular orbit a knife-edge orbit to emphasize its instability. We plot an181

unstable circular orbit location as a little filled circle. Examples: points a,182

c, d, and g in Figure 1.183

Table 18.1 expresses these definitions analytically. Table 18.2 lists details for184

turning points in Figures 1 and 2.185

Objection 2. Stop! Figure 1 shows circular orbits g and h at negative map186

energies; negative-energy orbits cannot exist. Everyone knows that energy187

must be a positive quantity. Circular orbits at points g and h in Figure 1188

cannot exist!189

Beware of phrases such as “everyone knows.” First, even in Newton’s190

mechanics we can choose the zero of gravitational energy at any height in191

a gravitational field; then the potential energy of a stationary stone at any192

lower height becomes negative. Second, in general relativity the map193

energy is typically not measurable; it’s a constant of motion that can be194

negative without physical consequence. Chapter 19 gives formulas for the195

energy of a free stone measured in a local inertial frame, which yields a196

positive frame energy even for a negative map energy.197

Objection 3. Phooey! Your whole analysis is a fantasy! Even Figures 1198

and 2 describe structures inside the event horizon that no observer can199

possibly see or measure. Physical theory has to be “falsifiable:” it must be200

vulnerable to disproof by observation.201

In principle (or possibly in the future) we can observe and measure these202

results: Someone who rides a free stone inward across the event horizon203

can make measurements to verify results of this theory. Let an astronaut204

initially outside the event horizon have positive map energy above the205

forbidden map energy region. Chapter 21 describes a set of maneuvers206

inside the event horizon that brings this astronaut back out through the207

event horizon with negative map energy. Then she can report on her208

measurements during her earlier descent. More generally, a scientific209

theory often predicts what we will observe when new conditions or210

improved equipment become available.211
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TABLE 18.1 Classification of Circular Orbits using V ±
L

When E = V +
L and When E = V −

L and

dV +
L /dr = 0, then the orbit is dV −

L /dr = 0, then the orbit is

STABLE if d2V +
L /dr

2 > 0, but STABLE if d2V −
L /dr

2 < 0, but

UNSTABLE if d2V +
L /dr

2 < 0. UNSTABLE if d2V −
L /dr

2 > 0.

TABLE 18.2 Map Energies of Circular Orbits with L/(mM) = 5 and
a/M = (3/4)1/2 (Figures 1 and 2). Circle orbit Type numbers from equations
(31)–(38).

Circular orbit letter: r/M -value Type: E/m-value, unstable or stable

Point a: r/M = 0.0341 Type 1: EA/m = 5.8329, unstable
Point c: r/M = 0.4660 Type 2: EC/m = 4.3472, unstable

Point d: r/M = 1.6963 Type 1: ED/m = 1.7148, unstable
Point f: r/M = 22.744 Type 1: EF/m = 0.9785, STABLE
Point g: r/M = 5.2469 Type 3: EG/m = −1.0258, unstable
Point h: r/M = 19.7855 Type 3: EH/m = −0.9767, STABLE

212

QUERY 4. Application of Table 18.1213

Which entries in Table 18.1 apply to circular orbits around the non-spinning black hole?214

215

Comment 2. Two non-communicating regions216

What goes on below the forbidden map energy region in Figure 1? This figure217

implies, and equations show, that this forbidden map energy region extends as218

far as r →∞. Apparently both stable and unstable circular orbits exist below the219

forbidden map energy region. We have verified that no stone can exist in the220

forbidden map energy region, and Chapter 20 demonstrates that light is similarly221

forbidden to travel directly between an upper and lower region. Result: two222

regions that cannot communicate directly with one another.223

Map energy is negative below the forbidden map energy region, but that224

need not worry us: nobody observes or measures map energy. You can show225

that almost every (but not every) local inertial frame (defined in Chapter 17)226

that exists above the forbidden region can exist below the forbidden region.227

Indeed, for almost every (but not every) event that occurs at T, r,Φ above the228

forbidden map energy region an event can occur at T, r,Φ below this region.229

Where are events that occur below the forbidden map energy region? Is230

there an entire separate Universe there, a Universe we cannot see from ours?231

Can we get to that Universe? Can we come back? Answers in Chapter 21!232

18.4 FOUR TYPES OF CIRCULAR ORBITS233

How many circular orbits, and of what types?234

The spinning black hole has (many!) more surprises for us. One of these is the235

existence of multiple distinct circular orbits at the same r-value. Figure 3 showsMultiple circular
orbits at the same r

236
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FIGURE 3 Two different effective potentials for a spinning black hole, each of which
leads to a circular orbit at r/M = 4, one stable and the other unstable. Numbers 1
through 3 indicate circular orbit Types from equations (31) through (38). Figure 4
shows the possibility of four circular orbits at r/M = 4. The label q refers to the
same orbit in Figure 13. In order to display all turning points clearly, we do not shade
forbidden map energy regions in this plot.

two different effective potentials for a spinning black hole with a/M = (3/4)1/2237

that lead to two different circular orbits at r/M = 4. Note that these occur for238

two different (positive) values of the map angular momentum L/(mM). Even239

more astonishing, Figure 4 shows a total of four circular orbits at r/M = 4,240

two for the pair of positive values of L/(mM) in Figure 3 plus two more for241

the corresponding negative values of these map angular momenta.242

243

QUERY 5. Number of circular orbits at given r: Newton and the non-spinning black hole244

Both the non-spinning black hole and the spherically symmetric center of attraction of Newton’s245

mechanics are spherically symmetric, which allows an unlimited number of differently oriented [r,Φ]246

slices through the centers of these objects on which circular orbits can exist. On a single one of these247

slices, 248

A. Newton: For what values of r do circular orbits exist?249

B. Newton: How many distinct circular orbits exist at that r?250

C. Newton: If your answer to Item B predicts more than one circular orbit, what determines the251

difference between circular orbits at that r-value?252

D. Repeat Items A through C for the non-spinning black hole.253

254
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FIGURE 4 Four different effective potentials for a spinning black hole with a/M =
(3/4)1/2, all of which have circular orbits at r/M = 4, two stable and two unstable.
This figure adds to Figure 3 effective potential curves for negative values of the stone’s
angular momentum. Effective potentials for L/(mM) = ±13.8065 inside the Cauchy
horizon lie beyond the vertical range of this plot. The number on each circular orbit
symbol gives its Type. We do not shade forbidden map energy regions, in order to
display all turning points clearly.

We want to derive general expressions for map energies and map angular255

momenta of circular orbits around a spinning black hole. Definition 2 tells usNo circular orbits
between event
horizon and
Cauchy horizon

256

that a circular orbit occurs at r-values for which either E = V +
L (r) and257

dV +
L (r)/dr = 0 or E = V −

L (r) and dV −
L (r)/dr = 0. Between the event horizon258

and the Cauchy horizon the third equation of motion (15) is imaginary, so259

carries no physical meaning there. In addition, circular orbits near the260

horizons lie separated in r-value from the horizons, illustrated in Figures 1 and261

2 (Query 6). Now we turn these qualitative observations into analytical and262

numerical results.263

264

QUERY 6. Circular orbits avoid horizons and the singularity.265

In this Query you show that the circular orbits do not exist at the singularity or at the two horizons.266

A. Show that the slope of each effective potential function increases without limit (dV ±
L /dr →∞)267

at both horizons and at r = 0.268

B. The slope of the effective potential is zero at the r-value of every circular orbit. Item A tells us269

that this slope is vertical at three r-values: both horizons and the singularity. The effective270
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potentials are continuous at these three r-values and at the nearest circle points. Circular orbits271

are impossible at each horizon and at the singularity.272

273

To find all r-values of circular orbits, set the derivatives of the twoGenerating equation
for circular orbits

274

functions V +
L (r) and V −

L (r) equal to zero and from them derive an equation275

that contains all terms containing L. Result: an expression for the value of L276

for a circular orbit (if any) at that r-value. Equations (29) and (30) are the277

generating equations for circular orbits.278

±AL = B
(
L2 +m2R2

)1/2
+

C

(L2 +m2R2)
1/2

(29)

where the ± symbol matches that in the superscript of V ±
L , and symbols A, B,279

C stand for the following functions of a and r:280

A ≡ −dω
dr
, B ≡ d

dr

(
rH

R2

)
, C ≡ m2

(
r − Ma2

r2

)
rH

R2
(30)

281

QUERY 7. Optional: Derive the generating equation for circular orbits.282

Carry out the derivation of equations (29) and (30).283

284

285

QUERY 8. Pairs of solutions286

A. Show that when L = +L1 is a solution of (29) with E = V +
L (r), then L = −L1 is also a solution287

at the same r with E = V −
L (r). Conclusion: Circular orbits come in pairs.288

B. Identify all such pairs in Figure 4.289

C. Show also that the orbits in a pair are either both stable or both unstable. Hint: Use a290

symmetry argument.291

292

Solve equation (29) for L/m as a function of r. Lots of algebra yields two293

solutions for L/m. For each of these solutions set E = V +
L or E = V −

L at thisFour circular
orbit types

294

value of r. Result: four types of circular orbits described by the following295

equations. (Section 18.5 defines the labels on the right sides of these296

equations.)297
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TYPE 1 for E = V +
L (r)298

(
L

m

)
Type 1

=

(
M

r

)1/2
r2 + a2 − 2a(Mr)1/2[

r2 − 3Mr + 2a(Mr)1/2
]1/2 (forward, prograde) (31)

(
E

m

)
Type 1

=
V +
L (r)

m
=

r2 − 2Mr + a(Mr)1/2

r
[
r2 − 3Mr + 2a(Mr)1/2

]1/2 (forward, prograde)(32)

299

TYPE 2 for E = V −
L (r)300

(
L

m

)
Type 2

= −
(
L

m

)
Type 1

(backward, prograde) (33)

(
E

m

)
Type 2

=
V −
L (r)

m
= −

(
E

m

)
Type 1

(backward, prograde) (34)

301

TYPE 3 for E = V −
L (r)302

(
L

m

)
Type 3

=

(
M

r

)1/2
r2 + a2 + 2a(Mr)1/2[

r2 − 3Mr − 2a(Mr)1/2
]1/2 (backward, retrograde) (35)

(
E

m

)
Type 3

=
V −
L (r)

m
= − r2 − 2Mr − a(Mr)1/2

r
[
r2 − 3Mr − 2a(Mr)1/2

]1/2 (backward, retrograde)(36)

303

TYPE 4 for E = V +
L (r)304

(
L

m

)
Type 4

= −
(
L

m

)
Type 3

(forward, retrograde) (37)

(
E

m

)
Type 4

=
V +
L (r)

m
= −

(
E

m

)
Type 3

(forward, retrograde) (38)

305

306

QUERY 9. Pairs of map energies and map angular momenta307

Show that Figure 4 illustrates the results of Query 8. As a result, show that Type 1 implies the308

existence of Type 2 and also that Type 3 implies the existence of Type 4.309

310
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FIGURE 5 Extension of Figure 1 to positive and negative values of angular
momentum: L/(mM) = ±5 to show the relation between Types 1 and 2 circular
orbits. Reverse the sign of L to reverse the sign of E at the same r-value (Query 8).
A stone of map energy EA and L/(mM) = +5 (horizontal line at the top of the plot)
goes into a Type 1 circular orbit, which is distinct from the Type 2 circular orbit with
E = −EA at the same r (bottom of the plot). Similarly for other circular orbits at the
same r-values but of different types.

311

QUERY 10. Other pairs of solutions312

A. Show that when we change ω to −ω in (16), then V +
L (r) becomes −V −

L (r) and V −
L (r) becomes313

−V +
L (r). 314

B. From Item A and equation (11), show that when we change a to −a in (31) and (32)—that is,315

when the black hole spins in the opposite sense—then a circular orbit of Type 1 becomes a316

circular orbit of Type 3 at the same r-value.317

C. Likewise, show that when we change a to −a in (33) and (34), then a Type 2 circular orbit318

becomes a Type 4 circular orbit at the same r-value.319

320
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Comment 3. Convenient to define four types of circular orbits321

Queries 8 through 10 show that reversing the sign of the orbital angular322

momentum of a stone and/or the spin parameter of the black hole yield new323

circular orbits. Result: We can derive from Type 1 the other three types of circular324

orbits for a given absolute value of the black hole spin parameter |a/M |. It is325

informative, however, to consider each of the four types separately.326

How many circular orbits exist at r for the spinning black hole with a327

given value of a/M? To answer this question, look at equations (31) through328

(38). Map energy and map angular momentum of the stone must be real, soHow many
circular orbits
at a given r?

329

orbits exist only at r-values where functions inside the square roots in the330

denominators of these equations are positive:331

r2 − 3Mr + 2a(Mr)1/2 > 0 (where orbits exist for Types 1 and 2) (39)

r2 − 3Mr − 2a(Mr)1/2 > 0 (where orbits exist for Types 3 and 4) (40)

From these inequalities we can sort out the r-locations at which different332

circular orbit types exist. As r →∞, both inequalities (39) and (40) areHow many
circular orbits
at various
values of r?

333

satisfied, so all four types of circular orbits exist far from the black hole. At334

some intermediate values of r (but outside the event horizon) inequality (39) is335

satisfied, but inequality (40) is not satisfied, so only prograde orbits exist at336

those r-values. Only prograde orbits exist inside the Cauchy horizon, as in337

Figure 2 (Table 1). Finally, a region exists in which even338

r2 − 3Mr + 2a(Mr)1/2 < 0, so no circular orbits can exist in that region. Each339

of these conditions depends on the value of the black hole’s spin parameter340

a/M . Figure 6 plots these results for different values of a/M .341

Comment 4. Orbits of light342

The r-values where equations (39) and (40) become equalities are places343

where the denominators vanish in equations (31) through (38). Multiply both344

sides of each of these equations through by m, the mass of the orbiting stone.345

Then circular orbits can exist with the corresponding values of E and L if, and346

only if, m→ 0. Therefore, these are r-values for circular orbits of light (Figure 6).347

Chapter 20 explores orbits of light in greater generality.348

Which of these circular orbits are stable? Figures such as 2 and 4 preview349

the result that all circular orbits inside the Cauchy horizon are unstable.350

Sections 18.6 through 18.8 pursue the stability question after we investigate351

further the differences among Types 1 through 4 circular orbits outside the352

event horizon. In this process we will finally define prograde vs. retrograde353

circular orbits and forward vs. backward circular orbits.354

18.5 MAP dT/dτ AND MAP dΦ/dT FOR CIRCULAR ORBITS355

Add Doran Φ and T to the specification of circular orbits.356

Look again at equations of motion (20) and (21). The final term on the rightdT/dτ and dΦ/dτ
for circular orbits

357

side of each of these equations equals zero for the special case of a circular358

orbit, for which either E = V +
L or E = V −

L :359
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r/M

a/M
1
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0.5

0
0 1 2 3 4 4.5

C

0.25

B D

A

REGIONS A and C:         
                                         
REGION B:         ZERO circular orbits

REGION D:          

TWO circular orbits
(prograde only)

FOUR circular orbits
(both prograde and retrograde)

FIGURE 6 This figure uses inequalities (39) and (40) to answer the question, “How
many circular orbits of a stone exist at a given r for different values of the spin
parameter a/M?” In Region B, zero circular orbits exist. In Regions A and C, only
Type 1 and Type 2 (prograde) circular orbits exist. In Region D, all four types of
circular orbits exist. Circular orbits along the curves that divide regions are photon
orbits (Comment 4).

dT

dτ
=

(
R

rH

)2(
E − ωL
m

)
(circular orbit) (41)

dΦ

dτ
=

L

mR2
+

sin2 α

a

(
E − ωL
m

)
(circular orbit) (42)

Now plug values of L/m and E/m from (31) through (38) into equationsFour types of
dT/dτ and dΦ/dτ

360

(41) and (42). This leads to expressions for dT/dτ and dΦ/dτ for the four361

types of circular orbits in in Section 18.4:362
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TYPE 1 for E = V +
L363

(
dT

dτ

)
Type 1

=
r + a (M/r)

1/2[
r2 − 3Mr + 2a(Mr)1/2

]1/2 (forward, prograde) (43)

(
dΦ

dT

)
Type 1

=
(Mr)

1/2

r2 + a (Mr)
1/2

(forward, prograde) (44)

364

TYPE 2 for E = V −
L365

(
dT

dτ

)
Type 2

= −
(
dT

dτ

)
Type 1

(backward, prograde) (45)

(
dΦ

dT

)
Type 2

= +

(
dΦ

dT

)
Type 1

(backward, prograde) (46)

366

TYPE 3 for E = V −
L367

(
dT

dτ

)
Type 3

=
−r + a(M/r)1/2[

r2 − 3Mr − 2a(Mr)1/2
]1/2 (backward, retrograde) (47)

(
dΦ

dT

)
Type 3

=
(Mr)

1/2

−r2 + a (Mr)
1/2

(backward, retrograde) (48)

368

TYPE 4 for E = V +
L369

(
dT

dτ

)
Type 4

= −
(
dT

dτ

)
Type 3

(forward, retrograde) (49)

(
dΦ

dT

)
Type 4

= +

(
dΦ

dT

)
Type 3

(forward, retrograde) (50)

370

Note: Equations for dΦ/dT , with dT in the denominator, are not371

typographical errors: We choose to solve for dΦ/dT , not for dΦ/dτ , for two372

reasons: Minor reason: Equations for dΦ/dT are simpler than equations for373

dΦ/dτ . Major reason: This choice simplifies the categories. Type 1 and 2374

circular orbits (labeled prograde) always have dΦ/dT > 0, while Type 3 and 4375

circular orbits (labeled retrograde) always have dΦ/dT < 0.376

377

QUERY 11. Plus or minus? Signs of important expressions378

A. From the requirement that r2 − 3Mr − 2a(Mr)1/2 > 0 for Types 3 and 4 circular orbits, show379

that −r2 + a(Mr)1/2 < 0.380
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B. As a result, show that for Types 3 and 4 circular orbits, we have dΦ/dT < 0 for all values of r.381

C. Show that (dT/dτ)3 < 0 for all values of r, so (dT/dτ)4 > 0 for all values of r.382

383

This analysis leads to definitions of prograde and retrograde orbits.384

DEFINITION 4. Prograde and retrograde orbits385

We divide circular orbits into two classes, prograde and retrograde. In386

a prograde orbit the stone “revolves in the direction that the black hole387

rotates” in global Doran coordinates so that dΦ/dT > 0, while in aPrograde and
retrograde orbits

388

retrograde orbit the stone revolves in the opposite direction, dΦ/dT < 0.389

Note that the condition dΦ/dT = 0 for the raindrop worldline (Section390

17.7) marks the separation between prograde and retrograde orbits. As391

shown in Figure 6, retrograde orbits exist only outside the event horizon,392

while prograde orbits exist inside the Cauchy horizon as well as outside393

the event horizon.394

Objection 4. Your definitions of prograde and retrograde orbits are nothing395

but manipulations of Doran map coordinates Φ and T . You keep saying396

that we cannot observe map coordinates directly. Worse: Except for397

wristwatch time τ , this chapter uses only map coordinates. Your messy398

results tell us nothing about what we can see and measure as we move399

near a spinning black hole. Stop wasting our time!400

Nice objection! We use global constants of motion to discover possible401

motions of a stone. For example, we now know how many circular402

orbits—zero, two, or four—can exist at each r-value around a black hole403

with given spin parameter a. This significant achievement says nothing404

whatsoever about what you will see as you ride an unpowered rocket ship405

in any circular orbit. Such predictions require analysis of orbits of light near406

the spinning black hole. Hang on: Visual results arrive in future chapters!407

The other pair of labels attached to circular orbits, forward or backward,Forward or
backward orbits
from sign of dT/dτ

408

derive from the sign of dT/dτ . We have chosen the stone’s wristwatch time τ409

to increase—to make dτ positive—as the stone proceeds along its worldline410

(Comment 7, Section 1.11). So the sign of dT determines the sign of dT/dτ . If411

dT/dτ > 0, then T also runs forward along the worldline of that stone. In412

contrast if dT/dτ < 0 then T runs backward along that worldline. This leads413

to definitions of forward and backward orbits.414

DEFINITION 5. Forward and backward orbits415

Along a forward orbit, dT/dτ > 0, so both T and τ increase as theDefinition:
forward and
backward orbits

416

stone proceeds along its worldline. Along a backward orbit,417

dT/dτ < 0, so τ increases and T decreases as the stone proceeds418

along its worldline.419

The concept of a global rain T (or global Schwarzschild t for a420

non-spinning black hole) that runs backward along a stone’s worldline is421
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TABLE 18.3 Signs of circular orbit quantities

Type E = E/m L/m dT/dτ dΦ/dT dΦ/dτ

1 V +
L ± ± + + +

2 V −
L ∓ ∓ − + −

3 V −
L − + − − +

4 V +
L + − + − −

Types 1 and 2 for L/m and E/m: Upper sign for orbits outside the
event horizon, either sign for orbits inside the Cauchy horizon. Type 3

and 4 orbits exist only outside the event horizon.

nothing new. Figure 8 in Section 3.7 displayed the worldline of Stone B inside422

the event horizon along whose worldline Schwarzschild global t runs backward.423

No contradiction results; nobody measures these global coordinate differences.424

For the spinning black hole there are two new results: First new result:Global T can
run either forward
or backward
along a worldline.

425

The orbits that run forward and backward in T come in pairs: if one exists,426

the other exists at the same r, with opposite signs of E/m and427

L/m—equations (32) through (37). Second new result: For a spinning black428

hole, global T can run backward along a stone’s worldline even outside the429

event horizon, indeed, all the way out: r/M →∞.430

Comment 5. ALWAYS forward? ALWAYS backward?431

Are orbits with E = V +
L (r) always forward? Are orbits with E = V −

L (r) always432

backward? Yes to both questions—at least for circular orbits. These results follow433

from (31) through (38) and (43) through (50). Can you fill in the argument?434

435

QUERY 12. Orbit pairs436

A. Show that the signs of dT/dτ and dΦ/dT in Table 18.3 agree with Definitions 4 and 5.437

B. Show that for each pair of circular orbits in Query 8, one orbit is forward, the other is backward.438

C. Show that for eqch pair of circular orbits in Query 10, one orbit is prograde, the other is439

retrograde. 440

441

442

QUERY 13. More signs of important expressions443

A. Use Table 18.3 and the signs of L/m and E/m to verify the assignment of Types to the 6444

circular orbits listed in Table 18.2.445

B. Verify the signs of L/m and E/m in Table 18.3. Hint: To show that both signs are possible for446

Types 1 and 2, examine Point c in Table 18.2.447

C. Verify the signs of dT/dτ and dΦ/dτ in Table 3 using equations (43) to (50) and Query 11.448

449



September 5, 2017 11:04 CircleOrbitsSpin170905v3 Sheet number 21 Page number 18-20 AW Physics Macros

18-20 Chapter 18 Circular Orbits around the Spinning Black Hole

450

QUERY 14. Elapsed ∆T and ∆τ for one circular orbit451

A. Define one complete circular orbit to have ∆Φ = 2π. Use equations (44), (46), (48), and (50) to452

find the following expression for ∆T , the advance of Doran global T -coordinate, during one453

circular orbit:454

∆T (one orbit) = ±2π

[
±r2 + a(Mr)1/2

(Mr)1/2

]
= ±2πM

[
±
( r

M

)3/2
+

a

M

]
(51)

The ± sign outside the square brackets comes from ±∆T for forward and backward orbits and455

the ± sign inside the square bracket for prograde and retrograde orbits.456

B. Next, define one complete circular orbit to have ∆Φ = +2π if dΦ/dτ > 0 but ∆Φ = −2π if457

dΦ/dτ < 0. Then use all eight equations (43) through (50) to find the elapsed wristwatch time458

∆τ : 459

∆τ(one orbit) = 2πr

[
r2 − 3Mr ± 2a(Mr)1/2

Mr

]1/2
= 2πr

[
r

M
− 3± 2a

(Mr)1/2

]1/2
(52)

with the plus for prograde and the minus for retrograde orbits.460

C. Show that for the non-spinning black hole, equation (52) reduces to equation (37) in Section 8.5.461

What happens to the ± sign in (52) in this reduction?462

D. Answer one of the initial questions on the first page of this chapter: Does black hole spin make463

orbits go faster? slower? Pay special attention to the meaning(s?) of the word “go” in that464

question. 465

466

In the following three sections we examine which circular orbits are stable467

and which are unstable: Section 18.6 for Newton’s circular orbits; Section 18.7468

for circular orbits around the non-spinning black hole; Section 18.8 for circular469

orbits around the spinning black hole.470

Why do we care about stable circular orbits? Why are they important?471

Stable circular orbits are important to us for two primary reasons:472

WHY ARE STABLE CIRCULAR ORBITS IMPORTANT?473

1. A stone perched at the peak of the effective potential does not stay474

there long, so you do not observe unstable circular orbits in Nature. In475

contrast, the accretion disk around the spinning black hole (Section476

18.9) consists of a series of nested stable circular orbits which a stone477

occupies in sequence as it radiates away its loss of orbital energy.478

2. When we carry out an exploration program of the spinning black hole479

(Chapter 19), we can temporarily perch our unpowered spaceship in an480

unstable circular orbit on our way to somewhere else. “Somewhere else”481

is often a stable circular orbit, from which we can make relaxed482

observations without worry about falling off the effective potential483

maximum.484
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FIGURE 7 Examples of effective potentials and the radii of Newton’s stable circular
orbits around a point mass. A stable orbit (little open circle) exists at the minimum
of each effective potential curve. The area under each effective potential is a forbidden
map energy region for the stone with that angular momentum.

18.6 STABILITY OF NEWTON’S CIRCULAR ORBITS485

Angular momentum makes the world go ’round.486

Begin the analysis of Newton’s circular orbits with his expression for the total487

energy (kinetic plus potential) of a stone in a central gravitational field:Newton:
Total energy

488

E =
1

2
mv2 − mM

r
(Newton, conservation of energy) (53)

Newton’s force law F = ma demands that in a circular orbit the inward489

gravitational force −mM/r2 equals mass m times the inward acceleration490

−v2/r:491

−mM
r2

= −mv
2

r
so r2v2 = Mr (Newton force law, circular orbit) (54)

Newton defines the angular momentum of a stone in a circular orbit as its492

radius r times its tangential linear momentum mv:Newton: Angular
momentum of a
circular orbit

493

L ≡ mrv (Newton, circular orbit) (55)

so that from (54):494

L = m(Mr)1/2 (Newton, circular orbit) (56)
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Figure 7 suggests that total orbital energy decreases with decreasing495

radius of the stable circular orbit. To check this, find an expression for v2 from496

(55) and substitute the result into (53), thereby defining the effective potential:497

VL(r) ≡ L2

2mr2
− mM

r
(Newton, effective potential) (57)

Now substitute for L from (56) and rearrange the result to yield theNewton: Total
energy of a
circular orbit

498

energy of a stone in a circular orbit as a function of the radius of that orbit:499

E = VL(r) =
1

2

mM

r
− mM

r
= −1

2

mM

r
(Newton, circular orbit energy)(58)

Figure 7 and our accompanying algebraic analysis tell us that Newton’s500

effective potential has only one zero-slope point, and that one point is at aNewton’s conclusion:
Every circular orbit
is stable, all the way
down to r = 0.

501

minimum. Definition 3 then tells us that in Newton’s mechanics EVERY502

circular orbit is stable. More: Newton’s circular orbits are stable all the way503

down to r = 0, or until the stone strikes the surface of a spherically symmetric504

center of attraction.505

Now suppose that a stone in a circular orbit encounters a little506

friction—perhaps from dust or a rarified atmosphere. This friction convertsAdd a little
friction.

507

some orbital energy into heat, electromagnetic radiation, or other forms of508

energy. Where does this converted energy come from? For Newton the only509

source is the orbital energy of the stone. We analyze the result with a simple510

model: Assume that this loss of energy per orbit is minuscule, so the stone’s511

orbit remains circular, but its radius changes slightly. How can we track512

changes in energy, angular momentum, and radius of the orbit during this513

process? Begin to answer these questions by differentiating both sides of (58):514

dE

dr
= +

1

2

mM

r2
(sequence of Newton’s circular orbits) (59)

Similarly, differentiate both sides of (56):515

dL

dr
= +

m

2

(
M

r

)1/2

(sequence of Newton’s circular orbits) (60)

Figure 7 shows what equations (59) and (60) tell us, namely that when theCircular orbit
E, L, and r
all decrease.

516

energy of the circular orbit decreases, the angular momentum also decreases,517

as does the radius of the orbit.518

Equations (59) and (60) imply that energy and angular momentum can519

change. How can this be?520

The stone’s energy and angular momentum are constant for free-fall521

motion, but they change if an external force is applied to the stone, whetherExternal force:
friction

522

this force arises from a rocket or from friction in an accretion disk. For a523

circular orbit, r, E, and L are all related. As E and L change, the radius of524

the circular orbit changes. To see how, think of an incremental change ∆E in525

energy. Equation (59) then implies that r changes by the amount526
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∆r ≈
(
dE

dr

)−1

∆E (Newton AND Einstein circular orbits) (61)

We can adapt (60) to express the same change in radius between stable orbits527

of different angular momentum:528

∆r ≈
(
dL

dr

)−1

∆L (Newton AND Einstein circular orbits) (62)

To summarize: For Newton’s circular orbits, a small amount of friction529

decreases the energy E and the angular momentum L of the orbiting stone530

and causes it to move to smaller radii through a sequence of stable circular531

orbits. Why stable? Because all Newton’s circular orbits are stable; every532

circular orbit nests at a minimum of an effective potential (Figure 7).533

Objection 5. Whoa! In this section you use the terms “radius,” “energy,”534

and “angular momentum” without modifiers. But you keep saying that535

these terms have no measurable meaning. Instead, you force us to use536

modifiers such as “map energy,” ”map angular momentum,” “shell frame537

energy,” and so forth. Why did you use single-word terms that you label538

forbidden? Follow your own rules!539

These distinctions—important in general relativity—do not exist in540

Newton’s mechanics. When carefully used, everyday terms are perfectly541

accurate for Newton. So we have just enjoyed a short vacation from our542

terminology rules for general relativity. Sorry, our little vacation is now over!543

Comment 6. Wide application of Definitions 1 and 3544

Our analysis of Newton’s circular orbits uses Definition 1 (forbidden region) and545

Definition 3 (stable and unstable orbits). The energy region under each of546

Newton’s effective potential curves in Figure 7 is forbidden to the stone547

(Definition 1), because in that region the stone’s kinetic energy would be548

negative. The stable circular orbit (Definitition 3) nestles at the minimum of the549

effective potential. These same definitions have wide usefulness: They apply to550

circular orbits around the non-spinning black hole (Section 18.7) and around the551

spinning black hole (Section 18.8).552

553

QUERY 15. Time for one orbit according to Newton554

A. From Newton’s equation for orbit speed in (54) and the circumference of a circle = 2πr in flat555

spacetime, show that for Newton the elapsed time for one circular orbit is:556

∆t

M
(one orbit) =

∆τ

M
(one orbit) = 2π

( r

M

)3/2
(Newton) (63)

B. Show that equations (51) and (52) both reduce to Newton’s result (63) when r/M →∞.557

558
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FIGURE 8 Effective potentials for the non-spinning black hole (repeat of Figure 4 in Section 8.4).
The area under each curve is the forbidden map energy region for a stone with that value of map angular
momentum. Little filled circles locate unstable circular orbits, little open circles locate stable circular orbits,
and the little half-filled circle locates a “half-stable” rISCO circular orbit, one that is “stable to the right and
unstable to the left.” A small amount of friction moves stable orbits downward and to the left along the
sequence of circled numbers 3→ 2→ 1 until r = rISCO, after which the stone spirals inward across the
event horizon.

18.7 STABILITY OF CIRCULAR ORBITS: NON-SPINNING BLACK HOLE559

Add unstable circular orbits to stable circular orbits.560

Next analyze the stability of circular orbits around the non-spinning black561

hole. Figure 8 replots the effective potential for several values of L from Figure562

4 in Section 8.4. In Newton’s case, Figure 7, all curves have one minimum, theNon-spinning black
hole: Stable
circular orbits
exist for r > 6M .

563

location of a stable circular orbit. But for the spinning black hole, Figure 8,564

the effective potential to the left of each minimum is radically different. In565

particular, Figure 8 exhibits the famous PIT in the potential of the566

non-spinning black hole. Unstable orbits exist at maxima of the effective567

potential between this pit and the stable-orbit r-values, provided that568

L/(mM) > (12)1/2. Points 4 and 5 are examples of this maximum. Unstable569

circular orbits are the new contribution of the non-spinning black hole.570

To analyze circular orbits for the non-spinning black hole, let a/M → 0 in571

equations (31) for E/m and (32) for L/m. Results:572

E

m
=

r2 − 2Mr

r (r2 − 3Mr)
1/2

(circular orbits, non-spinning black hole) (64)

L

m
=

(
M

r

)1/2
r2

(r2 − 3Mr)
1/2

(circular orbits, non-spinning black hole)(65)
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E/m

r/M

NON-SPINNING BLACK HOLE

3 1815129

0.94
0.9428

0.95

0.96

0.97

0.98

0

0.9526

rISCO= 6M

FIGURE 9 Plot of equation (64) for circular orbits around the non-spinning black
hole. Every point on this curve represents the map energy of a circular orbit. The curve
has a minimum (E/m)min = (8/9)1/2 = 0.9428 at rISCO = 6M (little half-filled circle).
A horizontal line above this minimum at, say, E/m = 0.9526 fixes the r-value of an
unstable circular orbit (little filled circle) and also the r-value of a stable circular orbit
(little open circle).

These correspond to equations (58) and (56) in Newton’s case.573

574

QUERY 16. Circular orbits in Newton’s limit575

Check (64) and (65) in Newton’s limit r/M →∞, that is M/r → 0.576

A. Does (65) reduce to (56)?577

B. Does (64) reduce to (58). Before doing the algebra, guess the answer by comparing the vertical578

scales of Figures 7 and 8 and the number that E/m approaches as r/M →∞.579

C. Interpret the physical difference between Newton’s circular orbit energy (58) and the Newtonian580

limit of circular orbit energy (64).581

582

We want to trace the result of a little friction on these orbits. To follow an583

analysis similar to that for Newton’s circular orbits in Section 18.6, take584

derivatives of both sides of (64) and (65) in Query 17.585

586

QUERY 17. Non-spinning black hole: dE/dr and dL/dr for a sequence of circular orbits.587

A. Differentiate (64) and (65) to obtain, for a non-spinning black hole:588
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L/(mM)
NON-SPINNING BLACK HOLE

r/M

3

3.464

30 9 12 15 18

4

5

5.5

3.6742

rISCO= 6M

FIGURE 10 Plot of equation (65) for circular orbits around the non-spinning black
hole. Every point on this curve represents the map angular momentum of a circular
orbit. This curve has a minimum [L/(mM)]min = (12)1/2 = 3.464 at rISCO = 6M (little
half-filled circle). A horizontal line above this minimum at, say, L/(mM) = 3.6742 fixes
the r-value of an unstable circular orbit (little filled circle) and a stable circular orbit
(little open circle).

dE

dr
=

mM(r − 6M)

2r3(r − 3M)3/2
(sequence of circular orbits) (66)

dL

dr
=
mM1/2(r − 6M)

2(r − 3M)3/2
(sequence of circular orbits) (67)

B. Show that when r �M , these reduce to Newton’s results (59) and (60).589

C. Show how Figure 8 reflects the result that the right sides of both equations (66) and (67) reverse590

sign at r = 6M .591

592

Figure 9 plots E/m vs r/M from equation (64), while Figure 10 plots593

L/m vs r/M from equation (65). These figures show what equations (66) and594

(67) describe: E and L have minima at r = 6M for circular orbits around a595

non-spinning black hole and both have positive slopes, dL/dr > 0 and596

dE/dr > 0, for r > 6M . From Figure 8, orbits in this range of r-values are597
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stable because r-displacement in either direction at constant E moves the598

circle point into a forbidden map energy region (Definition 2).599

Comment 7. Not another kind of effective potential600

Figure 9 looks like an effective potential for the non-spinning black hole, but it is601

not. Instead, it tells us the r-values of circular orbits for all possible values of602

E/m.603

Now trace the consequences of a little friction for circular orbits around604

the non-spinning black hole. Start with a stone in a circular orbit at r > 6M605

in Figures 9 and 10. Friction causes the orbit to lose both angular momentum606

and energy. Because dL/dr > 0 and dE/dr > 0 for r > 6M , therefore both LAdd friction:
Shrinking orbits
for non-spinning
black hole unstable
for 3M < r ≤ 6M .

607

and E decrease when r decreases: the orbit shrinks, as confirmed by equations608

(61) and (62).609

What happens after the orbit r-value reaches r = 6M , where610

L/(mM) = (12)1/2 = 3.4641 and E/m = (8/9)1/2 = 0.9428? Answer: Friction611

continues to drain angular momentum and energy. But dL/dr = 0 and612

dE/dr = 0 for circular orbits at r = 6M , so the stone can no longer change L613

and E by changing its orbital r-value: No circular orbits exist for614

L/(mM) < (12)1/2 and E/m < (8/9)1/2. Equations (61) and (62) bear this615

out: ∆r is undefined at r = 6M .616

To determine what happens next, see circled number 1 in Figure 8:617

Displacement to the left does not move the circle point into a forbidden map618

energy region. Instead, it leads to a continual decrease of r. Result: The stone619

spirals inward across the event horizon.620

As long as dE/dr > 0 and dL/dr > 0 along a sequence of circular orbits,621

the orbits are stable. Query 17 shows that dE/dr and dL/dr both change signFor stable circular
orbit: dE/dr > 0
and dL/dr > 0

622

at r = 6M , which marks the transition to unstable circular orbits. Comparing623

Figures 8 through 10, we see that circular orbits are unstable at r-values where624

dE/dr < 0 and dL/dr < 0.625

The smallest r-value of a stable circular orbit is called rISCO. The subscript626

ISCO stands for Innermost Stable Circular Orbit, defined in Section 8.5.627

Recall that the ISCO is both stable and unstable: Increasing the r-value at628

the same energy puts the stone into a forbidden map energy region, but629

decreasing the r-value does not; the orbit is stable to increasing r, but unstable630

to decreasing r. We can call the rISCO orbit a half-stable circular orbit.631

Objection 6. Wrong again! You tell us that “Map quantities L and E are632

not measured quantities.” So how can you say that friction causes them to633

decrease? Only physical quantities like velocity and energy in a local frame634

have a measurable meaning. So you talk nonsense when you say that635

friction causes (unmeasurable!) map quantities L and E to decrease!636

Guilty as charged! Values of L and E are not directly measurable.637

However, we can use global coordinates to predict, for example, the638

energy Eshell of the stone measured in a local inertial shell frame. For a639

non-spinning black hole, the result shows that when the tangential velocity640
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measured, for example, in the local shell frame decreases, then L641

decreases, and vice versa. And when local Eshell decreases, then map E642

also decreases, and vice versa. Map angular momentum and map energy643

serve as “proxies” for measurable quantities and both do decrease as644

claimed. Chapter 19 carries out this analysis for a spinning black hole645

using the ring frame.646

18.8 STABILITY OF CIRCULAR ORBITS: SPINNING BLACK HOLE647

Find four types of stable and unstable circular orbits.648

How many stable and unstable circular orbits exist around the spinning black649

hole? We follow an analysis similar to the one for the non-spinning black hole650

(Section 18.7). But there is a complication: The spinning black hole has four651

types of circular orbits, introduced in Section 18.4. The symmetry amongFour types of
circular orbits for
spinning black hole.

652

these four types allows us to concentrate on the two types with positive map653

energy outside the event horizon, Type 1 and Type 4. (The other two types654

are related to these by sign changes, described in Query 9.) Figure 11 plots655

effective potentials that show locations of two Type 1 circular orbits. Compare656

this plot with Figure 8 for the non-spinning black hole. Figure 12 plots657

effective potentials that show locations of two Type 4 circular orbits.658

r/M

Ev
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t 
H
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iz

on

21 1.5 3 4 5

 L/(mM) = 2.2085

 L/(mM) = 3

 L/(mM) = 1.5

 L/(mM) = 0

 Spinning black hole
      a/M = (3/4)1/2
      Type 1 orbits

rISCO =2.5373M

and
E/m

VL/m+

0.5

1

0

1.5

FIGURE 11 Magnified view of the effective potential V +
L (r) near the event horizon

for several values of L/(mM), showing r-values of two Type 1 (prograde) circular
orbits from (32). Compare with Figure 8. In this plot the forbidden map energy region
exists below and to the right of each curve for every value of map angular momentum,
including zero. The horizontal axis begins at r/M = 1 to hide the distraction of
unstable circular orbits inside the Cauchy horizon.
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FIGURE 12 Magnified view of the effective potential V +
L (r) near the event horizon

for several values of L/(mM), showing r-values of two Type 4 (retrograde) circular
orbits from (37).

Comment 8. Always a forbidden map energy region for spinning black hole659

Figures 11 and 12 show that for a/M = (3/4)1/2 the forbidden map energy660

region exists for every value of the stone’s angular momentum, including zero.661

This result is general: For every spinning black hole and for every value of the662

stone’s angular momentum in orbit around it, every pair of effective potentials663

V −
L (r) and V +

L (r) embrace a forbidden map energy region.664

Figure 13 plots E/m vs. r/M from Type 1 (prograde) and Type 4665

(retrograde) orbits for a/M = (3/4)1/2 from equations (32) and (38). Figure 14666

shows corresponding plots of L/(mM) vs. r/M from equations (31) and (37).667

Sample horizontal lines show pairs of unstable and stable orbits at the same668

map energy or map angular momentum.669

To see where and why circular orbits become unstable, start with the670

stone in a stable prograde (Type 1) circular orbit at large r. Now introduce aAdding friction
shrinks stable
orbits for spinning
black hole

671

little friction that decreases the stone’s energy E. Figures 13 and 14 show672

positive derivatives dL/dr > 0 and dE/dr > 0 for stable Type 1 orbits at large673

r. Then equations (61) and (62) tell us that the r-value of the orbit shrinks.674

The condition for stability of Type 1 orbits is dE/dr > 0 and dL/dr > 0675

from equations (31) and (32), or equivalently dV +
L /dr = 0 and d2V +

L /dr
2 > 0Orbits stable

down to rISCO

676

(Table 18.1). Either way gives, after lots of algebra, the inequality:677

r2 − 6Mr + 8a(Mr)1/2 − 3a2 > 0 (stable orbits, Types 1 and 2) (68)

Although we derived equation (68) for Type 1, it is also valid for Type 2678

(E = V −
L and, outside the event horizon, L < 0). You can see this from Figure679

4 and Query 8. Both stable and unstable circular orbits come in pairs.680

The left hand side of equation (69) vanishes at only one r-value and is681

negative for smaller r-values. The r-value of the innermost stable circular orbit682

is therefore given by the solution of this equation:683



September 5, 2017 11:04 CircleOrbitsSpin170905v3 Sheet number 31 Page number 18-30 AW Physics Macros

18-30 Chapter 18 Circular Orbits around the Spinning Black Hole

FIGURE 13 Map energy vs r for circular orbits outside the event horizon of the
spinning black hole with a/M = (3/4)1/2, from equation (32) for Type 1 and equation
(38) for Type 4, showing rISCO at the minima and one example of unstable and stable
orbits for each type. The prograde circular orbit labeled q at r = 1.95 and energy
E = 0.915M is the orbit labeled q in Figure 3; the figure above proves that orbit q in
Figure 3 is unstable.

r2ISCO − 6MrISCO + 8a (MrISCO)
1/2 − 3a2 = 0 (prograde orbits) (69)

Stable circular orbits exist only for r > rISCO.684

For a stone in a Type 1 or 2 (prograde) circular orbit at rISCO, further685

decrease of |L| or |E| can no longer result in a circular orbit, because |L| and686

|E| have already reached their minimum values for circular orbits, shown inMinimum
|L| and |E|
at rISCO

687

Figures 13 and 14. To determine what happens next, look at the little688

half-filled circle in Figure 11: Displacement of the stone to the left does not689

move it into a forbidden map energy region. Instead, it leads to a continual690

decrease of r. Result: The stone spirals inward, then crosses the event horizon!691

Next turn attention to retrograde orbits, Types 3 and 4. It is simplest to692

start with Type 4, E = V +
L > 0 and L < 0 (Table 18.3). Then stability for693

Type 3 follows as a “mirror image,” as was the case for prograde circularrISCO for
retrograde orbits.

694

orbits. At large r for Type 4, dE/dr > 0 (Figure 13), while dL/dr < 0 (Figure695
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FIGURE 14 Map angular momentum vs r for circular orbits outside the event
horizon of the spinning black hole with a/M = (3/4)1/2, from equation (31) for Type
1 and equation (37) for Type 4, showing rISCO at the minima and one example of
unstable and stable orbits for each type. Points d and f along the horizontal line at
L/(mM) = +5 have the same labels in Figure 1 and Table 2.

14). Whether L is positive or negative, a little friction decreases |L|. Thus the696

condition for stability is that there exists a circular orbit of slightly smaller r697

and slightly smaller |L|; this condition requires that d|L|/dr > 0 and therefore698

dL/dr < 0 when L < 0 in Figure 14.699

Comment 9. Signs of dE/dr and dL/dr for stable orbits700

When E < 0, as in Type 3, the condition on E for stability becomes701

d|E|/dr > 0. For both signs of E, the stability condition is d|E|/dr > 0, similar702

to the condition d|L|/dr > 0 for stability. The reason for this is that a little friction703

decreases both |L| and |E| regardless of the signs of L and E, and for orbits to704

exist with smaller |L| and |E|, the graphs of |L(r)| and |E(r)| must have705

positive slope with respect to r.706

The stability condition for Type 4 circular orbits is dE/dr > 0 and707

dL/dr < 0 from equations (37) and (38), or equivalently dV +
L /dr = 0 and708

d2V +
L /dr

2 > 0 (Table 18.1). Either way yields, after lots of algebra, the709

inequality:710

r2 − 6Mr − 8a(Mr)1/2 − 3a2 > 0 (stable orbits, Types 3 and 4) (70)
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Although we derived equation (70) for Type 4 orbits, it is also valid for711

Type 3. At r = rISCO, equation (70) becomes an equality.712

r2ISCO − 6MrISCO − 8a (MrISCO)
1/2 − 3a2 = 0 (retrograde orbits) (71)

As in Query 10, this result follows from the prograde case merely by changing713

the sign of a. We can solve the two equations (69) and (71) to find two714

expressions for a(rISCO).715

a(rISCO) = ±1

3
(MrISCO)

1/2

[
4−

(
3
rISCO

M
− 2
)1/2]

(72)

The plus sign in this equation describes prograde orbits and the minus sign716

describes retrograde orbits.717

Black holes exist only for 0 ≤ a/M ≤ 1. Equation (72) then limitsLimits on value
of rISCO

718

prograde and retrograde orbits to to the following values of rISCO:719

M ≤ rISCO ≤ 6M (0 ≤ a/M ≤ 1, prograde) (73)

6M ≤ rISCO ≤ 9M (0 ≤ a/M ≤ 1, retrograde) (74)

720

The curves in Figure 15 plot a as a function of rISCO from equation (72).721

Bardeen, Press, and Teukolsky solved (72) to give rISCO as a function of a, aValues
of rISCO

722

combination of three equations (see the references):723

rISCO

M
= 3 + Z2 ∓ [(3− Z1) (3 + Z1 + 2Z2)]

1/2
(75)

minus sign for prograde, plus sign for retrograde, and

Z2 ≡
(
3a2/M2 + Z2

1

)1/2
(76)

Z1 ≡ 1 +
(
1− a2/M2

)1/3 [
(1 + a/M)

1/3
+ (1− a/M)

1/3
]

(77)

724

725

QUERY 18. Values of rISCO for a/M = (3/4)1/2. (Optional)726

Use equations (75) through (77) to verify the following values of rISCO for a spinning black hole with727

a/M = (3/4)1/2: 728

rISCO/M = 2.537331951 for prograde orbit (78)

rISCO/M = 8.620665097 for retrograde orbit
729

Summary: For circular orbits around a spinning black hole, a small730

amount of friction decreases the absolute values of map energy and map731
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|a/M|
1.0

r/M

0.75

0.25

653 42 7 98 101
0

0

0.50
F HG

REGION F:       ZERO stable circular orbits

REGION G:      ONE stable circular orbit
                         (prograde only}    

REGION H:      TWO stable circular orbits
                  (one prograde, one retrograde)

FIGURE 15 How many stable circular orbits exist at a given r for different values
of the spin parameter a/M? This figure uses inequalities (68) and (70) to answer that
question. The regions are separated by curves for rISCO from equations (69) and (71).
In Region F there are zero stable circular orbits; in Region G there is one stable
prograde circular orbit; in Region H there are two stable circular orbits, one prograde
and one retrograde. Compare this figure with Figure 6 for all circular orbits.

angular momentum, |E| and |L|, which causes the stone to occupy a sequence732

of stable circular orbits with decreasing r—until both |E| and |L| reach theirSummary:
Sequence of stable
circular orbits

733

minima at r = rISCO. Increasing black hole spin moves the ISCO inward from734

rISCO = 6M to rISCO = M for prograde orbits and outward from rISCO = 6M735

to rISCO = 9M for retrograde orbits (Figure 15). These results have profound736

consequences for the accretion disk around the spinning black hole, which we737

explore in Section 18.10.738

18.9 TIMING CIRCULAR ORBITS FROM A LARGE r739

On whose watch?740

We are (thank goodness!) far from a spinning black hole. Surprise: We can741

nevertheless hold a stopwatch on each circular orbit in the sequence of circular742

orbits as a stone works its way inward through the accretion disk (Section743

18.10). In practice we might observe a blob of incandescent matter as it moves744

in each circular orbit. This section provides the background for such an745

observation.746

Replace the circulating blob with an astronaut in a circular orbit who747

emits a flash of light as she completes each orbit. Equation (52) tells us the748

lapse ∆τemit on her wristwatch for one orbit, where we have added theFlash-emitting
orbiter

749



September 5, 2017 11:04 CircleOrbitsSpin170905v3 Sheet number 35 Page number 18-34 AW Physics Macros

18-34 Chapter 18 Circular Orbits around the Spinning Black Hole

Identical slopes of worldlines 
(identical r-map speed of 
light) at every r-coordinate.

T M

TB M
(TB +ΔTemit) M

(TA +ΔTrec) M
TA M

r MrB M rA M

FIGURE 16 Schematic plot in Doran global coordinates of worldlines of two flashes
emitted by the Below emitter at the beginning and end of one circular orbit and
received by a distant Above observer. The lapse ∆Trec between receptions is equal to
the lapse ∆Temit between emissions. Similar plot for the Global Positioning System:
Figure 2 in Section 4.2.

subscript “emit” for clarity in what follows. How does the orbiter know that750

she has completed one orbit? The pattern of stars she sees overhead repeats as751

she returns to the same r,Φ. We have not yet predicted this star pattern,752

which depends on the observer’s orbit and the worldline of light from each753

distant star to the observer. Still, we know that this visual pattern repeats, so754

the observer can emit a flash at each repetition.755

Equation (51) tells us the Doran coordinate lapse ∆Temit between flash756

emissions by the orbiter. A distant observer at rest in Doran coordinates757

(dr/dT = dΦ/dT = 0) receives two sequential flashes emitted by the orbiter758

and records his wristwatch time lapse ∆τrec between these two receptions.759

At the location of this stationary distant observer the Doran metricTiming these
flashes from
far away

760

reduces to dτ2 = dT 2. Therefore, the distant observer measures a time lapse761

∆τrec = ∆Trec between flashes, where ∆Trec is the Doran coordinate lapse762

between the receptions of sequential light flashes.763

How is ∆Trec related to ∆Temit? Light rays travel along curves r(T ) in764

global coordinates. Let one light flash be emitted at r = rA and T = TA and a765

second one from the same r-value at T = TA + ∆Temit (Figure 16). When are766

these two flashes received by a distant observer stationary in Doran767

coordinates?768

We cannot answer this question without integrating the equation of769

motion of light, but we can answer a simpler question: What is the difference770

between two global T -values of reception by a distant observer? That is, how771

is ∆Trec related to ∆Temit?772

Figure 16 shows that at every value of r the curves r(T )—or equivalently773

T (r)—have the same slope for two sequential light pulses emitted from the774
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same global location. Therefore these curves are vertically displaced by the775

same offset in Doran T at every r-value. As a result, ∆Trec = ∆Temit.776

This analysis leads to the prediction that the wristwatch time ∆τfar for777

one orbit measured by a distant observer at rest in Doran coordinates is equal778

to the lapse ∆T for one orbit given by equation (51). This answers the779

question, “What is the wristwatch time lapse ∆τfar for one circular orbit780

measured by a distant observer?”781

782

QUERY 19. Careful with wristwatch times!783

Show that the wristwatch time ∆τfar between reception of flashes for the distant observer is NOT equal784

to the wristwatch time ∆τemit between emission of flashes for the orbiter.785

786

Figure 17 shows X-ray pulses emitted by the spinning black hole labeled787

GR1915, with about 14 times the mass of the Sun located near the plane ofPulse emitter:
black hole GR1915

788

the galaxy about 40 light-years from us. A companion star feeds a pulse of789

material to the accretion disk of GR1915. This pulse of matter heats to high790

temperature and emits radiation whose pressure temporarily prevents more791

matter from entering the accretion disk from the companion. After the792

accreted material drops into the black hole, a new blob enters the accretion793

disk from the companion. The resulting “heartbeat” of X-rays are about 50794

seconds apart.795

18.10 THE ACCRETION DISK796

Circling toward doom797

Section 8.6 constructed the toy model of an accretion disk around a798

non-spinning black hole, but we have not observed a non-spinning black hole,799

much less one with an accretion disk. We do observe energetic radiation from800

quasars, each of which appears to be a spinning black hole surrounded by an801

accretion disk that emits this radiation. What creates this radiation?802

Interactions within the accretion disk are complex and defy simple analysis,803

but here is the basic idea: The accretion disk consists of dust and particles inQUASAR: Emission
as material circles
inward through
accretion disk.

804

orbit. This material changes energy as it moves inward through a sequence of805

circular orbits. The change in energy heats up the accretion disk, with806

consequent emission of radiation.807

Assume that material in the accretion disk passes in sequence through a808

series of circular orbits. Initial circular orbits are at large r-values; their final809

circular orbit is at rISCO, after which the material spirals inward through the810

event horizon. We cannot see radiation emitted after stones and dust pass811

through the event horizon. Now for some details.812

Start with a stone far from the black hole, a stone that moves so slowly inStone in distant
circular orbit has
E/m = 1 and
L/(mM) = 0.

813

its circular orbit that it is effectively at rest in Doran global coordinates, with814

initial map energy E/m = 1 and initial map angular momentum L/(mM) = 0.815

Consider this stone to be in a forward, prograde Type 1 circular orbit.816
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FIGURE 17 Upper left corner: the spinning black hole GR1915-105 fed by material
from a companion star (not visible). Lower right corner: the “heartbeat” of emitted
X-rays.

For very large r, R→ r and the Doran metric (2) becomes:817

dτ2 → dT 2 − dr2 − r2dΦ2 (for r →∞) (79)

This is the metric of flat spacetime in which we can define local shell818

coordinates: ∆tshell ≡ ∆T , ∆yshell ≡ ∆r, and ∆xshell ≡ r̄∆Φ. A stone at rest819

in this local frame must have (E/m)shell = 1 = E/m, where E/m is the map820

energy. Summary: Far from the black hole the directly measurable shell energy821

(E/m)shell of a stone is equal to its Doran map energy E/m.822

Next the stone loses map energy as it passes gradually inward through a823

series of circular orbits of decreasing r until it reaches the innermost stable824

circular orbit at rISCO. How much map energy does the stone lose during this825

process? Assume the material emits its change in map energy in the form of826

radiation. What total radiated energy do we detect far from the black hole?827

What is the map energy of the stone in the ISCO orbit just before it drops828

across the event horizon?829
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When a/M = (3/4)1/2, equations (75) through (76) tell us that830

rISCO = 2.5373M so that from equation (32) E/m = 0.8586. Hence the831

radiated energy is ∆E = (1− 0.8586)m = 0.1414m.832

In contrast, when a/M = 1, then equations (75) through (76) tell us that833

rISCO = M so that from equation (32) E/m = 0. Hence the radiated energy is834

∆E = m. The entire rest energy of the stone is emitted as radiation. No835

wonder the quasar shines so brightly!836

837

QUERY 20. More typical emission of radiation838

A more typical upper value of a/M for a spinning black hole is 0.85. Use Figure 15 to estimate839

numerical value of rISCO for a/M = 0.85. Optional: Use equations (75) through (77) to calculate the840

numerical value of rISCO to four decimal digits in this case.841

842

843

QUERY 21. Power output of a quasar844

A distant quasar swallows m = 10MSun = ten times the mass of our Sun every Earth-year. Recall that845

watts equals joules/second and, from special relativity,846

∆E[joules] = ∆m[kilograms]c2[meters2/second2]. Assume that this quasar has a/M = 0.85.847

A. How many watts of radiation does this quasar emit, according to our model?848

B. Our Sun emits radiation at the rate of approximately 4× 1026 watts. The quasar is how many849

times as bright as our Sun?850

C. Compare your answer in Item B to the total radiation output of a galaxy of approximately 1011851

Sun-like stars.852

853

854

QUERY 22. How long does a quasar shine?855

We see most quasars with large red shifts of their light, which means they were formed not long after856

the Big Bang, about 14× 109 years ago. A typical quasar is powered by a black hole of mass less than857

109 solar masses. Explain, from the results of Query 21, what this says about the lifetime during which858

the typical quasar shines.859

860

18.11 CHAPTER SUMMARY861

Key ideas of the chapter862

The spinning black hole has not one but two effective potentials, which dependTwo effective
potentials

863

on the stone’s angular momentum and the spin parameter of the black hole.864

Circular orbits of a stone are possible at maxima and minima of these effective865

potentials, which (for different values of the stone’s map angular momentum)866
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can occur at most r-values outside the event horizon and inside the Cauchy867

horizon.868

Each pair of effective potentials encloses a forbidden map energyForbidden energy
region

869

region. A stone cannot have its map energy in a forbidden map energy region.870

We divide circular orbits into two classes, prograde and retrograde. In a871

prograde orbit the stone “revolves in the direction that the black hole rotates”872

in global Doran coordinates, dΦ/dT > 0, while in a retrograde orbit the stonePrograde and
retrograde orbits

873

revolves in the opposite direction, dΦ/dT < 0.874

Most circular orbits around the spinning black hole are unstable; a few are875

stable. To analyze orbital stability, we trace the effects of a little friction,876

which slowly decreases orbital r (leaving the orbit effectively circular), while it877

also decreases values of |L| and |E|. The r-value of the innermost stable878

circular orbit, labeled rISCO, occurs when values of |L| and |E| for a circularStable circular orbits
and the innermost
stable circular orbit

879

orbit reach their minima. When the circular orbit of a stone reaches rISCO,880

further loss of energy to friction leads the stone to spiral inward through the881

event horizon.882

In Nature a spinning black hole is surrounded by an accretion disk that883

consists of material circulating in stable prograde circular orbits in the884

equatorial plane. (Why prograde? Because a stone circulating in a prograde885

ISCO has a much smaller map energy than a stone in a retrograde ISCO; see886

Figure 13.) Orbiting dust and particles emit energy in the form ofAccretion disk 887

electromagnetic radiation as they descend gradually through circular orbits of888

decreasing r. A distant stationary observer measures this emitted radiation to889

have energy equal to the map energy E/m. We continue to observe this890

radiation as material spirals down from the minimum stable ISCO orbit, but891

not after the material crosses the event horizon.892

18.12 EXERCISES893

0. SOLVED EXERCISE. Add angular momentum to a maximum-spin black hole?894

Suppose that the spinning black hole has maximum spin: a/M = 1. Can you895

increase this (maximum!) spin by sending into the black hole a stone with896

positive angular momentum? Try a specific example:897

Figure 18 plots the effective potential for a black hole with maximal spin898

a/M = 1 and incoming stones with angular momentum L/(mM) = 5 and899

three different map energies, including EC/M = 6, above the energy of the900

forbidden map energy regions. When it falls into the black hole, can this901

highest-energy stone increase the black hole spin beyond its maximum value?902

Answer this question using the following steps.903

E

m
= 6 and

L

mM
= 5 (80)

A. When this stone enters the black hole, it changes the black hole’s mass904

according to equation (28) in Section 6.5 and increases the black hole’s905
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r/M

r/M=0.0460

Forbidden

EA/m = 5.0661
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FIGURE 18 Effective potentials V +
L (r) and V −

L (r) for a stone with L/m = 5M in
orbit around a spinning black hole with maximum spin parameter a/M = 1. There
are two stable circular orbits at larger r/M than the maximum in this diagram, one
prograde, one retrograde. Two of the dashed lines show map energies EA/m and EB/m
of two stones that take up unstable circular orbits. Can a third stone, with EC/m = 6
and angular momentum L/(mM) = 6 fall into this black hole and increase its angular
momentum above the maximum?

angular momentum beyond the old maximum in equation (2) in Section906

17.1:907

Mnew = M + Estone and Jnew = M2 + Lstone (81)

B. Then equation (1) in Section 17.1 tells us that908

anew
Mnew

=
Jnew
M2

new

=
M2 + Lstone

(M + Estone)2
=

1 + Lstone/M
2

(1 + Estone/M)2
(82)

C. Now Lstone and Estone are properties of the incoming stone, which has909

mass m�M , therefore Lstone �M2 and Estone �M , so we can910

approximate (82) with the formula inside the front cover:911



September 5, 2017 11:04 CircleOrbitsSpin170905v3 Sheet number 41 Page number 18-40 AW Physics Macros

18-40 Chapter 18 Circular Orbits around the Spinning Black Hole

anew
Mnew

≈ (1 + Lstone/M
2)(1− 2Estone/M) (83)

≈ 1 +
Lstone

M2
− 2Estone

M
(84)

≈ 1 +

(
Lstone

mM

)(m
M

)
− 2

(
Estone

m

)(m
M

)
≈ 1 +

m

M
(5− 2× 6) = 1− 7

m

M
(85)

The step from (83) to (84) neglects the product of two small quantities.912

The final expression (85) is (slightly) smaller than the initial913

(maximum) spin parameter a/M = 1.914

For this example, the incoming stone does not increase the spin parameter of915

the black hole. Why not? Because it increases the mass of the black hole,916

which changes the value of its maximum spin.917

1. Optional: Repeat exercise 0 with GRorbits918

Use interactive GRorbits software to plot the analysis of Exercise 0919

A. Plot the case described in Exercise 0 with your choice of numerical920

values for m�M and M = 10MSun.921

B. Repeat Item A for M = 107MSun. Describe how your results differ from922

those in Item A?923

C. Report what you have learned in this exercise that supplements or924

reinforces results in Exercise 0.925

2. Fast orbits!926

Write a computer program to fill in Tables 18.4 and 18.5 for a spinning black927

hole with a/M = (3/4)1/2. Write “None” in entries for which circular orbits do928

not exist. Section 18.10 shows that a distant observer records a wristwatch929

time equal to map ∆T for one circular orbit. In the table, “progr.” means930

“prograde” and “retrogr.” means “retrograde”.931

A. For a “small” black hole with mass M = 10MSun fill in entries in Table932

18.4.933

B. For a “large” black hole with mass M = 4× 106MSun (the approximate934

mass of the spinning black hole at the center of our galaxy), fill in the935

entries in Table 18.5.936
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TABLE 18.4 “Small” black hole: “TIMES” for one orbit, in SECONDS

M = 10MSun r/M =
0.2

r/M =
2

r/M =
6

r/M =
10

r/M =
20

Newton time

Nonspin ∆τ
Spin progr. ∆τ

Spin retrogr. ∆τ

Nonspin ∆T
Spin progr. ∆T

Spin retrogr. ∆T

NOTE: Spinning black hole has a/M = (3/4)1/2. Equation (52) for τ and (51) for T .

TABLE 18.5 “Large” black hole: “TIMES” for one orbit, in DAYS

M = 4× 106MSun r/M =
0.2

r/M =
2

r/M =
6

r/M =
10

r/M =
20

Newton time

Nonspin ∆τ

Spin progr. ∆τ
Spin retrogr. ∆τ

Nonspin ∆T
Spin progr. ∆T

Spin retrogr. ∆T

NOTE: Spinning black hole has a/M = (3/4)1/2. Equation (52) for τ and (51) for T .

3. Can a stone exist in a region where the effective potential is not real-valued?937

In Section 18.2 we found from equation (16) that the effective potentials are938

not real-valued (do not exist) at r-values for which the horizon function H is939

imaginary, namely between rC and rE. This seems to imply that the equation940

of motion (15) for dr/dτ is complex-valued, so the stone cannot move or even941

exist between the horizons. Demonstrate conclusively that the stone can exist942

and move between the two horizons.943

4. Forbidden map energy region for non-spinning black hole?944

Review the effective potential diagrams for the non-spinning black hole in945

Chapter 8 Circular Orbits and answer the following questions without doing946

any calculation.947

A. Show that a forbidden map energy region exists for the non-spinning948

black hole.949

B. Does this forbidden map energy region extend all the way to flat950

spacetime, r →∞?951
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C. What is the experimental (observational) consequence—if any—of the952

forbidden map energy region near the non-spinning black hole for an953

observer far away where spacetime is flat?954

D. Optional: Take the limit of equation (16) as a/M → 0 and955

L/(mM)→ 0. Plot the resulting effective potential curve for a stone956

moving radially near a non-spinning black hole.957

5. Forward time travel using a knife edge circular orbit of a spinning black hole.958

Review Exercise 7 in Chapter 8. The Space Administration is now accepting959

proposals for forward time travel that use a forward prograde knife-edge960

circular orbit around a spinning black hole with a/M = (3/2)1/2. They961

consider a satellite with a non-relativistic velocity far from the black hole so962

that E/m ≈ 1. While still far from the black hole, the spaceship captain uses963

small rocket thrusts to achieve the value of map angular momentum L964

required so that V +
L /m = E/m = 1 on the peak of the V +

L (r)/m curve.965

A. Substitute the condition that V +
L /m = 1 at the peak of the V +

L (r)/m966

curve into equation (32). Solve the resulting equation for r.967

B. Substitute the solution of Item A into (31) to find the factor dτ/dT for968

the spaceship in this knife-edge orbit. What speed in flat spacetime969

gives the same time-stretch ratio?970

C. Compare dτ/dT in Item B with the time-stretch ratio for the971

non-spinning black hole (Exercise 7, Item B in Chapter 8).972

6. Effect of friction when starting from an unstable circular orbit973

Section 18.7 analyzes the motion of a stone that starts from a stable circular974

orbit at r > 6M around a non-spinning black hole, and loses map energy and975

angular momentum through friction (see Figures 9 and 10). Use Figures 9 and976

10 to answer the following question: What happens if a stone is in an unstable977

circular orbit at r < 6M , then loses map energy and map angular momentum978

in small steps through friction?979

7. How many stable circular orbits are there for the non-spinning black hole?980

Figure 15 shows that at a/M = 0 regions F, G and H meet in a single point at981

r/M = 6. Are there ZERO, ONE or TWO stable circular orbits there?982

8. Circular orbits inside the Cauchy horizon983

Figures 11 through 14 all plot the horizontal r-axes for r/M > 1 in order to984

avoid complications with the spacetime region between the singularity and the985

Cauchy horizon. Yet Figure 15 plots the horizontal axis all the way down to986

the singularity at r/M = 0. Use Figures 1 and 2 to explain why the region987

0 < r/M < 1 in Figure 15 is correct.988
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9. Stone map energy and map angular momentum at the ISCO for a = M989

Equation (69) shows that for the maximum-spin black hole, rISCO = M . For990

these values of a and rISCO, equations (31) and (32) give indeterminate values991

(L/(mM))Type1 = 0/0 and (E/m)Type1 = 0/0.992

To find the numerical values of L/m and E/m for this orbit, we need to set993

r/M = 1 + ε and take the limit of equations (31) and (32) as ε→ 0. The994

answer, to one significant digit, is L/(mM) = 1.2 and E/m = 0.6.995

A. Find numerical values for L/(mM) and E/m to three significant digits.996

[Warning: our familiar approximation inside the front cover does not997

work everywhere in this case. Under the square root in the denominator998

of the right side of (31) and (32) you need to include the second999

(quadratic) term in the expansion, so that:1000

(r/M)1/2 = (1 + ε)1/2 ≈ 1− ε/2− ε2/81001

B. Optional. Plot V +
L (r)/m vs. r/M for the value of L/(mM) you1002

calculated in Item A. Check that the minimum of the effective potential1003

occurs at r/M = 1 at the value of E/m you obtained in Item A.1004

10. Two light cone diagrams for the maximally spinning black hole (a = M )1005

A. Review Sections 3.6 through 3.9 in Chapter 3 for the meaning of1006

spacetime slice, light cone diagram, and embedding diagram. Use the1007

technique outlined there to construct a light cone diagram, similar to1008

Figure 8 of Chapter 3, on the [r, T ] slice of a spinning black hole with1009

a/M = 1.1010

B. Construct a light cone diagram on the [Φ, T ] slice of a spinning black1011

hole with a/M = 1.1012

C. Answer the following questions for both light cones in Items A and B:1013

Why cannot a stone or spaceship remain static in Doran coordinates for1014

r < 2M? How can a stone or spaceship still escape to infinity from1015

r = 2M? Does the rotation of the black hole drag a stone or spaceship1016

at r = 2M inevitably along the direction in which the black hole spins?1017

Is your answer to this third question coordinate-free?1018
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T/M

r/M 2 1 0

Φ
FIGURE 19 A three-dimensional Doran coordinate r,Φ, T plot of two light cones
near the maximally-spinning black hole a/M = 1.

11. Difficult! Three-dimensional light cone diagram for the maximally-spin1019

black hole1020

Figure 19 shows a three-dimensional Doran coordinate plot of two light cones1021

for the maximally-spinning black hole. Discuss the following characteristics of1022

these light cone plots/ plot.1023

A. Both light cones start on the r/M axis. Why are they both deflected1024

inward in the r direction? Are they deflected in the Φ direction? Why1025

or why not?1026

B. Why is the light cone that starts at r/M = 1 deflected more in the r1027

direction than the light cone that starts at r/M = 2?1028

C. What is the physical difference between that part of the area at the top1029

of the r/M = 2 light cone whose lines lie in the r direction and the part1030

of that area whose lines lie in the Φ direction? Why is there no1031

corresponding area of the r/M = 1 light cone lined in the r direction?1032

D. Does either light cone tell you that a circular orbit of a stone is possible1033

at that value of r/M? If not, why not? If so, what does it say about1034

that circular orbit?1035

E. Answer Item C in exercise 10 for the two lightcones of Figure 19.1036
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12. Light cone diagrams for a spinning black hole with a/M = (3/2)1/21037

Refer to your answers for Items A through C of exercise 10. The present1038

exercise asks to you apply a similar analysis to a black hole with1039

a/M = (3/2)1/2.1040

A. Repeat Item A of exercise 10 for a/M = (3/2)1/2.1041

B. Ditto for Item B of exercise 10.1042

C. In Section 17.8 we found from equations (77) through (79) the1043

surprising result that local ring frames can exist between the Cauchy1044

horizon and the singularity. Use the 3D light cone diagram of Item C to1045

show how once a stone crosses the Cauchy horizon, in principle—that1046

is, without any mathematical analysis of particular orbits—the stone is1047

not necessarily dragged further towards smaller r-values and into the1048

singularity, but can remain in circular orbits.1049

D. Knowing what you know from the present chapter, how many different1050

circular orbits can there be for a free stone inside the Cauchy horizon?1051

Why is your answer to this Item D different from your answer to Item1052

C?1053

13. Limiting values of constants and variables at the horizons1054

Derive expressions (22) through (27) in Box 2.1055

14. Stable circular orbits at r/M = 9 for maximum-spin black hole1056

Equations (68) and (70) tell us that stable orbits come in pairs (prograde1057

Types 1 and 2 always occur together, and retrograde Types 3 and 4 also1058

always occur together). Figure 15 shows that for a maximum-spin black hole,1059

r/M = 9 is on the boundary between region G (where one prograde pair of1060

stable circular orbits exist) and region H (where two pairs of stable circular1061

orbits exist—one prograde, one retrograde).1062

This argument implies that r/M = 9 is the innermost stable circular orbit1063

(ISCO) for retrograde (Types 3 and 4) orbits, but just an ordinary stable1064

circular orbit for prograde (Types 1 and 2) orbits.1065

Use equations (31) through (38) for L/m and E/m and equation (16) for1066

V ±
L /m to verify the conclusion in the preceding paragraph.1067

15. Orbiting in the direction of rotation of the black hole1068

Out of the four types of circular orbits discussed in this chapter, in which1069

type(s) does the stone actually orbit in the direction that the black hole1070

rotates? Does this question have a coordinate-free meaning?1071
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16. Circle points for the maximum-spin black hole1072

Table 2 shows the r/M and E/m values of circular orbits for a black hole with1073

a/M = (3/2)1/2 and a stone with a map angular momentum L/(mM) = 5.1074

How were these numerical values calculated? Construct a similar table for1075

stone moving with the same map angular momentum around a spinning black1076

hole with a/M = 1. Display the effective potentials V ±
L (r) for this case in a1077

plot similar to Figure 1.1078

17. Possible orbits and their orbit parameters for a given a/M and r/M1079

Use equations (31) through (38) and equations (43) through (50) to find all1080

possible types of circular orbits and their values of L/(mM), E/m, dT/dτ ,1081

and dΦ/dT , for black hole spin a/M = (3/2)1/2 at the following r-coordinates.1082

(a) r/M = 22.76. Check your result in Figure 1.1083

(b) r/M = 19.87. Check your result in Figure 1.1084

(c) r/M = 4. Check your result in Figure 3.1085

(d) r/M = 0.4475. Check your result in Figure 3.1086
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