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20 o As my spaceship approaches the spinning black hole, how do I insert it

21 into an initial circular orbit?

2 o Which of the four Types of circular orbits at a given r do I choose?

2 e How can I transfer from one circular orbit to a closer one?

2 o Can I put a probe into a circular orbit inside the Cauchy horizon?

2 o Can I harness the black hole spin to “throw” stones (or photons) out to a
2 great distance?

27 e At what r-value do tides in a circular orbit become lethal?
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Orbiting the Spinning Black Hole

Edmund Bertschinger & Edwin F. Taylor

FEinstein was not only skeptical, he was actively hostile, to the
idea of black holes. He thought the black hole solution was a
blemish to be removed from the theory by a better
mathematical formulation, not a consequence to be tested by
observation. He never expressed the slightest enthusiasm for
black holes, either as a concept or a physical possibility.

—Freeman Dyson
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The sequence of orbits in our exploration plan

Chapter 18 described circular orbits of a free stone around a spinning black
hole. The present chapter shows how the captain of an approaching spaceship
can insert her ship into an initial circular orbit at arbitrarily-chosen r = 200,
then transfer to circular orbits of progressively smaller r-value to provide
closer looks at the black hole.

The exploration program for the spinning black hole is similar to that for
the non-spinning black hole (Chapter 9) but in some ways strikingly different.
In particular, the spinning black hole may be monitored from unstable circular
orbits inside the Cauchy horizon (Step 3 in the following exploration
program).

EXPLORATION PROGRAM FOR THE SPINNING BLACK HOLE [a/M = (3/4)1/2]
Step 1. Insert the approaching spaceship into an initial stable circular orbit at
r=20M.
Step 2. Transfer an observation probe from this initial circular orbit to the
innermost stable circular orbit (ISCO) at rigco = 2.5373M.
Step 3. Transfer the probe from rigco into either of two unstable circular orbits
inside the Cauchy horizon.
Step 4. Tip the probe off the unstable circular orbit so that it spirals into the
singularity.
*Draft of Second Edition of Ezploring Black Holes: Introduction to General Relativity

Copyright © 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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Box 1. Useful Relations for the Spinning Black Hole
This box repeats Box 1 in Section 17.8. 5\ 1/2
TCH a .
—— =1- (1 — —2) (Cauchy horizon) (6)
Static limit from Section 17.3: M M
re = 2M (1) Ring omega from Section 17.3:
. . 2Ma
Reduced circumference from Section 17.2: w= = (7)
2Ma?
RZ=r2 a2+ % (2)  An equivalence from Section 17.3:
Horizon function frorrll Section 17.3: 1M 2o (%)2 )
T
H? = = (r® —2Mr +d?) (3)
r Definition of o from Section 17.7:
1 1/2
= T—Z(T—TEH)(T—TCH) (4) a = arcsin {(QM) ‘;{} (0<a</2) (9)
T T
where rgyg and rcyg are r-values of the event and Cauchy
horizons, respectively, from Section 17.3. Definition of 3 from Section 17.8:
2\ 1/2 1/2 /.2 2\ 1/2
TEH _ a . _(2M e 4a
s 1+ (1 - m) (event horizon) (5) B = (T) ( 7 ) (10)
Compare with 58 This chapter does not contain queries that ask you to “Compare these
the non-spinning so  results with those for a non-spinning black hole.” Nevertheless, we recommend
black hole. o that you do so automatically: Run your finger down the text of Chapter 9 as
¢t you read Chapter 19. The similarities are as fascinating as the differences!
6 Box 1 reminds us of useful relations for the spinning black hole, taken from
e earlier chapters. Box 2 clarifies what it means to plot the orbits of a stone.
s« REVIEW FROM CHAPTER 18: KINDS OF MOTION
e Classify the motion of a stone by how its Doran global coordinates change
s during that motion. Section 18.5 defined prograde/retrograde motion and also
& forward/backward motion as follows:
Kinds of motion o8 e Prograde motion has d®/dr > 0.

6 ¢ Retrograde motion has d®/dr < 0.
70 e Forward motion has dT'/dr > 0.

7 e Backward motion has dT'/dr < 0.

7z Recall that the raindrop (released from rest far from the black hole) falls with
7z d®/dr = 0 (Section 17.4). Raindrop motion provides the dividing line between
7« prograde and retrograde motion.

75 Wristwatch time 7 runs forward along the worldline of a stone. In

7 backward motion (dT'/dr < 0), map T runs backward along the stone’s

77 worldline—a reminder that map coordinate T' is not measured time.

78 Sections 18.4 and 18.5 described four Types of circular orbits:
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REVIEW: FOUR TYPES OF CIRCULAR ORBITS

e Type 1 Circular: E/m > 0, L/m > 0, forward, prograde, with
E/m =V

e Type 2 Circular: E/m < 0, L/m < 0, backward, prograde, with
E/m=V_

e Type 3 Circular: £E/m < 0, L/m > 0, backward, retrograde, with
E/m =V

e Type 4 Circular: E/m > 0, L/m < 0, forward, retrograde, with
E/m=V_

Note: In Type 1 and 2 orbits, the signs of F/m and L/m apply
outside the event horizon. Inside the Cauchy horizon the signs may
be different. (Table 3, Section 18.5).

In addition to circular orbits, the present chapter studies a series of
transfer orbits that take us from one circular orbit to another.

Comment 1. Follow the Figures

This chapter continues, even increases, the heavy use of algebra, but it has a
simple central theme: how to insert a spaceship into an outer circular orbit, then
how to transfer from this outer circular orbit to inner circular orbits. Pay attention
to the figures, which illustrate and summarize these transitions.

19.2;l INSERT APPROACHING SPACESHIP INTO AN INITIAL CIRCULAR ORBIT

99

100

101

Insert incoming 102
spaceship into 108
initial circular orbit. 104
105
106
107
108
109
110
111
112
13
Insertion orbit 114

115

116

117

Approach from far away and enter an initial circular orbit.

A spaceship approaches the spinning black hole from a great distance. The
captain chooses r = 20M for her initial circular orbit, near enough to the
spinning black hole to begin observations. How does she manage this insertion?
Analyze the following method: While still far from the black hole, the captain
uses speed- and direction-changing rocket thrusts to put the spaceship into an
unpowered orbit whose minimum r-value matches that of the desired initial
circular orbit (Figure 1). At that minimum, when the spaceship moves
tangentially for an instant, the captain fires a tangential rocket to slow down
the spaceship to the speed in a stable circular orbit at that r-value.

Comment 2. Both unpowered spaceship and unpowered probe = stone

In the present chapter, our spaceship or probe sometimes blasts its rockets,
sometimes remains unpowered. The unpowered spaceship or probe moves as a
free stone moves. It is important not to confuse powered and unpowered
motions of “spaceship” or “probe.”

What values of map E and L lead a distant incoming unpowered spaceship
later to move tangentially for an instant at the chosen r = 20M (Figure 1)? To
find out, manipulate equations (15) and (16) in Section 18.2 and introduce the
condition dr/dr = 0 (tangential motion), so that £ = V= (r). The result is:
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Box 2. How do we plot orbits of a stone?

This chapter asks and answers two questions about a stone’s
orbit: Question 1: How do we calculate the orbit of a stone?
Question 2: How do we plot that orbit? Question 2 is a central
subject of this chapter.

What is the precise definition of the stone’s orbit? Technically
An orbit is a parameterized worldline expressed in global
coordinates. Huh, what does that mean? Here’s an example:
Go for a walk, during which you glance occasionally at your
wristwatch. Later you announce, “When | arrived at the corner
of Main and Pleasant Streets, my wristwatch read seven.
Wristwatch time is—literallyl—the parameter by which you
report on your walk. Of course, the wristwatch time between
two locations depends on the path you choose between
them. If you go by way of Lester Street (for example), your
wristwatch will record a longer time of, say, ten minutes.

Every orbit plotted in this book is a parameterized worldline
expressed in global coordinates. In Doran coordinates, for
example, three functions T'(7), r(7), and ®(r) give a
full description of the stone’s orbit, parameterized by its
wristwatch time 7. On our two-dimensional page we plot the
orbit on a two-dimensional slice, typically the [r, @] slice.

Restate the two questions that began this box:
Question 1: How do we obtain these orbit functions?
Question 2: How do we plot these orbit functions?
Answer Question 2 first.

Question 2: For reasons discussed in Section 19.5, we
translate r and @ into Cartesian-like global coordinates X =
(r2+a2)/2cos®and Y = (r24a?)!/2 sin d—equations
(40) and (41). In these global coordinates the black hole
singularity r = 0 is a ring with (X2 + Y2)1/2 = 4.
The X and Y coordinates of an orbit are plotted as if
they were Cartesian (Figure 10). (Indeed, behind the scenes
we plot every orbit in this book using similar Cartesian-
like coordinates, including those plotted by the software
GRorbits.)

Back to Question 1, how to obtain functions r(7) and
®(7), is easy to answer in principle but more difficult
in practice. In principle, we simply integrate equations of
motion for dr/dr and d®/dr—equations (4) and (15) in
Section 18.2. In practice, the & signs in these equations
make them difficult to solve. Instead, our plotting programs—
including GRorbits—use different equations of motion defined
for 7(T'),r(T),®(T), with global T-coordinate as the
parameter (Section 20.1). These equations do not contain +
signs and are valid provided dr/dT" # 0. Full disclosure: We
do not display these equations, which are based on so-called
“Hamiltonian methods.”

»

° Objection 1. Fraud! You just
admitted  that  neither  the
calculation of orbits nor their plots
in this book use the equations of
motion you give us. Stop lying to
us.

.‘

You're right—and wrong. A wise
manager lays out the general
strategy to reach a goal, shows an
in-principle path to that goal, then
delegates to others completion of
the project. Shall we take a side
trip into “Hamiltonian methods”
(whatever that means) to calculate
orbits from equations of motion
that do not have plus-or-minus
signs? We choose not to. Instead
we plunge ahead with our story of
diving into the spinning black hole.

1s  Here the & on the right side is the same as the superscript on VLi(r). Write

rH 2 \'"?
:wi(1+2>
m

R (tangential)

ne (11) as a quadratic equation in L/m:

@)

Y @[]

AW Physics Macros
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a/M = (3/4)1/2

FIGURE 1 An insertion orbit with instantaneous tangential motion at r = 20M. At that
instant the spaceship fires a tangential rocket burst that reduces the local ring velocity to that
for a Type 1 circular orbit there (Figure 2).

120 This quadratic equation is in the standard form:

A(i)2—23 (i)+0=0 (13)

121 with the standard solution:

L B+ (B?-AC)/?
m (A : (14)

22 Use (8) to simplify coefficient A:

123 Show that:

e With these substitutions, (14) yields the solution:

(B (2]

— = 5T (tangential) (17)
m

125
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1.03-4
L _ 1/2
oo L/mM = a/M= (3/4)
N 6.6437
VL/m 0
E/m =1.001
1.00——
Tangential
> rocket
thrust #1
0.98—=4—
os Type 1 stable
circular orbit
0.96 = 1
0.95 5 1!0 125 lla 175 + | s + 275 a!;
7.5 10 15 20 25 30 r/M

FIGURE 2 At the instant when the incoming spaceship moves tangentially at the turning
point r = 20M (Figure 1), it fires tangential rocket thrust #1 to change its map energy and map
angular momentum to those for a Type 1 stable circular orbit at that r.

s You choose the value of r; then equation (17) gives you the value of L/m for
12z which the free stone moves tangentially at this r. This equation is valid at all
128 turning points and everywhere along a circular orbit.

129 We want to place the incoming spaceship into a circular orbit at » = 20M.
130 But Section 18.4 tells us that there are four Types of circular orbits at every
131 1 > ri5c0. Which of these four circular orbit Types do we choose for our

12 incoming spaceship?

133 We choose the map energy of a stone to be positive, while map angular

13« momentum can be either positive or negative. This limits circular orbits to
Choose Type 1 135 either Type 1 or Type 4. Figure 4 in Section 18.4 shows the Type 1 circular
atr =20M. 1s orbit at » = 4M to be stable; similarly for the Type 1 orbit at » = 20M. In

17 contrast, the Type 4 circular orbit is unstable—too dangerous for our
ws astronauts. Therefore we choose the Type 1 (stable) circular orbit.

139 Comment 3. Turning point symbols, a reminder
140 Figures in this chapter use turning point symbols from Definition 2 and Figure 1
141 in Section 18.3: The little open circle lies at the r-value of a stable circular orbit.
142 The little filled circle lies at the r-value of an unstable circular orbit. The little
143 half-filled circle lies at the r value of the half-stable innermost stable circular
144 orbit, ISCO. Finally, the little filled diamond lies at a bounce point, where an
145 incoming free stone “bounces” off the effective potential, reversing its
146 r-component of motion.
Insertion orbit 147 We want the insertion orbit to be tangential at the instant when the
tangential at 1s unpowered spaceship reaches r = 20M. What map values E and L of the

r=20M. 19 distant spaceship lead to its later tangential motion at r = 20M? We
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TABLE 19.1 Numerical values at » = 20M and r = rigco for a/M = (3/4)1/2

| Values of | at r = 20M | at risco = 2.537 331 95M |
R? 400.825 000M2 7.779 225 58M?
R 20.020 614 4M 2.789 126 31 M
2Ma/r 0.086 602 540 4M 0.682 626 807M
w—=2Ma/(rR%) | 2.160 607 26 x 10 207 T 0.087 749 969 5M T
rH 18.993 419 9M 1.453 750 16 M
rH/R 0.948 693 158 0.521 220 626
1 (2M/r) 0.9 0.211 770 458
L/ m) et 6.643 724 950 —
(E/m)imsort 1.001 E—
Uz, ring, insert 0.314 955 478 E—
(L/m)typer 1712 495 61M 3.208 530 400
(E/m)Typel 0.975 638 130 0.858 636 605
Vo ring Type | 0.229 120 545 0.620 784 500
(L/m) oranster 2.678 687 02M 3.678 687 02M
(E/m)transtor 0.957 725 762 0.957 725 762
Vg, ring, transfer 0.132 614 709 0.692 683 307

w0 arbitrarily choose incoming spaceship map energy E/m = 1.001, as we did in
s Section 9.2. With this choice, equation (17) yields the value of (L/m)insert for
12 the insertion orbit at » = 20M. Add this value to Table 19.1.

153 DEFINITION 1. Subscripts in Table 19.1

154 Here are definitions of the subscripts in Table 19.1. All of them describe
155 the motion of a free stone or an unpowered spaceship or probe.

1 insert: Quantities for a stone approaching from a great distance that leads it
157 to move tangentially at the given r.

158 Type: Quantities for a stone in a circular orbit of that Type at the given r

159 (Section 18.4).

w0 transfer: Quantities for a stone in a transfer orbit between tangential motion at
161 both of the given values of r.

162 ring: Value of the quantity measured in the local inertial ring frame at that 7.
163 Comment 4. Significant digits

164 In this chapter we analyze several unstable (knife-edge) circular orbits.

165 Interactive software such as GRorbits requires accurate inputs to display the

166 orbit of an unpowered probe that stays in an unstable circular orbit for more than
167 one revolution. To avoid clutter, we relegate to tables most numbers that have

168 many significant digits.

169 The insertion maneuver shown in Figures 1 and 2 brings the unpowered

o spaceship to instantaneous tangential motion at r = 20M. Before it can move
w7 outward again, a tangential rocket thrust slows it down to the orbital speed of
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a stable Type 1 circular orbit at that r-value. What change in tangential
velocity must this rocket thrust provide? To answer this question, we must
choose a local inertial frame in which to measure tangential velocities. Sections
17.5 through 17.8 describe four different local inertial frames. Which one
should we choose? Figure 5 in Section 17.5 shows that of our four local inertial
frames, only the ring frame exists both outside the event horizon and inside
the Cauchy horizon—locations where circular orbits also exist. Therefore we

choose to measure the tangential velocity in the local ring frame.

The ring frame is the local rest frame of a ring rider who circles the black
hole with map angular speed:

(18)

where Box 1 defines both w and R?. As with all local inertial frames, we define
the ring frame so that local coordinate increments satisfy the flat spacetime

metric,

AT?

2 2
~ Atring - Axring

2
- Ayring

(19)

where each local coordinate difference equals a linear combination of global
coordinate increments appearing in the global metric. The approximate Doran

metric becomes:

Ar2z(1—2M>AT2—2<

r

72 Ar?

72 4 a?

—|—2a(_2
4+ a

2Mr

1/2
= +a2) AT Ar +

r

oMF \ V2 _
r2> Ar AD — RZAD? .

4Ma

AT A

(20)

We define ring frame coordinates by equations (77) to (80) of Section 17.8:

Atring =

Ayring =

FH(P) \ g B() o
R(7) AT H(F) A
Ar
H(r)
AZying = R(T) [A® — w(F)AT] — F;)((:)) A

(21)
(22)

(23)

where Box 1 defines 8. You can substitute equations (21) through (23) into
(19) to verify that the result matches (20).
To complete the insertion of the incoming spaceship, we need to find the
value of the rocket thrust required to put the ship into the Type 1 circular
orbit at » = 20M. Appendix B has the general results. Here we use equation

(94) for tangential motion.

Vo s _ Pz ring _ ﬂ L
wrne T g e RZ\E—wL

(24)
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Thrust at r = Avy 1IRF Description Mfinal/ Minitial
#1 20M Avg nirr1 = —0.092 510 766 2 | into circular orbit 0.9113976
#2 20M Avg 1irr2 = —0.099 530 031 6 | into transfer orbit | 0.9049635
#3 2.5373M | Av, mrrs = —0.126 139 806 into ISCO 0.8808964
#4 2.5373M | Avgrra = —0.545 847 072 | into transfer to ry | 0.5420231
#5 2.5373M | Avymmrrs = —0.402 281 976 | into transfer to rp | 0.4743450

NOTE: A first probe uses thrusts #2, #3, and #4 to carry it from the spaceship in orbit at
r = 20M to orbit r1 inside the Cauchy horizon. A second probe uses thrusts #2, #3, and
#5 to carry it from the spaceship to orbit ry inside the Cauchy horizon.

What “change in velocity” must the spaceship rocket thrust provide in
order to convert its “insertion velocity” at r = 20M to its “circular orbit
velocity” at that r-value? Quotation marks in the preceding sentence warn us
that values of velocity and wvelocity change depend on the local inertial frame
from which we measure them. We measure velocities vz ring insert and
Vg ring, Type 1 With respect to the local inertial ring frame. But what does the
spaceship captain care about the ring frame? Indeed, from her point of view a
stone at rest in the ring frame can be lethal! All she cares about are answers to
questions like, “Do I have enough rocket fuel left to escape from this black
hole?” The answer to this question depends only on the change in velocity in
the spaceship’s initial rest frame. In Chapter 9 we labeled the inertial frame in
which the spaceship is initially at rest the Instantaneous Initial Rest
Frame (IIRF) (Definition 2, Section 9.2). The present chapter describes five
different IIRF velocity changes. Table 19.2 lists these velocity changes with the
number 1 through 5 added to each subscript.

A special relativity equation for addition of velocities—equation (54) of
Section 1.13—allows us to use the two ring-frame velocities vz ring, Type1 and
Vg ring,insers 10 calculate the required rocket-thrust velocity change Avg 1rp1:

Vg, ring, Type1 — Uz ring,insert
Avg IRF1 = —— —= (25)
1- Uz, ring, Type 1Vz,ring,insert

—0.092 510 766 2 (place in circular orbit at r = 20M)

shown in Figure 2. Enter the numerical result in Table 19.2. This is the
rocket-thrust velocity change (—27 734 kilometers/second) that places the
incoming spaceship in the Type 1 circular orbit at r» = 20M.

QUERY 1. Why use special relativity here?
Examine equation (25). Why do we assign the special relativity roles of vyel, vz 1ab, and Uz rocket from
equation (54) of Chagter 1 to Uy ring,insert, U ring, Typel, and Avg rrrr1 in equation (25)7

220

221

222

Every change in spaceship (or probe) velocity Avy frame With respect to a
local inertial frame requires a rocket burn. Every rocket burn uses fuel that
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aM = (3/4)12

NscoM = 2.5373

BT ol o

FIGURE 3 Transfer orbit in which the unpowered probe coasts from tangential motion at
ra = 20M to tangential motion at rg = risco and Pinsers = 350°. Figure 4 indicates the
required (single) tangential rocket thrust #2 to put the probe into this transfer orbit.

Use the 23 changes the net mass of the spaceship or probe itself from initial mass minitial
photon rocket 224 to final mass mgna. Query 2 recalls our analysis of the most efficient rocket,
25 the so-called photon rocket, that combines matter and anti-matter and directs
26 the resulting radiation out the back of the spaceship or probe. The final
27 column of Table 19.2 lists the spaceship or probe mass ratio Mmana1/Minitial for
28 each burn described in that table.

229

QUERY 2. Mass ratios for transfer between circular orbits at » = 20M and 7i5co-
Suppose our probe uses a photon rocket defined in Exercise 2 of Section 9.8, with the resulting mass
ratio: 232

-1

Mfinal _ [W n (72 _ 1)1/2} (photon rocket) (26)
Minitial

where v = [1 — (Avgc,zme)Z]*l/2 with Av, rirp from the third column in Table 19.2. Verify all entries in
the right hand columa of Table 19.2.

235

19.3:8 TRANSFER FROM THE INITIAL CIRCULAR ORBIT TO ISCO, THE INNERMOST
2z STABLE CIRCULAR ORBIT
zs  Balanced near the abyss

2s  The spaceship completes observations in the stable Type 1 circular orbit at
20 17 = 20M. The captain wants to make further observations from a smaller
ann  circular orbit. To take the entire spaceship down to this smaller orbit requires
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a large amount of rocket fuel. Instead, the captain launches a small probe to
the inner orbit to radio observations back to the mother ship.

What r-value shall we choose for the inner circular orbit? Be bold! Take
the probe all the way down to the Innermost (prograde) Stable Circular Orbit
at r15co = 2.5373M for the black hole with a/M = (3/4)'/2.

Comment 5. ISCO as a limiting case

The ISCO is hazardous because it's a “half stable” circular orbit that may lead to
a death spiral inward through the event horizon. In practice the inner circular
orbit r-value needs to be slightly greater than risco to make it fully stable. In
what follows we ignore this necessary small r-adjustment.

Figures 3 and 4 illustrate the following two-step transfer process.

ORBIT TRANSFER STEPS
Step 1: A tangential rocket thrust

Step 2: A second tangential rocket thrust

Table 19.1 shows L and E values of our initial circular orbit at » = 20M.
To carry out Step 1, we need to find two global quantities and one local
quantity: map F and L of the transfer orbit plus rocket thrust #2 to put the
probe at r = 20M into this transfer orbit. Calculate the global quantities F
and L first.

STEP 1A: CALCULATE (E/m)ranster AND (L/m)ranster OF THE TRANSFER ORBIT.

Call the outer r-value of the transfer orbit r5 for Above and the inner r-value
rg for Below. At these turning points F = VLi. From equation (15) in
Section 18.2 for Vi (r):

<E> VL+(7"A) VL+(7"B)
transfer

m

= = (at turning points) (27)
m m

We use the V[ effective potential because the transfer orbit takes us from one
Type 1 orbit at 4 to another Type 1 orbit at rg. Substitute for VLJr from

equation (16) in Section 18.2:
1/2
(2 T e
R2A M/ transter

FE L TAHA
- =wp | — +
™M/ transfer ™M/ transfer RA
1/2
14— <L>2 (29)
R% ™M /J transfer

( L ) + TBHB
= W _—
" M/ transfer RB

Our task is to find the value of (L/m)transter that makes the right side of (28)
equal to the right side of (29). When this is accomplished, (28) yields the value
of (E/m)transfer~

The Section 19.3 analysis for rp = 20M gives us values of the coefficients
on the right side of (28), already entered in the middle column of Table 19.1.
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VO T

1.1 —— L/(mM) =
1/2
‘ 4.71250 a/M= (3/4)
1.00—4—
transfer orbit
Tangential
L/(mM) = 2.678 rocket
= L/(mM) = thrust #2
0-9 2.2085
p Tangential
- S)<rocket
thrust #3
0.8 —=*
! 2| 75 ) 125 IIF 175 ! 2."5
0 2 5 10 15 22 /M
rISCO/M = ry/M =20
rg/M = 2.5373

FIGURE 4 Rocket thrusts and resulting effective potential changes for transfer orbit
between the stable Type 1 circular orbit at ra = 20M and the half-stable Type 1 circular
orbit at risco = rs = 2.5373M (Figure 3).

2z Now calculate coefficients on the right side of (29) using rg = risco and enter
zza  results in the right column of Table 19.1.

275 To find the value of (L/m)transter, €quate the right sides of (28) and (29).
e The result is a fourth order equation in (L/m)transfer, which has no

a7 straightforward algebraic solution. So we use a numerical software algorithm
s to find the value of (L/m)transter that makes equal the right sides of (28) and
zs (29). Substitute the resulting value of (L/m)transter into equation (28) to find
s the value of (E/m)transfer 00 the left side. Enter resulting values of

w1 (L/M)transter a0d (E/M)transfer in the right-hand column of Table 19.1. Now
22 use equation (94) to calculate values of vy ying transfer 8t 7 = 20M and at rigco;
263 enter them in Table 19.1.

28« STEP 1B: CALCULATE THE ROCKET THRUST VELOCITY CHANGE TO PUT THE PROBE

285  INTO THE TRANSFER ORBIT.

26 What change in velocity must the rocket thrust provide to put the probe into
IIRF2 transfer 27 the transfer orbit from r = 20M to risco? This is our second tangential thrust
velocity change 23 to be given in an instantaneous initial rest frame IIRF, this time with the

2 number 2 added to the subscript. From Table 19.1 and equation (54) of

200 Section 1.13:
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Section 19.3 Transfer from the Initial Circular orbit to ISCO, the Innermost Stable Circular Orbit

Uz ring,transfer — Uz,ring, Type 1 . .
Av, jIRpp = — e t0EEDIRE PO (into transfer orbit . ..  (30)

1- Uz, ring, Type 1Vz,ring,transfer

—0.099 530 031 6 from r = 20M to risco)

shown as tangential rocket thrust #2 in Figure 4. Enter the numerical value in
Table 19.2. This rocket thrust ring velocity change (—29 838
kilometers/second) inserts the probe from the circular orbit at » = 20M into
the transfer orbit that takes it down to instantaneous tangential motion at

T18CO-

)

° Objection 2. In Figure 3 when the probe reaches the little half-black circle,
will it automatically go into the circular orbit at risco ?

.*

No, its map angular momentum is too high. Look at Figure 4. If there is no
insertion rocket thrust, the probe will simply move back and forth along the
“transfer orbit” line between risco and » = 200 . Step 2 describes the
rocket-thrust insertion into ISCO.

STEP 2: ROCKET THRUST TO INSERT PROBE INTO ISCO

The probe that follows the transfer orbit from r = 20M arrives for an instant
at global coordinates r = risco and some value of ® different from zero
(Figure 3). At that instant it has tangential velocity Vg ring,transfer Measured in
local ring coordinates, which is too high for a circular orbit at rigco. Equation
(94) gives us this tangential ring velocity, calculated from selected values in
the right column of Table 19.1. Enter the result in the lower right hand
position in this table.

Now we want to change this tangential transfer velocity to the velocity
Vg ring, Type1 Of the circular orbit at rigco. Use equation (94) and enter the
result in Table 19.1.

Again we must calculate the change in velocity the rocket thrust must
provide to put the probe into the circular orbit at risco. We measure this
third tangential change—call it Avg 1irrs with the number 3 added to the
subscript—with respect to the probe’s instantaneous initial rest frame. From
Table 19.1 and equation (54) of Section 1.13:

Vg, ring, Type1 — Uz ring,transfer
Avg 1IRF3 = (31)
1- Vg, ring, Type 1Vz,ring, transfer

—0.126 139 806 (inserts into circular orbit at r15c0)

shown as tangential rocket thrust #3 in Figure 4. Enter the numerical result
in Table 19.2. This velocity reduction (—37 815 kilometers/second) installs the
probe into the Type 1 innermost stable circular orbit at rigco-

19-13
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321 Figure 4 shows that the transfer between r = 20M and risco = 2.5373M
w2 requires two rocket thrusts, #2 and #3, with values listed in Table 19.2, each
Rocket mass ratios w3 with its mass ratio given in the last column of that table. Thrust #2 results in

2s  mass ratio (Manal/Minitial)#2. The final probe mass of thrust #2 becomes the
@  initial probe mass of thrust #3 in the mass ratio (Mgna1/Minitial)#3. After

s both thrusts take place, the net result is that the probe arrives at rigco with
7 the net mass ratio equal to the product of the two mass ratios in the right

s hand column of Table 19.2:

(mﬁ“a‘> (mﬁ”‘“> — 0.9049635 x 0.8808964 = 0.7971791  (32)
#2 #3

Minitial Minitial

329 This completes our analysis of the transfer between the initial circular
s orbit at » = 20M and the ISCO at TiIsco = 2.5373M.

19.4/ 8 ROCKET THRUSTS TO TRANSFER FROM ISCO TO CIRCULAR ORBITS INSIDE
sz THE CAUCHY HORIZON

ws  Teetering next to the singularity

ss  The probe carries out observations at rigco. What'’s next? The captain

Orbits inside the s examines two alternatives: observations from one of two unstable circular
Cauchy horizon! s orbits inside the Cauchy horizon. We analyze both of theses alternatives.
C A ] Objection 3. Either choice is stupid! Nothing comes back from inside the
338 event horizon, not even a radio signal. So you cannot receive a report of
339 what happens there. You are wasting resources to place the probe in any
340 orbit inside the event horizon.

.‘

341 Hamlet cautions us: "There are more things in heaven and earth, Horatio,

342 than are dreamt of in your philosophy.” Chapter 21 contains surprises

343 about what rocket-blast maneuvers inside the event horizon can

344 accomplish. In the meantime we can still predict what the diver inside the

345 the Cauchy horizon experiences, as we did in Section 7.8 for the (doomed!)

346 diver inside the event horizon of the non-spinning black hole, even though

347 neither diver can report these observations to us on the outside.

a8 This is the first of two sections on the probe transfer from the ISCO to

ss  orbits inside the Cauchy horizon. The present section derives rocket thrusts for
o transfers, summarized in Table 19.2. The following Section 19.5 plots the
st transfer orbits themselves. Why a separate section on these orbit plots?
2 Because close to the singularity spacetime curvature is so large, and
3 coordinates become so stretched, that plotting any orbit requires great care.
a4 Start with a strategic overview: To install the probe into a stable circular
ss orbit (Sections 19.2 and 19.3) requires a final rocket thrust to drop the probe’s
s Mmap energy into the minimum of the effective potential at that r (Figures 2
No final 7 and 4). In contrast, we need no such final rocket thrust to install a probe into
insertion
rocket thrust
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TABLE 19.3 Circular orbits at risco, r1, r2 and some transfer orbits between
them

AW Physics Macros

19-15

Circular orbits rISCo = ry = ro =
2.537 331 95M 0.170 763 678 M 0.353 627 974M
Type 1 Type 1 Type 2
outside rgy inside rcy inside rcy

L/m 2.208 530 40M 0.318 183 046 0.849 088 850M
E/m 0.858 636 605 0.552 521 8506 0.619 345 540

R 2.789 126 311 3.092 447 193 2.262 034 177

w 0.087 749 969 5 M ! 1.060 621 78 M1 0.957 228 652 M !
rH/R? 0.186 875 948M 1 0.069 175 194 1M1 | 0.080 055 930 0M ~*

0.620 784 511 0.102 350 039

Uz ring,circle

—0.351 423 150

| Transfer orbits | From risco | to 1 | to ro
L/m — 0.318 183 046 M 0.849 088 850M
E/m — 0.552 521 851 0.619 345 540

0.113 344 665 0.102 350 039

Vg, ring,transfer

0.291 232 033

Uz, ring,transfer

—0.351 423 150

an unstable circular orbit such as those inside the Cauchy horizon. Why not?
Because the transfer orbit is already at this maximum or minimum; the probe
simply coasts onto that maximum or minimum (Figures 5 and 6). So we need
only a single rocket thrust at rigsco to change map energy and map angular
momentum to that of a circular orbit inside the Cauchy horizon. Now the
details.

Transfer from rigsco to r1: As a first alternative, transfer the probe from
the rigco orbit to the Type 1 unstable circular orbit at r; inside the Cauchy
horizon (Figure 5). To do this, use a tangential rocket thrust that slows the
probe so that it enters the transfer orbit in which it coasts directly into the
unstable circular orbit at ry.

How do we find values of L and F for this coasting orbit? Look again at
equations (28) and (29). On the right side of (28), we know the value of ra
(the r-value of the ISCO), but we do not know the value of (L/m)transfer- On
the right side of (29), we do not know values of either rg or (L/m)transfor-
Thus (29) has two unknowns, namely (L/m)transter and rg = 1. However, we
can find a second equation for these two unknowns, because we know that the
circular orbit at rg is Type 1, for which equation (31) in Section 18.4 takes the
form

(L) B <M)1/2 rh o~ 20(Mrp)'?
M/ rype1 B [7"123 —3Mrg + 2a(M7“B)1/2} 1/2

circular orbit)(33)

Substitute this expression for (L/m) into equations (28) and (29), then equate
the right sides of these two equations. The result is a (complicated!) equation
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1.001— "lIsco= M= (314)12
2.5373M L/(mM) =
vy /m \ 2.2085
0.754+—
r=
0.17076M
Type 1 E/m = 0.5525 ot
05— transter orbit e thrust #4
—\
L/(mM) =
0251 — 0.31818
S S T O R

FIGURE 5 Tangential rocket thrust followed by coasting transfer orbit between ISCO
(half-stable) prograde circular orbit and the Type 1 unstable circular at r1 = 0.17076 M, the
maximum of the effective potential inside the Cauchy horizon.

a9 in the single unknown rg. Again use a numerical software algorithm to find

s the value of rg and enter the result in the third column of Table 19.3.

QUERY 3. Identical table entries

Look at the two rightshand columns in Table 19.3, the ones labeled r; and 2. Why are so many entries
for circular orbits inside the Cauchy horizon the same as the corresponding entries for the transfer

orbits? 385

236

a7 Numerical values in Table 19.3 allow us to calculate the tangential
8 Uz ring,transfer 111 (94) for the transfer orbit that starts at rsco and ends at r
w0 (Figure 5). The result is vg ring, transter =0.113 344 264 at rigco, entered in

s Table 19.3.

391 Once again we must calculate the change in velocity the rocket thrust

IIRF4 transfer 392
velocity change 393

provides to put the probe into the transfer orbit at risco. Measure this
change—call it Av, 11rFa, with the number 4 added to the subscript—with

w4 respect to the instantaneous initial rest frame. From Tables 1 and 3 plus
s equation (54) of Section 1.13:
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Vg, ring,transfer — VUz,ring, Type 1

Avg 11RF4 (into transfer orbit  (34)

1- Uz ring, Type 1Vz,ring,transfer

= —0.545 847 072 from rigco to r1)

shown in Figure 5. Enter the numerical value in Table 19.2. This change in
rocket velocity (—163 641 kilometers/second) puts the probe into a transfer
orbit between rigco and ry. Figure 5 shows that the probe then coasts into the
unstable circular orbit at r; without the need for an insertion rocket thrust.

)

° Objection 4. Unbelievable! Are you really going to demand that a
human-built rocket engine change the velocity of a probe by
Av = 0.545 847—more than half the speed of light? Get real!

.*

Even today we use multi-stage rockets to achieve large velocity changes.
Still, mass ratios to achieve a speed reduction ¢/2—and even more the
overall mass ratios in Items A and B of Query 4—require the resources of
an advanced civilization, defined as one that can achieve any technical
goal not forbidden by the laws of physics. Photon rocket technology may
be in our future!

Transfer from rigco to ro: As a second alternative, the spaceship captain
transfers the probe from the ISCO to the Type 2 unstable circular orbit at rs,
a minimum of the effective potential inside the Cauchy horizon. Figure 6
shows this maneuver. A tangential rocket thrust drops the map angular
momentum of the probe to L/m = 0.849 088 850M. Then the probe coasts
inward to the minimum of the effective potential at 7o inside the Cauchy
horizon, no insertion rocket thrust required.

The change in velocity the rocket thrust provides puts the probe into the
transfer orbit at risco. We measure this change—call it Av, 11rrs, with the
number 5 added to the subscript—with respect to the instantaneous initial
rest frame. From Tables 1 and 3 plus equation (54) of Section 1.13:

Vg, ring,transfer — Vz,ring, Type 1 . .
Avy rps = — B REe TTRe PO (into transfer orbit (35)

1- Vg, ring, Type 1Vz,ring, transfer

—0.402 281 976 from rigco to r2)

labeled “Tangential rocket thrust #5” in Figure 6. Enter the numerical result
in Table 19.2. This change in velocity (—120 601 kilometers/second) puts the
probe into a transfer orbit toward the unstable Type 2 circular orbit at ro,
shown in Figure 6. When the probe arrives there, it already has the map
energy and map angular momentum of that unstable circular orbit, so does
not require an insertion rocket thrust.

Recall our overall strategy: Thrust #1 takes the entire spaceship into the
stable circular orbit at » = 20M. The spaceship then launches two separate
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A

1.00——
a/M= (3/4)12
VL/m RISCO
L/(mM) = Type 1 L/(mM) = 2.2085
——  0.84909
1 L/(mM) =
075 0.84909
Tangential
Type 2\\ rocket
"< Em=061935 ° thrust #5
r2 =
0.50—— | |0.35363M
0.25——
\ \ \ \ \ \ \
0 | | | | | | | —>>

0 1 2 3 4 5 6 7 8 /™M

FIGURE 6 Transfer from Type 1 risco circular orbit to Type 2 unstable circular orbit at 72,
the minimum of the effective potential inside the Cauchy horizon.

a2 probes. The first probe uses the sequence of thrusts #2, #3, and #4 to enter
w29 the unstable circular orbit at 1 inside the Cauchy horizon. The second probe
o uses the sequence of thrusts #2, #3, and #5 to enter the unstable circular

w1 orbit at ro inside the Cauchy horizon.

432

QUERY 4. Net mass ratios for transfer between circular orbit r;gsco and circular orbits
inside the Cauchy.daorizon.

A. Analyze the emtire sequence of thrusts #2, #3, and #4 that carry the first probe from the
spaceship to the unstable circular orbit at r; inside the Cauchy horizon. What is the net mass
ratio for this sequence of thrusts. [My answer: 0.4320895]

B. Next analyze she sequence of thrusts #2, #3, and #5 that carry the second probe from the
spaceship to the unstable circular orbit at 7o inside the Cauchy horizon. What is the net mass
ratio for this sequence of thrusts. [My answer: 0.3781379].

441
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(r/M)sin @
\
15 a/M= (3/4)12
14+ 7
0.5 A4 \
\ | |
1 (r/M)cos @
QJ 05 % 1!5 2 25, 28

FIGURE 7 First plot of the transfer orbit between the circular ISCO and the circular
orbit at 1 = 0.17076 M inside the Cauchy horizon (Figure 5). This plot of (r/M)sin ® vs.
(r/M) cos ® is the one we usually call an “orbit” This plot is totally correct, but near the
singularity it misrepresents the geometry of spacetime.

19.6.8 PLOTTING TRANSFER ORBITS FROM ISCO TO CIRCULAR ORBITS INSIDE
w#3  THE CAUCHY HORIZON

ss  One transfer, one failure

ws  This section plots transfer orbits from the innermost stable circular orbit at

ws  T1sco to two different unstable circular orbits inside the Cauchy horizon: one
w7 at r1, the maximum of an effective potential, the other at ro, the minimum of
w another effective potential. For a/M = (3/4)'/2, the circular orbit at

w11 = 0.1707M lies very close to the singularity. Spacetime there is so radically
w0 warped that no global coordinate system—even Doran coordinates—gives us a
st picture that conforms to our everyday intuition. In what follows we do the best
2 we can to find orbit plots that inform our intuition about this strange world.
453 Figure 7 shows a first orbit plot of the transfer from rigco to r1. This plot
s4  seems straightforward, with the singularity at » — 0 as expected. But a closer
w5 look reveals that this first plot fails to correctly represent spacetime near the
w6 singularity.

as7 To see this, look again at the Doran global metric, equation (4) in Section
s 17.2 when dT = 0, that is, on an [r, ®] slice. Then the squared differential of
s measured distance do? expressed in Doran coordinates becomes:

9 1/2 1/2 2
LA R A R
r2 4+ a2 r

0<r<oo, 0<®<2m, dT =0, on an [r, ®] slice

do® = + (r* +a%)d®*  (36)

460
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w1 What happens to do—the differential of a measurable quantity—as r — 07
w2 The final d®2 term on the right side behaves reasonably; it goes to a?d®? as
ws 1T — 0. In contrast, the first d® term blows up as r — 0.
Singularity 464 However a little rearrangement simplifies this metric and allows us to
not a point. ws predict a measurable result. Expand metric (36) and collect terms.

2 oM 1/2 2M 2
do? = - dr? — 24 (_’_22> drd® + (7“2 +a* + ra ) d®* (37)

"2+ 2 2
2 2M 1/2
do? = " ar? —2a (2 drd® + R*d®? (38)
7’2 +CL2 T2 +a2
0<r<oo, 0<®<2m, dT =0, on an [r, ®] slice

w The step between (37) and (38) applies the definition of R? in Box 1.

467 Now, let r become very small and see what the singularity looks like. The
ws  first two terms in global metrics (37) and (38) become negligibly small and the
w9 third terms become:

do* — R?d®? — a? (1 + 254”) d®? (r<a<M) (39)
a0 As the value of r continues to decrease, the coefficient of d®? increases. Two
Singularity has a1 locations with the same small r-value but different ® lie along a circular arc of
the topology of a2 length RA®. And o, remember, is a measurable quantity. The singularity of a
acircle. oz spinning black hole has the topology of a circle, not a point! In the limit of
a4 small 7, we call the circular topology a ring singularity.
75 Now ask: Is there a way to plot transfer orbits so that the measurable

ws  result in (39) becomes apparent? Yes: Use R as the separation from the origin.
a7 Figure 8 shows such a plot. As we now expect from Figure 7, the probe starts
s  moving inward but its trajectory soon deflects outward because R? increases
s as r/(2M) decreases. R begins at R = 2.7891M and ends at R = 3.0924 M.

w0 Yet Figure 5 clearly shows that during this transfer the probe moves steadily
s inward from r = 2.5373M to r = 0.1708 M. A paradox!

182 To resolve this paradox, note that R is double-valued (Figure 1 in Section
w3 17.2), and that as 7 — 0, R — oco. Conclusion: Using R to plot the orbit

s creates a bigger problem than it solves.

a8 Try plotting the same orbit in global map coordinates r and ®, as in

w6 Figure 9. In this plot the global map angle ® increases from zero at rigco to a
7 value that increases without limit at ry as the probe continues to circle there.
s This plot is correct but tells us nothing that we do not already know from

w0 Figure 7. And it is ugly!

490 So far we have failed to discover how to plot the transfer orbit between
New global s risco and 71 in such a way that it correctly displays the singularity as a circle,
coordinates: sz while preserving inward motion. To accomplish this, we choose a new radial
XandY w5 global coordinate that does not blow up as r — 0, but correctly plots a circle

ws  there. This radial coordinate is (r? + a?)'/2, shown in Figure 10. The global
a5 Cartesian coordinates become:
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(R/M)cos @

A
aM= (3/4)12

(RM)sin @

FIGURE 8 Second orbit plot of the transfer between ISCO and the circular orbit at v =
0.17076 M inside the Cauchy horizon (Figure 5). This plot of (R/M) sin ® vs. (R/M) cos @
shows a strange coordinate behavior: The probe moves inward toward » = 0, yet arrives in a
circular orbit of larger R than it started. See entries for R in Table 19.3.

X =0+ a®)Y?cos @ (global coordinates on [r, @] slice)  (40)
Y = (12 4+ ad?)Y%sin @ (41)
X?4+Y?>ad% 0<r<oo, 0<®<27 (42)

Do global coordinates (40) and (41) correctly describe spacetime around a
spinning black hole? They do, because they satisfy the conditions for a good
coordinate system (Section 5.9). As we shall see, X and Y are good
coordinates for much, but not all, of spacetime.

Figure 10 plots the transfer orbit in global X,Y coordinates.

This book often employs the interactive software program GRorbits, which
provides plots for many of our figures. Now it can be told: GRorbits makes its
plots using X and Y coordinates.

[ Objection 5. What's inside the blank disk at the center of Figure 10? The
range of coordinates given in expressions (42) does not include the inside
of this disk. Where can | find this inside region?
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1/2

aM = (3/4)

3n/4—

/2 —

/4 —

FIGURE 9 Second “orbit plot” of the transfer between ISCO and the circular orbit at 71 =
0.17076 M inside the Cauchy horizon (Figure 5). This plot of ® vs. r is not one we usually call
an “orbit,” but is perfectly valid as such.

ss @ There is no region inside the disk in the equatorial plane of the spinning

509 black hole. Equations (40) through (42) show that points inside the ring at

510 r = 0 have imaginary r-values, which is impossible.

511 Comment 6. Ring?

512 Except for gravitational waves (Chapter 16), almost all global metrics and global
513 orbits in this book are restricted to the [r, @] slice. Therefore we can say nothing
514 about the topology of any three-dimensional surface—perhaps a sphere or a

515 cylinder—that might intersect the X, Y surface as our ring. However, advanced
516 treatments show that the singularity of the Doran metric is confined to the [r, @]
517 slice. It's a ring, not a sphere or cylinder. Moreover, we can access the central
518 disk by traveling out of the equatorial plane to pass over or under the sigularity,
519 as described in Chapter 21.

N

520 Objection 6. The plot in which Figure: 7, 8, 9, or 10, is the correct one for
521 the transfer orbit between circular orbits at risco andri ?

.‘

522 Every one of these orbits is equally valid and correct. Every one is

523 distorted, because the geometry of spacetime near the spinning black hole
524 is radically different from the flat space of our everyday lives. We select

525 plots such as those in Figures 7 and 10 that display those features of the
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aM = (3/4)12

ring singularity
(r=0)

Cauchy

horizon

event
horizon

FIGURE 10 Fourth “orbit plot” of the transfer between ISCO and the circular orbit at 1 =
0.17076 M inside the Cauchy horizon (Figure 5). This plot uses global coordinates X, Y.

A

T 0 A
event r } ‘HH‘HHHH“]‘/z“::
horizor ~ 8 _la/M = (3/4) E::
5 |
Cauchy hN|
horizon = N
7
ring singularity 7 —
(r=0) ~7 1 \
{ / 7/
s 28 \ .
B 1y 1 ,[ 7 e
] 115 2!
\ }
\
N 7
N\ e
A A
T
g

FIGURE 11 Unsuccessful attempt to plot the X, Y transfer orbit from risco to the
minimum of the effective potential at r. = 0.353 6M (Figure 6). The descending orbit shown
here gets stuck at the Cauchy horizon and does not make it in to r2. Reason: global Doran
coordinates are not good everywhere. Chapter 21 presents new global coordinates that solve
this problem.

526 geometry near a spinning black hole most likely to help us develop a useful
527 intuition and ability to make predictions.
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528 So much for the transfer between rigco to ro = 0.17076 M. To complete

29 our exploration inside the black hole, we also want to transfer from rigco to
Hangup at the s 79 = 0.35363M at an effective potential minimum (Figure 6). This should be
Cauchy horizon st easier because ro > 11 and spacetime is less warped at 7o, right? Figure 11

s22 shows an attempt to make this plot. Oops! In this plot the probe does not

s.3 move inward past the Cauchy horizon at rcg = 0.5M, shown in the figure at
s Xem = (rég +a?)V/? = (1/4+3/4)Y2)M = M.

535 Question: Why—in Figure 11—does the probe not pass inward through

sss  the Cauchy horizon? Beginning of an answer: We have run into this kind of

sz problem before. Recall that the raindrop did not cross the event horizon of the

Our history of s.s  non-spinning black hole when described in Schwarzschild global coordinates
bad global s (Section 6.4). Reason: The Schwarzschild global ¢-coordinate is bad at the
coordinates s event horizon. Solution: Change to global rain coordinates (Section 7.5), whose

ser  T-coordinate ushers the raindrop inward through the event horizon to its

s« doom. For the spinning black hole we started with Doran coordinates, chosen
sia because they are good across the event horizon. But that is not enough to

s« ensure that they are always good across the Cauchy horizon. What other

ss  coordinates are available?

546 Comment 7. Boyer-Lindquist ¢-coordinate bad at the event horizon

547 The exercises of Chapter 17 introduce the Boyer-Lindquist global coordinates

548 for the spinning black hole, whose global metric is simpler than the Doran global

549 metric. However, the Boyer-Lindquist ¢-coordinate is bad at the event horizon,

550 where it increases without limit along the worldline of the raindrop.

551 Doran global coordinates smoothly conduct our raindrop inward across

ss2 the event horizon of the spinning black hole and all the way to the circular
Even Doran sss  orbit at 1, but fail to allow penetration of the Cauchy horizon on the way to
coordinates bad. s« the different circular orbit at ro. Why are these two results different? Doran

sss  coordinates are okay for transfer to the circular orbit at r1, but—it turns

sss  out—both 7" and ® are bad at the Cauchy horizon for transfer to the circular
s orbit at o (though they are good for transfer to r1!). Figure 11 displays the
sss. problem with ®: As r — rcg, then & — oo. To cross the Cauchy horizon we
9 sometimes need different global coordinates. Chapter 21 explains why and

sso shows us where new global coordinates can take us.

61 @ Objection 7. Is Nature fundamentally “bad™, or are you incompetent?

.*

562 Nature is not bad. Mathematicians have proved that, for many curved

563 spaces, it is impossible to cover the entire space with a single global

564 coordinate system that is free of singularities. For these curved spaces

565 there is no completely “good” coordinate system. The simplest example is
566 a sphere: Earth’s latitude and longitude coordinates are singular at the

567 poles (Section 2.3), even though, for a non-spinning sphere, the poles are
568 no different from any other points on the sphere. General relativity is

569 difficult not because the mathematics is hard, but because we have to

570 unlearn so many everyday assumptions that are false when applied to
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571 curved spacetime. One of these everyday false assumptions is the
572 existence of a single global coordinate system that works everywhere.
573 To complete the Exploration Program for the Spinning Black Hole
Dispose of sw (Section 19.1), tip the probe off either unstable circular orbit inside the
the probe. s Cauchy horizon, so that it spirals into the singularity. Good job!
19.6:8 ORBITING SUMMARY

sz Orbit descriptions

578 1. Effective potential plots (Figures 2, 4, 5, and 6) show us what orbits

579 exist and help us to plot the transfer and circular orbits of an

580 exploration program.

58t 2. We must plot orbits using global coordinates, even though it is difficult
582 to plot orbits in a way that is faithful to the twisted topology near the

583 spinning black hole.

584 3. Sometimes one global coordinate system is not enough to cover the

585 entire trajectory. It can take us only to the edge of a map; to go beyond
586 that map, we need new global coordinates and a new map (Sections 2.5
587 and 75)

588 4. Doran global coordinates are effective across the event horizon but not

589 necessarily through the Cauchy horizon. Also, Doran coordinates

59 require help to show the topology of spacetime near the singularity,

591 where a more revealing plot uses (12 + a?)'/? rather than r or R.

592 5. Preview: Chapter 21 shows that the reason why Doran coordinates

593 sometimes fail at the Cauchy horizon is that there are actually two

504 different Cauchy horizons at the same rcg = M — (M? — a?)'/2, called
595 the Cauchy horizon and the Cauchy anti-horizon.

19.Z:8 THE PENROSE PROCESS MILKS ENERGY FROM THE SPINNING BLACK HOLE
sv  Harness the black hole spin to hurl a stone outward.

se The spinning black hole has an obvious motion that distinguishes it from the
s9  non-spinning black hole: it spins! Everywhere in physics, motion implies

s energy. Can we extract black hole spin energy for use? We know that an

st Observer measures and extracts energy only in a local inertial frame. Can we
ez find a local inertial frame in which the the black hole spin affects the measured
w3 energy of a stone, thus making it available for use? Roger Penrose found a way
s4 to harness the black hole spin as a local frame energy, then to send this energy
es t0 a distant observer. The present section examines what has come to be

ws known as the Penrose process.

607 Here are three physical processes in which energy does not appear to be
Three Penrose ws conserved, but it is. We shall find that each process is an example of the
processes: energy w9 Penrose process.

conserved
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610 First process: A spaceship crosses inward through the static limit

e (rg = 2M) with map energy E/m < 1, a value less than the minimum escape
sz energy F/m = 1. Even if its rockets are not powerful enough to increase E/m
s13 above the value one, a clever ejection of ballast allows it to escape.

614 Second process: A distant observer launches a stone toward a black hole.
15 Over the course of a few weeks, the observer records outgoing photons followed
ets by a high-speed outgoing stone. He measures the combined energy of the

sz photons and outgoing stone to exceed that of the original stone.

618 Third process: A uranium atom with F/m < 1 radioactively decays while
sis  located between the static limit and the event horizon. A distant observer

e0 Mmeasures a thorium nucleus pass outward with greater total energy than the
et mass of the initial uranium atom.

622 In all three processes, an energetic body whizzes past a distant observer.
w3 1o compensate for this emitted energy, the black hole swallows a second body
e« (ballast, photons, or decay fragments) with map energy E < 0. In each of

es these Penrose processes the black hole mass decreases, along with its spin

e6 parameter a.

627 Begin with the third process, the spontaneous decay of a uranium nucleus
Third process: es into an alpha particle plus a thorium nucleus. Label this process as b — ¢ + d:
uranium nucleus
decays 25U — He + %' Th (43)
b— ¢ + d (labels) (44)
Conservation of e This reaction conserves the total energy and total momentum observed in
energy-momentum s every local inertial frame. We choose the ring frame. The ring frame observer
in ring frame er  verifies the following conservation statements:
Ering,b = Ering,c + Ering,d (45)
Pz,ring,b = Pzx,ring,c + Pz, ring,d (46)
DPy,ring,b = Py,ring,c + Dy ring,d (47)

sz We do not assume that the initial uranium nucleus (label ) is at rest in the
s ring frame; in general Eying s > my, with non-zero linear momentum

s components Pz ring,b = 'Ua:,ring,bEring,b and DPy,ring,b = Uy,ring,bEring,ba and similar
es equations apply for each of the two daughter fragments.

636 Equations (45) through (47), combined with equations (96) and (97) in

sz Appendix B imply that

Ey,=E.+ Eq4 (map quantities) (48)
Ly=Lc+ Ly (49)
Surprise conservation s Surprise! Even though map energy and map angular momentum are not
of map quantities e directly measured, they are conserved in the sense that when a uranium

a0 nucleus splits in two, the total map E and total map angular momentum L are
er each unchanged. This remarkable fact shows how map angular momentum and
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sz Iap energy can act as (conserved!) proxies for measurable quantities, as
es  Section 18.7 anticipated.

644 To milk energy from the spinning black hole, a successful Penrose process
More map energy s requires that Fq > Fy,; therefore E. < 0 in equation (48). We shall see that
out than in e this is possible only for r < rg = 2M, and then only if L. < 0 (retrograde

s7 motion). Particle d recoils with increased map energy and map angular
ss  momentum: Fy > Fy and Ly > L. This is surprising, because a spontaneous
ss decay that takes place in the ring frame always removes energy:

Ei=Ey,—E. > Ey (50)
Ering,d = Ering,b - Ering,c < Ering,b (51)

0 The map energy increases while the ring frame energy decreases!

651 The Penrose process takes advantage of the fact—shown in equation

2 (91)—that ring frame energy is proportional to F — wL, not map energy E

s alone. Consequently, even if E increases, Eying can decrease if L increases:

e« Ly — L. = Lg must be sufficiently positive. The process works only if w > 0.

5 OSpacetime curvature “makes a contribution” to ring frame energy through the
Difference milked s negative spin factor —w in equation (91). When map angular momentum is
from spin e also negative, L < 0, then spacetime curvature increases the ring frame energy:

8 F —wL > FE. The stone draws from spacetime curvature through the term

s —wlL to create a daughter nucleus (thorium) that escapes with more map

s energy than the initial nucleus (uranium) had when it arrived.

)

661 @ Objection 8. How can a stone “draw from spacetime curvature” to
662 increase its map energy? Never before have we equated curvature with
663 energy.

.*

664 Curvature is not energy, just as map energy is not measured energy. Map

665 energy depends on the metric, and therefore on spacetime curvature, even
666 though measured energy is independent of the metric. Measurements are
667 local, curvature is global. But global affects local!
Stone decays into 668 Next look at the second process, in which a stone of mass m; with
light flash plus s (1, Ly, E}) emits a light flash ¢ with ring frame momentum components
recoiling stone 60  (Ds ring,cs Pyring,c). Lhe ring-frame energy of the light flash is

1 Ering.c = (D2 ring.c T pz’ring’c)lm. We want to find the mass, map angular

ez momentum, and map energy of the stone—labeled d—that recoils from its

e3  backward emission of light. Note that mg < m; because, in the rest frame of b,
o4 the light flash carries away energy. To determine the trajectory of stone d

es  following the emission, we need both my and E4; because the motion depends
e on Eg/mg and not on F, alone.

677 Let ¢ring,c be the angle of photon momentum in the ring frame, defined so
es  that
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Pz, ring,c = Ering7c COSs (bring}c (hght) (52)
Py,ring,c = Ering,c sin ¢ring,c (hght) (53)

e (For tangential retrograde motion, ¢ring,c = m.) Equations (48), (96), and (97)
s lead to the following equations (54) and (55). Equation (56) for mq derives
e from equations (52) through (55) when substituted into the special relativity

U T e _ 2 2
e equations mj = E Dring,a and 0= E5 o - — Piing c-

ring,d
Ld = Lb - Lc = Lb - REring,c COs qbring,c (54)
rH
Eq=FEy,— E. = Ey — Eying.c <R + wR cos d)ring’c> (55)

. 1
mq = [mg + 2Ering,c (_Ering,b + pa:,ring,b Ccos ¢ring,c + py,ring,b S111 d)ring,c)] /(%6)

663 Substitute equations (54) and (55) into equations (91) and (92) to give:
R
Eringp = E(Eb —wly) (57)
L
Pz, ring,b = Eb (58)
1/2
DPy,ring,b = + <E1r2ing,b - m% - pi,ring,b) (59)

s« We have written (Lq, Eq, mq) in terms of (r,my, Ly, Ep, Ering,c, @ring,c) and can

es Now determine under what conditions Fq > E,.

686 The simplest case to analyze is for stone b to be in a tangential prograde
Simplest case 7 circular orbit, py ring,p > 0 and py ring,» = 0. In this case, Fg is maximized and

s Mg is minimized when ¢ing . = 7, that is when the light flash is emitted

oo tangentially in the reverse (retrograde) direction.

?

60 @ Objection 9. You said the stone was launched toward the black hole.
691 That's not a circular orbit!

.‘

692 The stone can be deflected into a circular orbit as it approaches the black

693 hole, for example by encountering an accretion disk. The stone slowly

694 loses energy to friction in the disk. After spiralling inward, it will be

695 conveniently in a nearly circular prograde orbit inside the static limit from

696 which the Penrose process can begin.

697 We choose initial conditions (ry, Ly/mp, Ep/mp). The use of Ly, /my, and

es [Ep/my as parameters instead of L, and Ej generalizes the results to a stone of
Fraction q of soo  any mass myp. All of the unknowns in equations (54) and (55) are now fixed
stone’s mass m0  except Fring c/my, which we rewrite for the case in which the fraction ¢ of the

becomes photon 71 mass my is emitted as a photon:
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1/2 1/2
Ering,c o EHRF,C (1 - vz,ring,b) =q <]- - ”r,ring,b) (60)
my my 1+ Vg, ring,b 1+ Vg, ring,b

72 where Eygrp . is the energy of photon c in the initial rest frame (the rest frame
25 of b), and we have used the Doppler formula of special relativity, equation (48)
7 in Section 1.13. The ratio ¢ on the right side of (60) can also be expressed

75 using (56) with @ring,. = 7 in terms of the final/initial mass ratio of the stone:

m?[ - mg - 2Ering,c (Ering,b + pm,ring,b) (61)
mz _ 2Ering,c Ering,b (1 pxming,b)
- =2——" 4 TS
my mp my Ering,b
1 m?[ Ering c Ering b
_ — 4 ) — = e’ (] Vo v 62

76 From special relativity:

Eringb _ (1 2 )—1/2 _

—1/2 —1/2
o ~ )= (1 i) (b ving ) 7 (63)

77 Substitute from (63) with vy ying» = 0 into (62) and use (60):

1/2
1 (1 _ m) _ Bringe (1 + ) ! (64)

2
2 my mp 1- VUg,ring,b

1/2 1/2
—y (1 — Ug;,ﬁng,b) / (]. + Uz,ring,b) / =g
1+ Vg, ring,b 1- Vg, ring,b
78 so that finally the fraction ¢ of stone b’s mass that is carried away by photon ¢
79 18 given by the expression:

Enrr,e 1 m3
= = — _— 65
¢=— 5 m2 (65)
710 Assume that stone b is unable to escape the black hole without help,

7 Ep/my < 1. This will be the case, for example, if the stone spirals inward in an
72 accretion disk: the sequence of circular orbits in an accretion disk have

7 FE/m <1 (Section 18.10). Can the stone escape by emitting a photon?

714 Answer this by evaluating F4/mg using (55) and (60):

E E 1— vy rines \ V2 (rH
ma [ Ld ) _ Lb q Ua,ring,b raoo wR (66)
my \ Mg my 1+ Vg ring,b R

ns a similar calculation using (54) gives

L L 1- x,rin 1/2
7W<d):wwR(U’W) (67)
my \M4 my 1+ Vg, ring,b
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716 How large can E;/mg be? First, in order for the stone’s map energy to
77 increase, Eq > Ej, the final factor in (66) must be negative:

rH
wR > R (first condition for Penrose process) (68)
Definition of 7s  Equation (68) is equivalent to r < rg = 2M. The region rgg < r < rg is called
ergoregion 7ns the ergoregion.

20

QUERY 5. Whereris a Penrose process possible?

A. Starting from-4£8), show that (70) implies r < rg = 2M. This explains the origin of the term
ergoregion for rgyy < r < rg: inside the ergoregion it is possible to extract energy from a
spinning blackhole.

B. Show that for# > rg, all particles (both stones and photons) have E > 0. Thus, a stone with
E < 0 is trapped inside the ergoregion. [Hint: use (97).]

C. Show that for# < rg, a retrograde photon (¢ring = 7) necessarily has £/ < 0, a prograde photon
(¢ring = 0) neeessarily has E > 0, and a photon moving in other directions may have E > 0 or
E <O. 729

D. Show that as #— 7gn, a photon with even a slight backwards direction, ¢ring = 5 + €, has
E < 0 and is therefore trapped.

22

738 Every Penrose process relies on the existence of particles with negative
74 map energy. When is this possible? From (97), particle ¢ (stone or photon) has
75 negative map energy when

rH
—VUg ring,c > R (second condition for Penrose process) (69)
w

Conditions for the 76 The two conditions can be combined into one equation:
Penrose process
rH

R < —Vg ring,e <1 (Conditions for Penrose process) (70)

77 For a photon moving tangentially backward, vy ring,c = —1 so that

H
E. = —FEiing.c (wR — TR) <0 (forr <rg) (71)

738 The emission of a negative map energy photon inside the ergoregion

79 increases the map energy of a stone but does not guarantee that the stone will
720 escape, which requires Ey/mg4 > 1. Equation (66) shows that this ratio

71 depends on several quantities: the E/m of the original stone b, the velocity of
72 the stone in the ring frame, and the ratio of final to original mass mg/m; or
u3 equivalently the fraction ¢ of the stone’s original mass that is converted to

s retrograde-moving photons. For a stone in a given orbit, ¢ is the only quantity
75  that we can vary. The Penrose process is most efficient when ¢ is maximized.
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7 Equation (65) shows that largest possible value is ¢ = % This limit
Maximal energy: 77 corresponds to mg/my = 0, i.e., the stone loses all its mass! If the stone is half
annihilation 728 matter and half anti-matter, their annihilation can extract the largest possible
9 energy from the spinning black hole. Half the mass goes into the energy of a
70 photon emitted in the prograde direction, and half to a photon emitted in the
71 retrograde direction. The escaping photon (“stone d”) has energy

1/2
1 ]-_erin b TH
E;=F — - ohmey R— — 72

= Betgme (1 +Uz7ring,b> <w R ) (72)

72 The energy extracted depends on the motion of the stone before it annihilates
7s  into photons. Amazingly, the map energy is largest when the stone is moving
75 retrograde, vg ringp < 0.

?

C Objection 10. This is crazy! How can going backwards increase the
756 stone’s map energy?

.‘

757 You're right, this is wild, but it’s true! As your intuition suggests, the map

758 energy of stone b is decreased by backward motion, as shown by equation

759 (97) with v ring,b < 0. However, the stone’s final map energy F4 also

760 depends on the map energy of photon c. The measured energy of photon

761 c depends on the motion of the emitter, stone b. From the Doppler formula

762 (80), when vy ring,» decreases, Eiing,c increases and is positive:

763 increasing stone b’s velocity in the backward direction increases the

764 energy of a photon emitted in that direction.

765 Now comes the real wildness: inside the ergoregion, the map energy F.

766 has the opposite sign to E\ing,.! Increasing Eting,. makes E. more

767 negative. The result? £y = L} — E. increases when v, ring,», decreases.

768 Converting all one’s mass to photons is a steep price to pay to escape from
Saving a crippled 79 a black hole. Consider the first process described in the beginning of this
spaceship 70 section and ask what is the minimum energy fraction ¢ that will allow a

7 crippled spaceship to escape from inside the ergoregion without using rockets
72 aside from a single thrust of a photon rocket. We seek the most frugal solution,
7s  which retains as much mass as possible.

774 Previous sections showed that it is very costly to transfer to circular orbits
75 inside the Cauchy horizon (e.g., Table 19.2). Take instead the innermost stable
76 circular orbit, the ISCO, to be the one from which we seek to return home.

77 Taking advantage of the Penrose process requires risco < rs. Exercise 1 below
78 shows that this condition gives

2
% > g\/ﬁ = (0.94281 (TISCO < Ts) (73)

77s  We do not know whether real black holes have such high spins (though some
70 astronomers think so, e.g. Risalti et al., Nature, 494, 449, 2013;
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71 d0i:10.1038 /nature11938). (In 1974, Kip Thorne set a theoretical limit of
e a/M < 0.998: ApJ 191, 507, 1974).

Fast spinning 783 As an example, take a/M = 0.96, for which rgg = 1.2M. At the ISCO,
black hole!
L
risco = 1.84 300 573 M m—b =1.83102 239 M ,
b
E,
= 0.798 919 307 , Vb aring = 0.621 811 282 . (74)
b

24

QUERY 6. ISCO fer a rapidly spinning black hole
Confirm the entries s equation (74) using equations (31), (32), and (75)—(77) of Chapter 18 and (94)
below. 787

=

789 Given these parameters, find the minimum ¢ for an escape orbit, by
m0  setting Eq/mgq = 1. Solve (66) using a numerical method and substitute into
791 (67) to find

L
g =0.173 658 866 , m—d = 2.50 581 328 M . (75)
d

72 After this photon rocket thrust, the spaceship has tangential velocity given by
7% (24), which evaluates to

Vs ring.d = 0.735 812 177 (76)

794 As in previous sections, we calculate the velocity change provided by this
75 rocket thrust to put the spaceship into an escape orbit from rigco. The
76 velocity change in the instantaneous initial rest frame follows from equation

77 (54) of Section 1.13:

Avy 1REy = f’zvﬂngvd ~ Yzringb (fom the ISCO . . . (77)
— Uz, ring,bVz,ring,d
= 0.210 153 964 into an escape orbit) (78)

7%  Compared with the velocity changes required to transfer from the ISCO to
790 orbits inside the Cauchy horizon of a more slowly spinning black hole (Thrusts
so 4 and 5 in Table 19.2), this is economical!
801 Figure 12 shows the effective potentials of the spaceship (stone b) before
s2 and after the rocket thrust. Compare with thrust #3 in Figure 4, which
s3 inserted the spaceship into orbit at the ISCO. Figure 12 shows the opposite:
s €jection from the ISCO.
805 The final to initial mass ratio follows from equation (26) or (65):

mq

= (1—2¢)"/? = 0.807 887 533 (79)
my
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FIGURE 12 Effective potentials for a spinning black hole with a/M = 0.96 and
two choices of the map angular momentum. The energy expended in the rocket thrust
is less than the difference in map energy, providing a potential power source.

sos  This result seems almost mundane (it is comparable to thrust #3 in Table
s7  19.2) until we compare it with Ej/m; in equation (74), which is smaller than

Extracting energy sos Mg/ my. Although the difference is small, it reveals a crucial opportunity: the
from the spinning g9  spinning black hole is an energy source!
black hole 810 To see this, recall that the map energy is the energy at infinity. As a stone

s1v  spirals inward in an accretion disk, the photons emitted can escape to infinity,
sz where their total energy is the difference in map energy, or

ss 1 — (Ey/myp) = 20.1% of the original rest mass m;. In principle, that energy is
s« available to do work at infinity. Then, in order to escape back to infinity, a

sis  thrust must be applied that reduces my, by a factor 1 — (mg/mp) = 19.2%. The
s energy difference is 0.9% of the rest mass, vastly more than the energy

s released by fission of uranium into thorium, and more even than is liberated
ss by fusion of hydrogen into helium, 0.7%.

)

gtg @ Objection 11. Your numbers don’t add up! You said that g = 17.4% of the
820 initial mass goes into rocket thrust, and 80.8% is left. You're missing 1.8%!

.‘

821 ‘The missing piece is the change in kinetic energy, (v — 1)mgq, where vy is
822 calculated using Avg 11RFb-



January 12, 2018 08:46 OrbitingSpin180112v1 Sheet number 35 Page number 19-34 AW Physics Macros

19-34 Chapter 19 Orbiting the Spinning Black Hole

823 We can now justify the statement in Section 17.1, “The spinning black
s« hole is an immense energy source, waiting to be tapped by an advanced
s civilization.” Suppose you drop a stone from rest far from the black hole.

Justify claim: s2s Initially, £/m = 1 (a raindrop) and the stone enters an accretion disk. It looses
“Immense source sz Iap energy as it spirals inward (Section 18.8) emitting this map energy as
of energy. 22 photons. Recall that the energy of photons received at infinity is just the map

20 energy lost, described in Sections 8.6 and 18.10 for accretion disks. By the time
s the stone reaches the ISCO, it has radiated a fraction 1 — Ep/m; = 0.20108 of
s 1ts mass, as measured at infinity. In order to return to infinity, the stone’s mass
sz must decrease by a fraction 1 —mg/my = 0.19211. Thus the radiation received
s at infinity more than makes up for the loss of mass by the stone. We’ve

s extracted energy from the spinning black hole! This is possible because of the
g5 negative map energy of the retrograde photons emitted inside the static limit.

836 Comment 8. Many cycles; large extracted energy

837 The difference between Ey,/ms and mq/ms seems small, but a stone or

838 spaceship can be reused to extract lots of energy over many cycles. Some of the
839 energy radiated to infinity can be used to replenish the stone for another trip to
840 the black hole. Note that the amount extracted is larger when the black hole spin
841 is greater or the rocket thrust is applied closer to the event horizon.

N

842 Objection 12. Great! We have an endless supply of energy; a perpetual

843 motion machine! We just toss stones into the spinning black hole and
844 program them to emit powerful laser pulses when they are inside the static
845 limit.

.‘

846 Sorry, this is a false hope. Here’s the hitch: The photons with negative map

847 energy fall into the black hole, where they decrease the black hole mass.
848 We do not prove it here, but the gravitational effect of negative map energy
849 is to decrease the gravitational field far from the black hole, exactly as if

850 the black hole mass decreases. (Back to Newtonian physics for slow

851 motion far from the black hole!) Still, the spinning black hole is a promising
852 energy source for an advanced civilization.

s Summary of the Penrose process for a/M = 0.96

Summary: 854 1. Initially a stone with Ej, = m; drops from rest at a great distance.
Penrose process 855 2. The stone enters an accretion disk, where it radiates 20.1% of its mass
856 as it descends to the ISCO. The radiation— “quasar light”—travels to a
857 great distance.
858 3. At the ISCO, the stone emits a photon rocket thrust; the surviving
859 piece has mass mq = 0.808m,
860 4. The surviving piece with F; = mg escapes to a great distance, where it
861 comes to rest and can be furbished or replaced.
862 5. The stone’s mass decreased by 19.2%, but more than this was received

863 at a great distance as quasar light.
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864 The Penrose process is reminiscent of Hawking radiation (Box 5 in Section
s 6.6), whereby energy is also extracted from a black hole. For Hawking

ss radiation, however, the stone that falls into the black hole is a virtual stone, a
g7 temporary entity living on time borrowed from the Heisenberg Uncertainty

Penrose process ss Principle. In contrast the Penrose process photons with negative map energy
compared with o are real, not virtual. In addition, non-spinning and spinning black holes both
Hawking radiation s emit Hawking radiation, while the Penrose process works only for the spinning

snn black hole.

19.8.8 APPENDIX A: KILLER TIDES NEAR THE SPINNING BLACK HOLE
es  How close is a safe orbit?

e+ In the Appendix of Chapter 9 we saw how local inertial frames are

o5 “spaghettified” by tidal accelerations when they move near a non-spinning

e black hole. Equations (38) to (40) and (46) to (48) in that chapter gave the

sz expressions for the components of the tidal acceleration Agjoca for local

e inertial frames that move along the Schwarzschild r-direction and along the

e Schwarzschild ¢-direction, respectively.

880 In the present Appendix A we list similar expression for the spinning black
st hole. We give all the equations in Boyer-Lindquist coordinates. (See the

sz Project: Boyer-Lindquist Global Coordinates at the end of Chapter 17.) In the
s local inertial frames the z—, y—, and z— directions are along the global

s+ ¢—direction, r—direction, and perpendicular to the spinning black hole’s

s equator, respectively.

s TIDES IN THE LOCAL RING FRAME

sev  Expressions for the the tidal accelerations around the spinning black hole are
ss messy. Fortunately, in the equatorial plane the equations reduce to a fairly
s simple form. For the local ring frame:

M2+ Z
Aglocaul,y ~ ﬁﬁAylocal (80)
M
Aglocal,x ~ _gAxlocal (81)
M1+27
Aglocal,z ~ _gﬁAzlocal (82)
s0 where
ZH—
7 = airz (83)
7+ a?)

s The value of the dimensionless quantity Z always lies between 0 and 0.043
sz (ref: Bardeen, Press, and Teukoilsky, 1972), so the deviations for the
ss  expressions from the Schwarzschild case are small.
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894 As an exercise, check that for a = 0, the three equations above reduce to
sss  Schwarzschild expressions (38) through (40) in Chapter 9.
8% As another exercise, check that

Aglocahw + Aglocal,y + Aglocaul,z

~0 84
Axlocal Aylocal AZlocal ( )

s7 and compare the result with equation (45) in Chapter 9.

s TIDES IN THE LOCAL ORBITER FRAME

s9  The orbiter frame moves with speed v in the z-direction relative to the ring
oo frame. The tidal acceleration components for the local orbiter frame are:

M2+2Z M Ha(7? + a?) v
Aglocal,y ~ gmAylocal - 37773 FR2 (1 — ’02)1/2 AZ1ocal (85)
M 1+ 202
Aglocal,x ~ —m <1 - Zl—1)2> AZlocal (86)

M Ha(7? + a?) v
*37 5 A oca
B FRE (11— )12 e

M 2 + 02
A ~N——— [ 1+ 77— | AZloes
Glocal,z 773(1 — Z) ( + 1_ U2) Zlocal (87>

o1 Note the second term on the right side of (85). It tells us that the

w2 y-component of the tidal acceleration depends on the z-coordinate too, not
Definition: ws only the y-coordinate. Similarly, the second term on the right side of (86) tells
Shear terms w4 us that the z-component of the tidal acceleration depends on the y-coordinate

ws t0o, not only the z-coordinate. We call these two terms shear terms.

«s TIDES IN THE LOCAL RAIN FRAME

sr  The tidal acceleration components in the local rain frame are:

M2+Z M a(7 +a?)%/%2 2M
Aglocaul,y ~ ﬁﬁAylocal - SEWTASEIOCM (88)
M 3a2(72 4+ a?) [(2M\?
Aglocal,x ~ _773 <1 - % (77) A-Tlocaul (89)

M a(7* + a®)*/? 2M
—SfB(ﬂifQ)fAylocal

T ™R T
M 3a?
Aglocal,z ~ _773 (1 + 72) AZlocal (90)
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ws Again, note the presence of shear terms in the y-component and the

ws z-component of the tidal acceleration: the second term on the right side of (88)
oo and the second term on the right side of (89), respectively. A raindrop is not
o simply stretched in its local y-direction and compressed in its local 2~ and

sz zdirections, but feels a sideways tension (shear) in its own rest frame too.

19.9:8 APPENDIX B: RING FRAME ENERGY AND MOMENTUM
oia  Measured energy and momentum

os  This appendix derives the map energy E and map angular momentum L of a
o6 stone from its ring frame energy E,ing and components of momentum pg ying
o7 and Py ring at a given r. The result is valid for any motion of the stone for

o which H? > 0, that is, everywhere except between the horizons. Start with
ss  equation (21):

Ering:1 e per

Atring  rHdT B dr R (F—wL (91)
m  Ar—0 AT R dr Hdr rH

m

220 The last step uses equation (111) of Section 17.10. Next, apply similar limits
e to equations (22) and (23) to obtain momentum components in the local ring

e frame:
Pz ring _ ;. Afﬁring dd dT rw dr L
———=lm ——=R|——w— | ——5—=—x 92
m ars0 Ar (dT Y B dr mR (92)
DPy,ring _ . Ayring 1 dr
—— = lim —— = —— 93
m  Arso Ar | Hdr (93)
923 The velocity components in the local ring frame follow from these
es equations:
Pz ring rH L
T, ring — = 7355 | =+ 94
Paring Ering R? <E - wL) ( )
Dy, ring T m dr
ring = 1 = 5| o7 | 7= 95
Viring = g e R (E—wL) dr (95)
Expressions for 025 Solve equations (91) and (92) for the map constants of motion in terms of
map L and E. ws the locally-measured ring energy and ring x-momentum:
L = Rpg ving (not between horizons) (96)
rH rH
F = (R> Ering + WRpx,ring = Ering (R + (.UR’L}%ring) (97)

ez Section 19.7 uses these two equations in the description of the Penrose process.
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19.10:8 EXERCISES

220 1. When the ISCO lies at the static limit

s The innermost stable circular orbit (ISCO) for the non-spinning black hole lies
s at 7 = 6M. For the non-spinning black hole there is no distinction between

we prograde and retrograde orbits. For the maximum spinning black hole

w (a/M = 1), the prograde ISCO drops to risco1 = M, while the retrograde

w4 orbit rises to riscoz = 9M. Figure 15 in Section 18.9 plots risco as a function
ws of a/M for both prograde and retrograde circular orbits.

036 A. What is the intermediate value of a/M at which the prograde ISCO lies

o7 at the same r-value as the static limit, rg = 27 Use equations (75)—(77)
038 of Section 18.8 to show that this intermediate value is a/M = 0.94281.
99 B. Verify that the numerical value of a/M in Ttem A is equal to 2%/2/3.

040 C. What is the r value of the retrograde ISCO for the value of a/M in

941 Ttem A?

«2 2. Choose incoming spaceship energy £ /m for exploration program

«s  Figure 2 shows that our explorers choose F/m = 1.001 for their initial energy
ws as they start their journey from far away towards the spinning black hole.

e« Justify this choice for the incoming value of E/m. Why should they not choose
ws a value of E/m much larger than this? a value of E/m much closer to 1 than
sz this? Are your reasons fundamental to general relativity theory or practical for
ws particular spaceships and black holes?

«s 3. Can a transfer orbit violate Kepler’s second law?

o FExamine the second-to-last row of Table 19.3. For the transfer orbit between
st the circular orbit at rigco & 2.537M and the circular orbit at r1 ~ 0.170M,
ez the value of vy ring transfer appears to contradict Kepler’s second law: The

w3 Ireely-moving probe appears to move faster at the larger r-coordinate than at
sss the smaller r-coordinate. Explain how this is possible.

s 4. What kind of motion is raindrop motion?

ws  Section 19.1 reviewed definitions of prograde/retrograde motions and

o7 forward/backward motions. Does raindrop motion provide the dividing line
s between forward and backward motion? between prograde and retrograde
o motion? Summarize your answers in a clear definition of raindrop motion.

wo 5. “Size” of the ring singularity

1 How large is the ring singularity at r = 07

%62 A. Is the size of the ring singularity zero, as Figure 7 in Section 19.5 seems
963 to show?
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964 B. Does the radial size of the ring singularity equal the value of the

965 spin-parameter a, as Figure 10 and equation (42) seem to imply?

966 C. Is the the ring singularity infinitely large, as Figure 8 and equation (39)
%67 seem to say? Show that from equation (39):

M\ 2
circumference = lim 27 R = lim 27a (1 + > =00  (98)

r—0 r—0 r
968 D. If the ring singularity is indeed infinitely large, as Item C implies, does
969 this mean that the ring singularity extends to infinity and embraces the
o70 entire Universe? If so, why the limit » — 0 in equation (98)?
o1 E. From results of Items A through D, explain why quotes embrace the
o2 word “Size” in the title of this exercise.

o 6. Spacetime trajectory or spatial trajectory of the transfer orbit?

o Figures 7, 9 and 10 are distorted maps, visual representations of transfer orbit,
o5 similar to the way that every flat map necessarily gives a distorted view of an

oe arbitrary airplane route on Earth’s spherical surface. But do these at least

o correctly depict the spatial trajectory of the transfer orbit? To answer this

o question look at the coordinates on the axes of these figures to check whether

os  those coordinates are spacelike or timelike.
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