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C H A P T E R

19 Orbiting the Spinning Black Hole29

Edmund Bertschinger & Edwin F. Taylor *

Einstein was not only skeptical, he was actively hostile, to the30

idea of black holes. He thought the black hole solution was a31

blemish to be removed from the theory by a better32

mathematical formulation, not a consequence to be tested by33

observation. He never expressed the slightest enthusiasm for34

black holes, either as a concept or a physical possibility.35

—Freeman Dyson36

19.1 EXPLORE THE SPINNING BLACK HOLE37

The sequence of orbits in our exploration plan38

Chapter 18 described circular orbits of a free stone around a spinning black39

hole. The present chapter shows how the captain of an approaching spaceshipObserve the black
hole from circular
orbits.

40

can insert her ship into an initial circular orbit at arbitrarily-chosen r = 20M ,41

then transfer to circular orbits of progressively smaller r-value to provide42

closer looks at the black hole.43

The exploration program for the spinning black hole is similar to that for44

the non-spinning black hole (Chapter 9) but in some ways strikingly different.45

In particular, the spinning black hole may be monitored from unstable circular46

orbits inside the Cauchy horizon (Step 3 in the following exploration47

program).48

EXPLORATION PROGRAM FOR THE SPINNING BLACK HOLE [a/M = (3/4)1/2]49

Step 1. Insert the approaching spaceship into an initial stable circular orbit at50

r = 20M .51

Step 2. Transfer an observation probe from this initial circular orbit to theExploration program 52

innermost stable circular orbit (ISCO) at rISCO = 2.5373M .53

Step 3. Transfer the probe from rISCO into either of two unstable circular orbits54

inside the Cauchy horizon.55

Step 4. Tip the probe off the unstable circular orbit so that it spirals into the56

singularity.57

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity

Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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Box 1. Useful Relations for the Spinning Black Hole

This box repeats Box 1 in Section 17.8.

Static limit from Section 17.3:

rS = 2M (1)

Reduced circumference from Section 17.2:

R2 ≡ r2 + a2 +
2Ma2

r
(2)

Horizon function from Section 17.3:

H2 ≡
1

r2

(
r2 − 2Mr + a2

)
(3)

=
1

r2
(r − rEH) (r − rCH) (4)

where rEH and rCH are r-values of the event and Cauchy
horizons, respectively, from Section 17.3.

rEH

M
≡ 1 +

(
1−

a2

M2

)1/2

(event horizon) (5)

rCH

M
≡ 1−

(
1−

a2

M2

)1/2

(Cauchy horizon) (6)

Ring omega from Section 17.3:

ω ≡
2Ma

rR2
(7)

An equivalence from Section 17.3:

1−
2M

r
+R2ω2 =

(
rH

R

)2

(8)

Definition of α from Section 17.7:

α ≡ arcsin

[(
2M

r

)1/2 a

rH

]
(0 ≤ α ≤ π/2) (9)

Definition of β from Section 17.8:

β ≡
(

2M

r

)1/2 ( r2 + a2

R2

)1/2

(10)

This chapter does not contain queries that ask you to “Compare theseCompare with
the non-spinning
black hole.

58

results with those for a non-spinning black hole.” Nevertheless, we recommend59

that you do so automatically: Run your finger down the text of Chapter 9 as60

you read Chapter 19. The similarities are as fascinating as the differences!61

Box 1 reminds us of useful relations for the spinning black hole, taken from62

earlier chapters. Box 2 clarifies what it means to plot the orbits of a stone.63

REVIEW FROM CHAPTER 18: KINDS OF MOTION64

Classify the motion of a stone by how its Doran global coordinates change65

during that motion. Section 18.5 defined prograde/retrograde motion and also66

forward/backward motion as follows:67

• Prograde motion has dΦ/dτ > 0.Kinds of motion 68

• Retrograde motion has dΦ/dτ < 0.69

• Forward motion has dT/dτ > 0.70

• Backward motion has dT/dτ < 0.71

Recall that the raindrop (released from rest far from the black hole) falls with72

dΦ/dτ = 0 (Section 17.4). Raindrop motion provides the dividing line between73

prograde and retrograde motion.74

Wristwatch time τ runs forward along the worldline of a stone. In75

backward motion (dT/dτ < 0), map T runs backward along the stone’s76

worldline—a reminder that map coordinate T is not measured time.77

Sections 18.4 and 18.5 described four Types of circular orbits:78
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REVIEW: FOUR TYPES OF CIRCULAR ORBITS79

• Type 1 Circular: E/m > 0, L/m > 0, forward, prograde, with80

E/m = V +
LTypes of

circular orbits
81

• Type 2 Circular: E/m < 0, L/m < 0, backward, prograde, with82

E/m = V −L83

• Type 3 Circular: E/m < 0, L/m > 0, backward, retrograde, with84

E/m = V +
L85

• Type 4 Circular: E/m > 0, L/m < 0, forward, retrograde, with86

E/m = V −L87

Note: In Type 1 and 2 orbits, the signs of E/m and L/m apply88

outside the event horizon. Inside the Cauchy horizon the signs may89

be different. (Table 3, Section 18.5).90

In addition to circular orbits, the present chapter studies a series of91

transfer orbits that take us from one circular orbit to another.92

Comment 1. Follow the Figures93

This chapter continues, even increases, the heavy use of algebra, but it has a94

simple central theme: how to insert a spaceship into an outer circular orbit, then95

how to transfer from this outer circular orbit to inner circular orbits. Pay attention96

to the figures, which illustrate and summarize these transitions.97

19.2 INSERT APPROACHING SPACESHIP INTO AN INITIAL CIRCULAR ORBIT98

Approach from far away and enter an initial circular orbit.99

A spaceship approaches the spinning black hole from a great distance. The100

captain chooses r = 20M for her initial circular orbit, near enough to the101

spinning black hole to begin observations. How does she manage this insertion?Insert incoming
spaceship into
initial circular orbit.

102

Analyze the following method: While still far from the black hole, the captain103

uses speed- and direction-changing rocket thrusts to put the spaceship into an104

unpowered orbit whose minimum r-value matches that of the desired initial105

circular orbit (Figure 1). At that minimum, when the spaceship moves106

tangentially for an instant, the captain fires a tangential rocket to slow down107

the spaceship to the speed in a stable circular orbit at that r-value.108

Comment 2. Both unpowered spaceship and unpowered probe = stone109

In the present chapter, our spaceship or probe sometimes blasts its rockets,110

sometimes remains unpowered. The unpowered spaceship or probe moves as a111

free stone moves. It is important not to confuse powered and unpowered112

motions of “spaceship” or “probe.”113

What values of map E and L lead a distant incoming unpowered spaceshipInsertion orbit 114

later to move tangentially for an instant at the chosen r = 20M (Figure 1)? To115

find out, manipulate equations (15) and (16) in Section 18.2 and introduce the116

condition dr/dτ = 0 (tangential motion), so that E = V ±L (r). The result is:117
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Box 2. How do we plot orbits of a stone?

This chapter asks and answers two questions about a stone’s
orbit: Question 1: How do we calculate the orbit of a stone?
Question 2: How do we plot that orbit? Question 2 is a central
subject of this chapter.

What is the precise definition of the stone’s orbit? Technically
An orbit is a parameterized worldline expressed in global
coordinates. Huh, what does that mean? Here’s an example:
Go for a walk, during which you glance occasionally at your
wristwatch. Later you announce, “When I arrived at the corner
of Main and Pleasant Streets, my wristwatch read seven.”
Wristwatch time is—literally!—the parameter by which you
report on your walk. Of course, the wristwatch time between
two locations depends on the path you choose between
them. If you go by way of Lester Street (for example), your
wristwatch will record a longer time of, say, ten minutes.

Every orbit plotted in this book is a parameterized worldline
expressed in global coordinates. In Doran coordinates, for
example, three functions T (τ), r(τ), and Φ(τ) give a
full description of the stone’s orbit, parameterized by its
wristwatch time τ . On our two-dimensional page we plot the
orbit on a two-dimensional slice, typically the [r,Φ] slice.

Restate the two questions that began this box:
Question 1: How do we obtain these orbit functions?
Question 2: How do we plot these orbit functions?
Answer Question 2 first.

Question 2: For reasons discussed in Section 19.5, we
translate r and Φ into Cartesian-like global coordinates X ≡
(r2+a2)1/2 cos Φ and Y ≡ (r2+a2)1/2 sin Φ—equations
(40) and (41). In these global coordinates the black hole
singularity r = 0 is a ring with (X2 + Y 2)1/2 = a.
The X and Y coordinates of an orbit are plotted as if
they were Cartesian (Figure 10). (Indeed, behind the scenes
we plot every orbit in this book using similar Cartesian-
like coordinates, including those plotted by the software
GRorbits.)

Back to Question 1, how to obtain functions r(τ) and
Φ(τ), is easy to answer in principle but more difficult
in practice. In principle, we simply integrate equations of
motion for dr/dτ and dΦ/dτ—equations (4) and (15) in
Section 18.2. In practice, the ± signs in these equations
make them difficult to solve. Instead, our plotting programs—
including GRorbits—use different equations of motion defined
for τ(T ), r(T ),Φ(T ), with global T -coordinate as the
parameter (Section 20.1). These equations do not contain ±
signs and are valid provided dτ/dT 6= 0. Full disclosure: We
do not display these equations, which are based on so-called
“Hamiltonian methods.”

Objection 1. Fraud! You just
admitted that neither the
calculation of orbits nor their plots
in this book use the equations of
motion you give us. Stop lying to
us.

You’re right—and wrong. A wise
manager lays out the general
strategy to reach a goal, shows an
in-principle path to that goal, then
delegates to others completion of
the project. Shall we take a side
trip into “Hamiltonian methods”
(whatever that means) to calculate
orbits from equations of motion
that do not have plus-or-minus
signs? We choose not to. Instead
we plunge ahead with our story of
diving into the spinning black hole.

E

m
= ω

L

m
± rH

R

(
1 +

L2

m2R2

)1/2

(tangential) (11)

Here the ± on the right side is the same as the superscript on V ±L (r). Write118

(11) as a quadratic equation in L/m:119 [
ω2 −

(
rH

R2

)2
](

L

m

)2

− 2ω
E

m

(
L

m

)
+

[(
E

m

)2

−
(
rH

R

)2
]

= 0 (12)
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r = 16M

r = 20M

r = 32M

a/M = (3/4)1/2

FIGURE 1 An insertion orbit with instantaneous tangential motion at r = 20M . At that
instant the spaceship fires a tangential rocket burst that reduces the local ring velocity to that
for a Type 1 circular orbit there (Figure 2).

This quadratic equation is in the standard form:120

A

(
L

m

)2

− 2B

(
L

m

)
+ C = 0 (13)

with the standard solution:121

L

m
=
B ± (B2 −AC)1/2

A
(14)

Use (8) to simplify coefficient A:122

A ≡ ω2 −
(
rH

R2

)2

= − 1

R2

(
1− 2M

r

)
(15)

Show that:123

B2 −AC =

(
rH

R2

)2
[(

E

m

)2

−
(

1− 2M

r

)]
(16)

With these substitutions, (14) yields the solution:124

L

m
=

−ωR2

(
E

m

)
± rH

[(
E

m

)2

−
(

1− 2M

r

)]1/2

1− 2M

r

(tangential) (17)

125
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E/m = 1.001
L/mM =
  4.7125

L/mM =
   6.6437

a/M= (3/4)1/2

r/M 7.5 20

Tangential
       rocket 
   thrust #1

1510 25 30

0.96

0.98

1.00

1.02

1.03

0.95

1

mVL
+

Type 1 stable
circular orbit

FIGURE 2 At the instant when the incoming spaceship moves tangentially at the turning
point r = 20M (Figure 1), it fires tangential rocket thrust #1 to change its map energy and map
angular momentum to those for a Type 1 stable circular orbit at that r.

You choose the value of r; then equation (17) gives you the value of L/m for126

which the free stone moves tangentially at this r. This equation is valid at all127

turning points and everywhere along a circular orbit.128

We want to place the incoming spaceship into a circular orbit at r = 20M .129

But Section 18.4 tells us that there are four Types of circular orbits at every130

r > rISCO. Which of these four circular orbit Types do we choose for our131

incoming spaceship?132

We choose the map energy of a stone to be positive, while map angular133

momentum can be either positive or negative. This limits circular orbits to134

either Type 1 or Type 4. Figure 4 in Section 18.4 shows the Type 1 circularChoose Type 1
at r = 20M .

135

orbit at r = 4M to be stable; similarly for the Type 1 orbit at r = 20M . In136

contrast, the Type 4 circular orbit is unstable—too dangerous for our137

astronauts. Therefore we choose the Type 1 (stable) circular orbit.138

Comment 3. Turning point symbols, a reminder139

Figures in this chapter use turning point symbols from Definition 2 and Figure 1140

in Section 18.3: The little open circle lies at the r-value of a stable circular orbit.141

The little filled circle lies at the r-value of an unstable circular orbit. The little142

half-filled circle lies at the r value of the half-stable innermost stable circular143

orbit, ISCO. Finally, the little filled diamond lies at a bounce point, where an144

incoming free stone “bounces” off the effective potential, reversing its145

r-component of motion.146

We want the insertion orbit to be tangential at the instant when theInsertion orbit
tangential at
r = 20M .

147

unpowered spaceship reaches r = 20M . What map values E and L of the148

distant spaceship lead to its later tangential motion at r = 20M? We149
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TABLE 19.1 Numerical values at r = 20M and r = rISCO for a/M = (3/4)1/2

Values of at r = 20M at rISCO = 2.537 331 95M

R2 400.825 000M2 7.779 225 58M2

R 20.020 614 4M 2.789 126 31M
2Ma/r 0.086 602 540 4M 0.682 626 807M
ω = 2Ma/(rR2) 2.160 607 26× 10−4M−1 0.087 749 969 5M−1

rH 18.993 419 9M 1.453 750 16M
rH/R 0.948 693 158 0.521 220 626
1− (2M/r) 0.9 0.211 770 458

(L/m)insert 6.643 724 95M ———
(E/m)insert 1.001 ———

vx,ring,insert 0.314 955 478 ———

(L/m)Type 1 4.712 495 61M 2.208 530 40M
(E/m)Type 1 0.975 638 130 0.858 636 605
vx,ring,Type 1 0.229 120 545 0.620 784 509

(L/m)transfer 2.678 687 02M 2.678 687 02M
(E/m)transfer 0.957 725 762 0.957 725 762

vx,ring,transfer 0.132 614 709 0.692 683 307

arbitrarily choose incoming spaceship map energy E/m = 1.001, as we did in150

Section 9.2. With this choice, equation (17) yields the value of (L/m)insert for151

the insertion orbit at r = 20M. Add this value to Table 19.1.152

DEFINITION 1. Subscripts in Table 19.1153

Here are definitions of the subscripts in Table 19.1. All of them describeSubscripts
in Table 19.1

154

the motion of a free stone or an unpowered spaceship or probe.155

insert: Quantities for a stone approaching from a great distance that leads it156

to move tangentially at the given r.157

Type: Quantities for a stone in a circular orbit of that Type at the given r158

(Section 18.4).159

transfer: Quantities for a stone in a transfer orbit between tangential motion at160

both of the given values of r.161

ring: Value of the quantity measured in the local inertial ring frame at that r.162

Comment 4. Significant digits163

In this chapter we analyze several unstable (knife-edge) circular orbits.164

Interactive software such as GRorbits requires accurate inputs to display the165

orbit of an unpowered probe that stays in an unstable circular orbit for more than166

one revolution. To avoid clutter, we relegate to tables most numbers that have167

many significant digits.168

The insertion maneuver shown in Figures 1 and 2 brings the unpoweredInsert into
circular orbit

169

spaceship to instantaneous tangential motion at r = 20M . Before it can move170

outward again, a tangential rocket thrust slows it down to the orbital speed of171
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a stable Type 1 circular orbit at that r-value. What change in tangential172

velocity must this rocket thrust provide? To answer this question, we must173

choose a local inertial frame in which to measure tangential velocities. Sections174

17.5 through 17.8 describe four different local inertial frames. Which one175

should we choose? Figure 5 in Section 17.5 shows that of our four local inertial176

frames, only the ring frame exists both outside the event horizon and inside177

the Cauchy horizon—locations where circular orbits also exist. Therefore we178

choose to measure the tangential velocity in the local ring frame.179

The ring frame is the local rest frame of a ring rider who circles the black180

hole with map angular speed:181

dΦ

dT
= ω ≡ 2Ma

rR2
(18)

where Box 1 defines both ω and R2. As with all local inertial frames, we define182

the ring frame so that local coordinate increments satisfy the flat spacetime183

metric,184

∆τ2 ≈ ∆t2ring −∆x2
ring −∆y2

ring (19)

where each local coordinate difference equals a linear combination of globalDoran metric 185

coordinate increments appearing in the global metric. The approximate Doran186

metric becomes:187

∆τ2 ≈
(

1− 2M

r̄

)
∆T 2 − 2

(
2Mr̄

r̄2 + a2

)1/2

∆T ∆r +
4Ma

r̄
∆T ∆Φ

− r̄
2 ∆r2

r̄2 + a2
+ 2a

(
2Mr̄

r̄2 + a2

)1/2

∆r∆Φ− R̄2∆Φ2 . (20)

We define ring frame coordinates by equations (77) to (80) of Section 17.8:Ring frame
coordinates

188

∆tring =
r̄H(r̄)

R(r̄)
∆T − β(r̄)

H(r̄)
∆r (21)

∆yring =
∆r

H(r̄)
(22)

∆xring = R(r̄) [∆Φ− ω(r̄)∆T ]− r̄ω(r̄)

β(r̄)
∆r (23)

where Box 1 defines β. You can substitute equations (21) through (23) into189

(19) to verify that the result matches (20).190

To complete the insertion of the incoming spaceship, we need to find the191

value of the rocket thrust required to put the ship into the Type 1 circular192

orbit at r = 20M . Appendix B has the general results. Here we use equation193

(94) for tangential motion.194

vx,ring =
px,ring

Ering
=
rH

R2

(
L

E − ωL

)
(24)
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TABLE 19.2 Rocket Thrusts in Instantaneous Initial Rest Frames (IIRF)

Thrust at r = ∆vx,IIRF Description mfinal/minitial

#1 20M ∆vx,IIRF1 = −0.092 510 766 2 into circular orbit 0.9113976
#2 20M ∆vx,IIRF2 = −0.099 530 031 6 into transfer orbit 0.9049635
#3 2.5373M ∆vx,IIRF3 = −0.126 139 806 into ISCO 0.8808964
#4 2.5373M ∆vx,IIRF4 = −0.545 847 072 into transfer to r1 0.5420231
#5 2.5373M ∆vx,IIRF5 = −0.402 281 976 into transfer to r2 0.4743450

NOTE: A first probe uses thrusts #2, #3, and #4 to carry it from the spaceship in orbit at
r = 20M to orbit r1 inside the Cauchy horizon. A second probe uses thrusts #2, #3, and

#5 to carry it from the spaceship to orbit r2 inside the Cauchy horizon.

What “change in velocity” must the spaceship rocket thrust provide in195

order to convert its “insertion velocity” at r = 20M to its “circular orbit196

velocity” at that r-value? Quotation marks in the preceding sentence warn usWhat insertion
velocity change?

197

that values of velocity and velocity change depend on the local inertial frame198

from which we measure them. We measure velocities vx,ring,insert and199

vx,ring,Type 1 with respect to the local inertial ring frame. But what does the200

spaceship captain care about the ring frame? Indeed, from her point of view a201

stone at rest in the ring frame can be lethal! All she cares about are answers to202

questions like, “Do I have enough rocket fuel left to escape from this black203

hole?” The answer to this question depends only on the change in velocity in204

the spaceship’s initial rest frame. In Chapter 9 we labeled the inertial frame in205

which the spaceship is initially at rest the Instantaneous Initial Rest206

Frame (IIRF) (Definition 2, Section 9.2). The present chapter describes fiveInstantaneous initial
rest frame IIRF

207

different IIRF velocity changes. Table 19.2 lists these velocity changes with the208

number 1 through 5 added to each subscript.209

A special relativity equation for addition of velocities—equation (54) of210

Section 1.13—allows us to use the two ring-frame velocities vx,ring,Type 1 and211

vx,ring,insert to calculate the required rocket-thrust velocity change ∆vx,IIRF1:212

∆vx,IIRF1 =
vx,ring,Type 1 − vx,ring,insert

1− vx,ring,Type 1vx,ring,insert
(25)

= −0.092 510 766 2 (place in circular orbit at r = 20M)

shown in Figure 2. Enter the numerical result in Table 19.2. This is the213

rocket-thrust velocity change (−27 734 kilometers/second) that places the214

incoming spaceship in the Type 1 circular orbit at r = 20M .215

216

QUERY 1. Why use special relativity here?217

Examine equation (25). Why do we assign the special relativity roles of vrel, vx,lab, and vx,rocket from218

equation (54) of Chapter 1 to vx,ring,insert, vx,ring,Type1, and ∆vx,IIRF1 in equation (25)?219

220

Every change in spaceship (or probe) velocity ∆vx,frame with respect to a221

local inertial frame requires a rocket burn. Every rocket burn uses fuel that222



January 12, 2018 08:46 OrbitingSpin180112v1 Sheet number 11 Page number 19-10 AW Physics Macros

19-10 Chapter 19 Orbiting the Spinning Black Hole

20.0

rISCO/M = 2.5373

a/M = (3/4)1/2

r/M

FIGURE 3 Transfer orbit in which the unpowered probe coasts from tangential motion at
rA = 20M to tangential motion at rB = rISCO and Φinsert = 350o. Figure 4 indicates the
required (single) tangential rocket thrust #2 to put the probe into this transfer orbit.

changes the net mass of the spaceship or probe itself from initial mass minitialUse the
photon rocket

223

to final mass mfinal. Query 2 recalls our analysis of the most efficient rocket,224

the so-called photon rocket, that combines matter and anti-matter and directs225

the resulting radiation out the back of the spaceship or probe. The final226

column of Table 19.2 lists the spaceship or probe mass ratio mfinal/minitial for227

each burn described in that table.228

229

QUERY 2. Mass ratios for transfer between circular orbits at r = 20M and rISCO.230

Suppose our probe uses a photon rocket defined in Exercise 2 of Section 9.8, with the resulting mass231

ratio: 232

mfinal

minitial
=
[
γ +

(
γ2 − 1

)1/2]−1

(photon rocket) (26)

where γ = [1− (∆vx,IIRF)2]−1/2 with ∆vx,IIRF from the third column in Table 19.2. Verify all entries in233

the right hand column of Table 19.2.234

235

19.3 TRANSFER FROM THE INITIAL CIRCULAR ORBIT TO ISCO, THE INNERMOST236

STABLE CIRCULAR ORBIT237

Balanced near the abyss238

The spaceship completes observations in the stable Type 1 circular orbit at239

r = 20M . The captain wants to make further observations from a smaller240

circular orbit. To take the entire spaceship down to this smaller orbit requires241
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a large amount of rocket fuel. Instead, the captain launches a small probe to242

the inner orbit to radio observations back to the mother ship.243

What r-value shall we choose for the inner circular orbit? Be bold! TakeTransfer to
circular orbit
at r = rISCO.

244

the probe all the way down to the Innermost (prograde) Stable Circular Orbit245

at rISCO = 2.5373M for the black hole with a/M = (3/4)1/2.246

Comment 5. ISCO as a limiting case247

The ISCO is hazardous because it’s a “half stable” circular orbit that may lead to248

a death spiral inward through the event horizon. In practice the inner circular249

orbit r-value needs to be slightly greater than rISCO to make it fully stable. In250

what follows we ignore this necessary small r-adjustment.251

Figures 3 and 4 illustrate the following two-step transfer process.252

ORBIT TRANSFER STEPS253

Step 1: A tangential rocket thrust254

Step 2: A second tangential rocket thrust255

Table 19.1 shows L and E values of our initial circular orbit at r = 20M .256

To carry out Step 1, we need to find two global quantities and one local257

quantity: map E and L of the transfer orbit plus rocket thrust #2 to put the258

probe at r = 20M into this transfer orbit. Calculate the global quantities E259

and L first.260

STEP 1A: CALCULATE (E/m)transfer AND (L/m)transfer OF THE TRANSFER ORBIT.261

Call the outer r-value of the transfer orbit rA for Above and the inner r-valueTransfer from
r = 20M to rISCO

262

rB for Below. At these turning points E = V ±L . From equation (15) in263

Section 18.2 for V +
L (r):264 (

E

m

)
transfer

=
V +

L (rA)

m
=
V +

L (rB)

m
(at turning points) (27)

We use the V +
L effective potential because the transfer orbit takes us from one265

Type 1 orbit at rA to another Type 1 orbit at rB. Substitute for V +
L from266

equation (16) in Section 18.2:267

(
E

m

)
transfer

= ωA

(
L

m

)
transfer

+
rAHA

RA

[
1 +

1

R2
A

(
L

m

)2

transfer

]1/2

(28)

= ωB

(
L

m

)
transfer

+
rBHB

RB

[
1 +

1

R2
B

(
L

m

)2

transfer

]1/2

(29)

Our task is to find the value of (L/m)transfer that makes the right side of (28)268

equal to the right side of (29). When this is accomplished, (28) yields the value269

of (E/m)transfer.270

The Section 19.3 analysis for rA = 20M gives us values of the coefficientsFind L/m of
transfer orbit.

271

on the right side of (28), already entered in the middle column of Table 19.1.272
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L/(mM) = 2.6787

transfer orbit

L/(mM) = 
2.2085

L/(mM) =
  4.71250 a/M= (3/4)1/2

r/M 
rA/M = 20

Tangential
 rocket 
 thrust #2

Tangential
 rocket 
 thrust #3

1510520 22

0.8

0.9

1.00

1.1
mVL

+(r)

rISCO/M =
rB/M = 2.5373

FIGURE 4 Rocket thrusts and resulting effective potential changes for transfer orbit
between the stable Type 1 circular orbit at rA = 20M and the half-stable Type 1 circular
orbit at rISCO = rB = 2.5373M (Figure 3).

Now calculate coefficients on the right side of (29) using rB = rISCO and enter273

results in the right column of Table 19.1.274

To find the value of (L/m)transfer, equate the right sides of (28) and (29).275

The result is a fourth order equation in (L/m)transfer, which has no276

straightforward algebraic solution. So we use a numerical software algorithm277

to find the value of (L/m)transfer that makes equal the right sides of (28) and278

(29). Substitute the resulting value of (L/m)transfer into equation (28) to find279

the value of (E/m)transfer on the left side. Enter resulting values of280

(L/m)transfer and (E/m)transfer in the right-hand column of Table 19.1. Now281

use equation (94) to calculate values of vx,ring,transfer at r = 20M and at rISCO;282

enter them in Table 19.1.283

STEP 1B: CALCULATE THE ROCKET THRUST VELOCITY CHANGE TO PUT THE PROBE284

INTO THE TRANSFER ORBIT.285

What change in velocity must the rocket thrust provide to put the probe into286

the transfer orbit from r = 20M to rISCO? This is our second tangential thrustIIRF2 transfer
velocity change

287

to be given in an instantaneous initial rest frame IIRF, this time with the288

number 2 added to the subscript. From Table 19.1 and equation (54) of289

Section 1.13:290
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∆vx,IIRF2 =
vx,ring,transfer − vx,ring,Type 1

1− vx,ring,Type 1vx,ring,transfer
(into transfer orbit . . . (30)

= −0.099 530 031 6 from r = 20M to rISCO)

shown as tangential rocket thrust #2 in Figure 4. Enter the numerical value in291

Table 19.2. This rocket thrust ring velocity change (−29 838292

kilometers/second) inserts the probe from the circular orbit at r = 20M into293

the transfer orbit that takes it down to instantaneous tangential motion at294

rISCO.295

Objection 2. In Figure 3 when the probe reaches the little half-black circle,296

will it automatically go into the circular orbit at rISCO?297

No, its map angular momentum is too high. Look at Figure 4. If there is no298

insertion rocket thrust, the probe will simply move back and forth along the299

“transfer orbit” line between rISCO and r = 20M . Step 2 describes the300

rocket-thrust insertion into ISCO.301

STEP 2: ROCKET THRUST TO INSERT PROBE INTO ISCO302

The probe that follows the transfer orbit from r = 20M arrives for an instantInsert into
rISCO orbit.

303

at global coordinates r = rISCO and some value of Φ different from zero304

(Figure 3). At that instant it has tangential velocity vx,ring,transfer measured in305

local ring coordinates, which is too high for a circular orbit at rISCO. Equation306

(94) gives us this tangential ring velocity, calculated from selected values in307

the right column of Table 19.1. Enter the result in the lower right hand308

position in this table.309

Now we want to change this tangential transfer velocity to the velocity310

vx,ring,Type 1 of the circular orbit at rISCO. Use equation (94) and enter the311

result in Table 19.1.312

Again we must calculate the change in velocity the rocket thrust must313

provide to put the probe into the circular orbit at rISCO. We measure this314

third tangential change—call it ∆vx,IIRF3 with the number 3 added to theIIRF3 insertion
velocity change

315

subscript—with respect to the probe’s instantaneous initial rest frame. From316

Table 19.1 and equation (54) of Section 1.13:317

∆vx,IIRF3 =
vx,ring,Type 1 − vx,ring,transfer

1− vx,ring,Type 1vx,ring,transfer
(31)

= −0.126 139 806 (inserts into circular orbit at rISCO)

shown as tangential rocket thrust #3 in Figure 4. Enter the numerical result318

in Table 19.2. This velocity reduction (−37 815 kilometers/second) installs the319

probe into the Type 1 innermost stable circular orbit at rISCO.320
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Figure 4 shows that the transfer between r = 20M and rISCO = 2.5373M321

requires two rocket thrusts, #2 and #3, with values listed in Table 19.2, each322

with its mass ratio given in the last column of that table. Thrust #2 results inRocket mass ratios 323

mass ratio (mfinal/minitial)#2. The final probe mass of thrust #2 becomes the324

initial probe mass of thrust #3 in the mass ratio (mfinal/minitial)#3. After325

both thrusts take place, the net result is that the probe arrives at rISCO with326

the net mass ratio equal to the product of the two mass ratios in the right327

hand column of Table 19.2:328 (
mfinal

minitial

)
#2

(
mfinal

minitial

)
#3

= 0.9049635× 0.8808964 = 0.7971791 (32)

This completes our analysis of the transfer between the initial circular329

orbit at r = 20M and the ISCO at rISCO = 2.5373M .330

19.4 ROCKET THRUSTS TO TRANSFER FROM ISCO TO CIRCULAR ORBITS INSIDE331

THE CAUCHY HORIZON332

Teetering next to the singularity333

The probe carries out observations at rISCO. What’s next? The captain334

examines two alternatives: observations from one of two unstable circularOrbits inside the
Cauchy horizon!

335

orbits inside the Cauchy horizon. We analyze both of theses alternatives.336

Objection 3. Either choice is stupid! Nothing comes back from inside the337

event horizon, not even a radio signal. So you cannot receive a report of338

what happens there. You are wasting resources to place the probe in any339

orbit inside the event horizon.340

Hamlet cautions us: ”There are more things in heaven and earth, Horatio,341

than are dreamt of in your philosophy.” Chapter 21 contains surprises342

about what rocket-blast maneuvers inside the event horizon can343

accomplish. In the meantime we can still predict what the diver inside the344

the Cauchy horizon experiences, as we did in Section 7.8 for the (doomed!)345

diver inside the event horizon of the non-spinning black hole, even though346

neither diver can report these observations to us on the outside.347

This is the first of two sections on the probe transfer from the ISCO to348

orbits inside the Cauchy horizon. The present section derives rocket thrusts for349

transfers, summarized in Table 19.2. The following Section 19.5 plots the350

transfer orbits themselves. Why a separate section on these orbit plots?351

Because close to the singularity spacetime curvature is so large, and352

coordinates become so stretched, that plotting any orbit requires great care.353

Start with a strategic overview: To install the probe into a stable circular354

orbit (Sections 19.2 and 19.3) requires a final rocket thrust to drop the probe’s355

map energy into the minimum of the effective potential at that r (Figures 2356

and 4). In contrast, we need no such final rocket thrust to install a probe intoNo final
insertion
rocket thrust

357
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TABLE 19.3 Circular orbits at rISCO, r1, r2 and some transfer orbits between
them

Circular orbits rISCO =
2.537 331 95M

Type 1
outside rEH

r1 =
0.170 763 678M

Type 1
inside rCH

r2 =
0.353 627 974M

Type 2
inside rCH

L/m 2.208 530 40M 0.318 183 046M 0.849 088 850M

E/m 0.858 636 605 0.552 521 8506 0.619 345 540
R 2.789 126 311 3.092 447 193 2.262 034 177
ω 0.087 749 969 5 M−1 1.060 621 78 M−1 0.957 228 652 M−1

rH/R2 0.186 875 948M−1 0.069 175 194 1M−1 0.080 055 930 0M−1

vx,ring,circle 0.620 784 511 0.102 350 039 −0.351 423 150

Transfer orbits From rISCO to r1 to r2

L/m —– 0.318 183 046M 0.849 088 850M
E/m —– 0.552 521 851 0.619 345 540
vx,ring,transfer 0.113 344 665 0.102 350 039 —–
vx,ring,transfer 0.291 232 033 —– −0.351 423 150

an unstable circular orbit such as those inside the Cauchy horizon. Why not?358

Because the transfer orbit is already at this maximum or minimum; the probe359

simply coasts onto that maximum or minimum (Figures 5 and 6). So we need360

only a single rocket thrust at rISCO to change map energy and map angular361

momentum to that of a circular orbit inside the Cauchy horizon. Now the362

details.363

Transfer from rISCO to r1: As a first alternative, transfer the probe fromTransfer from
rISCO to r1

364

the rISCO orbit to the Type 1 unstable circular orbit at r1 inside the Cauchy365

horizon (Figure 5). To do this, use a tangential rocket thrust that slows the366

probe so that it enters the transfer orbit in which it coasts directly into the367

unstable circular orbit at r1.368

How do we find values of L and E for this coasting orbit? Look again at369

equations (28) and (29). On the right side of (28), we know the value of rA370

(the r-value of the ISCO), but we do not know the value of (L/m)transfer. On371

the right side of (29), we do not know values of either rB or (L/m)transfer.Find L and E
for transfer

372

Thus (29) has two unknowns, namely (L/m)transfer and rB = r1. However, we373

can find a second equation for these two unknowns, because we know that the374

circular orbit at rB is Type 1, for which equation (31) in Section 18.4 takes the375

form376 (
L

m

)
Type 1

=

(
M

rB

)1/2
r2
B + a2 − 2a(MrB)1/2[

r2
B − 3MrB + 2a(MrB)1/2

]1/2 (circular orbit)(33)

Substitute this expression for (L/m) into equations (28) and (29), then equate377

the right sides of these two equations. The result is a (complicated!) equation378
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Type 1 E/m = 0.5525
transfer orbit

L/(mM) = 
2.2085

L/(mM) =
  0.31818

a/M= (3/4)1/2

r/M 

Tangential
 rocket 
 thrust #4

2 54 876310
0

0.5

1.00

0.75

0.25

rISCO=
2.5373M

    r1 =
0.17076M

e

VL/m

FIGURE 5 Tangential rocket thrust followed by coasting transfer orbit between ISCO
(half-stable) prograde circular orbit and the Type 1 unstable circular at r1 = 0.17076M , the
maximum of the effective potential inside the Cauchy horizon.

in the single unknown rB. Again use a numerical software algorithm to find379

the value of rB and enter the result in the third column of Table 19.3.380

381

QUERY 3. Identical table entries382

Look at the two right-hand columns in Table 19.3, the ones labeled r1 and r2. Why are so many entries383

for circular orbits inside the Cauchy horizon the same as the corresponding entries for the transfer384

orbits? 385

386

Numerical values in Table 19.3 allow us to calculate the tangential387

vx,ring,transfer in (94) for the transfer orbit that starts at rISCO and ends at r1388

(Figure 5). The result is vx,ring,transfer =0.113 344 264 at rISCO, entered in389

Table 19.3.390

Once again we must calculate the change in velocity the rocket thrust391

provides to put the probe into the transfer orbit at rISCO. Measure thisIIRF4 transfer
velocity change

392

change—call it ∆vx,IIRF4, with the number 4 added to the subscript—with393

respect to the instantaneous initial rest frame. From Tables 1 and 3 plus394

equation (54) of Section 1.13:395
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∆vx,IIRF4 =
vx,ring,transfer − vx,ring,Type 1

1− vx,ring,Type 1vx,ring,transfer
(into transfer orbit (34)

= −0.545 847 072 from rISCO to r1)

shown in Figure 5. Enter the numerical value in Table 19.2. This change in396

rocket velocity (−163 641 kilometers/second) puts the probe into a transfer397

orbit between rISCO and r1. Figure 5 shows that the probe then coasts into the398

unstable circular orbit at r1 without the need for an insertion rocket thrust.399

Objection 4. Unbelievable! Are you really going to demand that a400

human-built rocket engine change the velocity of a probe by401

∆v = 0.545 847—more than half the speed of light? Get real!402

Even today we use multi-stage rockets to achieve large velocity changes.403

Still, mass ratios to achieve a speed reduction c/2—and even more the404

overall mass ratios in Items A and B of Query 4—require the resources of405

an advanced civilization, defined as one that can achieve any technical406

goal not forbidden by the laws of physics. Photon rocket technology may407

be in our future!408

Transfer from rISCO to r2: As a second alternative, the spaceship captain409

transfers the probe from the ISCO to the Type 2 unstable circular orbit at r2,410

a minimum of the effective potential inside the Cauchy horizon. Figure 6411

shows this maneuver. A tangential rocket thrust drops the map angularTransfer from
rISCO to r2

412

momentum of the probe to L/m = 0.849 088 850M . Then the probe coasts413

inward to the minimum of the effective potential at r2 inside the Cauchy414

horizon, no insertion rocket thrust required.415

The change in velocity the rocket thrust provides puts the probe into the416

transfer orbit at rISCO. We measure this change—call it ∆vx,IIRF5, with theIIRF5 transfer
velocity change

417

number 5 added to the subscript—with respect to the instantaneous initial418

rest frame. From Tables 1 and 3 plus equation (54) of Section 1.13:419

∆vx,IIRF5 =
vx,ring,transfer − vx,ring,Type 1

1− vx,ring,Type 1vx,ring,transfer
(into transfer orbit (35)

= −0.402 281 976 from rISCO to r2)

labeled “Tangential rocket thrust #5” in Figure 6. Enter the numerical result420

in Table 19.2. This change in velocity (−120 601 kilometers/second) puts the421

probe into a transfer orbit toward the unstable Type 2 circular orbit at r2,422

shown in Figure 6. When the probe arrives there, it already has the map423

energy and map angular momentum of that unstable circular orbit, so does424

not require an insertion rocket thrust.425

Recall our overall strategy: Thrust #1 takes the entire spaceship into the426

stable circular orbit at r = 20M . The spaceship then launches two separate427
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     r2 =
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FIGURE 6 Transfer from Type 1 rISCO circular orbit to Type 2 unstable circular orbit at r2,
the minimum of the effective potential inside the Cauchy horizon.

probes. The first probe uses the sequence of thrusts #2, #3, and #4 to enter428

the unstable circular orbit at r1 inside the Cauchy horizon. The second probe429

uses the sequence of thrusts #2, #3, and #5 to enter the unstable circular430

orbit at r2 inside the Cauchy horizon.431

432

QUERY 4. Net mass ratios for transfer between circular orbit rISCO and circular orbits433

inside the Cauchy horizon.434

A. Analyze the entire sequence of thrusts #2, #3, and #4 that carry the first probe from the435

spaceship to the unstable circular orbit at r1 inside the Cauchy horizon. What is the net mass436

ratio for this sequence of thrusts. [My answer: 0.4320895]437

B. Next analyze the sequence of thrusts #2, #3, and #5 that carry the second probe from the438

spaceship to the unstable circular orbit at r2 inside the Cauchy horizon. What is the net mass439

ratio for this sequence of thrusts. [My answer: 0.3781379].440

441
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(r/M)cos Φ

(r/M)sin Φ

1 20.5 1.5 2.5 2.8

0.5

1.5

1

0

a/M= (3/4)1/2

FIGURE 7 First plot of the transfer orbit between the circular ISCO and the circular
orbit at r1 = 0.17076M inside the Cauchy horizon (Figure 5). This plot of (r/M) sin Φ vs.
(r/M) cos Φ is the one we usually call an “orbit.” This plot is totally correct, but near the
singularity it misrepresents the geometry of spacetime.

19.5 PLOTTING TRANSFER ORBITS FROM ISCO TO CIRCULAR ORBITS INSIDE442

THE CAUCHY HORIZON443

One transfer, one failure444

This section plots transfer orbits from the innermost stable circular orbit at445

rISCO to two different unstable circular orbits inside the Cauchy horizon: one446

at r1, the maximum of an effective potential, the other at r2, the minimum of447

another effective potential. For a/M = (3/4)1/2, the circular orbit atTWO circular orbits
inside the Cauchy
horizon

448

r1 = 0.1707M lies very close to the singularity. Spacetime there is so radically449

warped that no global coordinate system—even Doran coordinates—gives us a450

picture that conforms to our everyday intuition. In what follows we do the best451

we can to find orbit plots that inform our intuition about this strange world.452

Figure 7 shows a first orbit plot of the transfer from rISCO to r1. This plot453

seems straightforward, with the singularity at r → 0 as expected. But a closer454

look reveals that this first plot fails to correctly represent spacetime near the455

singularity.456

To see this, look again at the Doran global metric, equation (4) in Section457

17.2 when dT = 0, that is, on an [r,Φ] slice. Then the squared differential of458

measured distance dσ2 expressed in Doran coordinates becomes:459

dσ2 =

[(
r2

r2 + a2

)1/2

dr − a
(

2M

r

)1/2

dΦ

]2

+
(
r2 + a2

)
dΦ2 (36)

0 < r <∞, 0 ≤ Φ < 2π, dT = 0, on an [r,Φ] slice
460
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What happens to dσ—the differential of a measurable quantity—as r → 0?461

The final dΦ2 term on the right side behaves reasonably; it goes to a2dΦ2 as462

r → 0. In contrast, the first dΦ term blows up as r → 0.463

However a little rearrangement simplifies this metric and allows us toSingularity
not a point.

464

predict a measurable result. Expand metric (36) and collect terms.465

dσ2 =
r2

r2 + a2
dr2 − 2a

(
2Mr

r2 + a2

)1/2

drdΦ +

(
r2 + a2 +

2Ma2

r

)
dΦ2 (37)

dσ2 =
r2

r2 + a2
dr2 − 2a

(
2Mr

r2 + a2

)1/2

drdΦ +R2dΦ2 (38)

0 < r <∞, 0 ≤ Φ < 2π, dT = 0, on an [r,Φ] slice

The step between (37) and (38) applies the definition of R2 in Box 1.466

Now, let r become very small and see what the singularity looks like. The467

first two terms in global metrics (37) and (38) become negligibly small and the468

third terms become:469

dσ2 → R2dΦ2 → a2

(
1 +

2M

r

)
dΦ2 (r � a ≤M) (39)

As the value of r continues to decrease, the coefficient of dΦ2 increases. Two470

locations with the same small r-value but different Φ lie along a circular arc ofSingularity has
the topology of
a circle.

471

length R∆Φ. And σ, remember, is a measurable quantity. The singularity of a472

spinning black hole has the topology of a circle, not a point! In the limit of473

small r, we call the circular topology a ring singularity.474

Now ask: Is there a way to plot transfer orbits so that the measurable475

result in (39) becomes apparent? Yes: Use R as the separation from the origin.476

Figure 8 shows such a plot. As we now expect from Figure 7, the probe starts477

moving inward but its trajectory soon deflects outward because R2 increases478

as r/(2M) decreases. R begins at R = 2.7891M and ends at R = 3.0924M .479

Yet Figure 5 clearly shows that during this transfer the probe moves steadily480

inward from r = 2.5373M to r = 0.1708M . A paradox!481

To resolve this paradox, note that R is double-valued (Figure 1 in Section482

17.2), and that as r → 0, R→∞. Conclusion: Using R to plot the orbit483

creates a bigger problem than it solves.484

Try plotting the same orbit in global map coordinates r and Φ, as in485

Figure 9. In this plot the global map angle Φ increases from zero at rISCO to a486

value that increases without limit at r1 as the probe continues to circle there.487

This plot is correct but tells us nothing that we do not already know from488

Figure 7. And it is ugly!489

So far we have failed to discover how to plot the transfer orbit between490

rISCO and r1 in such a way that it correctly displays the singularity as a circle,New global
coordinates:
X and Y

491

while preserving inward motion. To accomplish this, we choose a new radial492

global coordinate that does not blow up as r → 0, but correctly plots a circle493

there. This radial coordinate is (r2 + a2)1/2, shown in Figure 10. The global494

Cartesian coordinates become:495
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(R/M)sin Φ

(R/M)cos Φ

3.52.51.5

3.5

0

2.5

1.5

0.5

0.5

a/M= (3/4)1/2

FIGURE 8 Second orbit plot of the transfer between ISCO and the circular orbit at r1 =
0.17076M inside the Cauchy horizon (Figure 5). This plot of (R/M) sin Φ vs. (R/M) cos Φ
shows a strange coordinate behavior: The probe moves inward toward r = 0, yet arrives in a
circular orbit of larger R than it started. See entries for R in Table 19.3.

X ≡ (r2 + a2)1/2 cos Φ (global coordinates on [r,Φ] slice) (40)

Y ≡ (r2 + a2)1/2 sin Φ (41)

X2 + Y 2 > a2, 0 < r <∞, 0 ≤ Φ < 2π (42)
496

Do global coordinates (40) and (41) correctly describe spacetime around a497

spinning black hole? They do, because they satisfy the conditions for a good498

coordinate system (Section 5.9). As we shall see, X and Y are good499

coordinates for much, but not all, of spacetime.500

Figure 10 plots the transfer orbit in global X,Y coordinates.501

This book often employs the interactive software program GRorbits, whichGRorbits software
uses [X,Y ]
coordinates.

502

provides plots for many of our figures. Now it can be told: GRorbits makes its503

plots using X and Y coordinates.504

Objection 5. What’s inside the blank disk at the center of Figure 10? The505

range of coordinates given in expressions (42) does not include the inside506

of this disk. Where can I find this inside region?507
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r/M

Φ

21 30
0

2.51.50.5

rISCO/M 
= 2.5373

r1/M = 
0.1708

5π/4

π

π/2

π/4

3π/4

a/M = (3/4)1/2

FIGURE 9 Second “orbit plot” of the transfer between ISCO and the circular orbit at r1 =
0.17076M inside the Cauchy horizon (Figure 5). This plot of Φ vs. r is not one we usually call
an “orbit,” but is perfectly valid as such.

There is no region inside the disk in the equatorial plane of the spinning508

black hole. Equations (40) through (42) show that points inside the ring at509

r = 0 have imaginary r-values, which is impossible.510

Comment 6. Ring?511

Except for gravitational waves (Chapter 16), almost all global metrics and global512

orbits in this book are restricted to the [r,Φ] slice. Therefore we can say nothing513

about the topology of any three-dimensional surface—perhaps a sphere or a514

cylinder—that might intersect the X,Y surface as our ring. However, advanced515

treatments show that the singularity of the Doran metric is confined to the [r,Φ]516

slice. It’s a ring, not a sphere or cylinder. Moreover, we can access the central517

disk by traveling out of the equatorial plane to pass over or under the sigularity,518

as described in Chapter 21.519

Objection 6. The plot in which Figure: 7, 8, 9, or 10, is the correct one for520

the transfer orbit between circular orbits at rISCO and r1?521

Every one of these orbits is equally valid and correct. Every one is522

distorted, because the geometry of spacetime near the spinning black hole523

is radically different from the flat space of our everyday lives. We select524

plots such as those in Figures 7 and 10 that display those features of the525
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FIGURE 10 Fourth “orbit plot” of the transfer between ISCO and the circular orbit at r1 =
0.17076M inside the Cauchy horizon (Figure 5). This plot uses global coordinates X,Y .
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FIGURE 11 Unsuccessful attempt to plot the X,Y transfer orbit from rISCO to the
minimum of the effective potential at r2 = 0.353 6M (Figure 6). The descending orbit shown
here gets stuck at the Cauchy horizon and does not make it in to r2. Reason: global Doran
coordinates are not good everywhere. Chapter 21 presents new global coordinates that solve
this problem.

geometry near a spinning black hole most likely to help us develop a useful526

intuition and ability to make predictions.527
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So much for the transfer between rISCO to r2 = 0.17076M . To complete528

our exploration inside the black hole, we also want to transfer from rISCO to529

r2 = 0.35363M at an effective potential minimum (Figure 6). This should beHangup at the
Cauchy horizon

530

easier because r2 > r1 and spacetime is less warped at r2, right? Figure 11531

shows an attempt to make this plot. Oops! In this plot the probe does not532

move inward past the Cauchy horizon at rCH = 0.5M , shown in the figure at533

XCH = (r2
CH + a2)1/2 = (1/4 + 3/4)1/2)M = M .534

Question: Why—in Figure 11—does the probe not pass inward through535

the Cauchy horizon? Beginning of an answer: We have run into this kind of536

problem before. Recall that the raindrop did not cross the event horizon of the537

non-spinning black hole when described in Schwarzschild global coordinatesOur history of
bad global
coordinates

538

(Section 6.4). Reason: The Schwarzschild global t-coordinate is bad at the539

event horizon. Solution: Change to global rain coordinates (Section 7.5), whose540

T -coordinate ushers the raindrop inward through the event horizon to its541

doom. For the spinning black hole we started with Doran coordinates, chosen542

because they are good across the event horizon. But that is not enough to543

ensure that they are always good across the Cauchy horizon. What other544

coordinates are available?545

Comment 7. Boyer-Lindquist t-coordinate bad at the event horizon546

The exercises of Chapter 17 introduce the Boyer-Lindquist global coordinates547

for the spinning black hole, whose global metric is simpler than the Doran global548

metric. However, the Boyer-Lindquist t-coordinate is bad at the event horizon,549

where it increases without limit along the worldline of the raindrop.550

Doran global coordinates smoothly conduct our raindrop inward across551

the event horizon of the spinning black hole and all the way to the circular552

orbit at r1, but fail to allow penetration of the Cauchy horizon on the way toEven Doran
coordinates bad.

553

the different circular orbit at r2. Why are these two results different? Doran554

coordinates are okay for transfer to the circular orbit at r1, but—it turns555

out—both T and Φ are bad at the Cauchy horizon for transfer to the circular556

orbit at r2 (though they are good for transfer to r1!). Figure 11 displays the557

problem with Φ: As r → rCH, then Φ→∞. To cross the Cauchy horizon we558

sometimes need different global coordinates. Chapter 21 explains why and559

shows us where new global coordinates can take us.560

Objection 7. Is Nature fundamentally “bad”’, or are you incompetent?561

Nature is not bad. Mathematicians have proved that, for many curved562

spaces, it is impossible to cover the entire space with a single global563

coordinate system that is free of singularities. For these curved spaces564

there is no completely “good” coordinate system. The simplest example is565

a sphere: Earth’s latitude and longitude coordinates are singular at the566

poles (Section 2.3), even though, for a non-spinning sphere, the poles are567

no different from any other points on the sphere. General relativity is568

difficult not because the mathematics is hard, but because we have to569

unlearn so many everyday assumptions that are false when applied to570
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curved spacetime. One of these everyday false assumptions is the571

existence of a single global coordinate system that works everywhere.572

To complete the Exploration Program for the Spinning Black Hole573

(Section 19.1), tip the probe off either unstable circular orbit inside theDispose of
the probe.

574

Cauchy horizon, so that it spirals into the singularity. Good job!575

19.6 ORBITING SUMMARY576

Orbit descriptions577

1. Effective potential plots (Figures 2, 4, 5, and 6) show us what orbits578

exist and help us to plot the transfer and circular orbits of an579

exploration program.580

2. We must plot orbits using global coordinates, even though it is difficult581

to plot orbits in a way that is faithful to the twisted topology near the582

spinning black hole.583

3. Sometimes one global coordinate system is not enough to cover the584

entire trajectory. It can take us only to the edge of a map; to go beyond585

that map, we need new global coordinates and a new map (Sections 2.5586

and 7.5).587

4. Doran global coordinates are effective across the event horizon but not588

necessarily through the Cauchy horizon. Also, Doran coordinates589

require help to show the topology of spacetime near the singularity,590

where a more revealing plot uses (r2 + a2)1/2 rather than r or R.591

5. Preview: Chapter 21 shows that the reason why Doran coordinates592

sometimes fail at the Cauchy horizon is that there are actually two593

different Cauchy horizons at the same rCH = M − (M2 − a2)1/2, called594

the Cauchy horizon and the Cauchy anti-horizon.595

19.7 THE PENROSE PROCESS MILKS ENERGY FROM THE SPINNING BLACK HOLE596

Harness the black hole spin to hurl a stone outward.597

The spinning black hole has an obvious motion that distinguishes it from the598

non-spinning black hole: it spins! Everywhere in physics, motion implies599

energy. Can we extract black hole spin energy for use? We know that an600

observer measures and extracts energy only in a local inertial frame. Can we601

find a local inertial frame in which the the black hole spin affects the measured602

energy of a stone, thus making it available for use? Roger Penrose found a way603

to harness the black hole spin as a local frame energy, then to send this energy604

to a distant observer. The present section examines what has come to be605

known as the Penrose process.606

Here are three physical processes in which energy does not appear to be607

conserved, but it is. We shall find that each process is an example of theThree Penrose
processes: energy
conserved

608

Penrose process.609
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First process: A spaceship crosses inward through the static limit610

(rS = 2M) with map energy E/m < 1, a value less than the minimum escape611

energy E/m = 1. Even if its rockets are not powerful enough to increase E/m612

above the value one, a clever ejection of ballast allows it to escape.613

Second process: A distant observer launches a stone toward a black hole.614

Over the course of a few weeks, the observer records outgoing photons followed615

by a high-speed outgoing stone. He measures the combined energy of the616

photons and outgoing stone to exceed that of the original stone.617

Third process: A uranium atom with E/m < 1 radioactively decays while618

located between the static limit and the event horizon. A distant observer619

measures a thorium nucleus pass outward with greater total energy than the620

mass of the initial uranium atom.621

In all three processes, an energetic body whizzes past a distant observer.622

To compensate for this emitted energy, the black hole swallows a second body623

(ballast, photons, or decay fragments) with map energy E < 0. In each of624

these Penrose processes the black hole mass decreases, along with its spin625

parameter a.626

Begin with the third process, the spontaneous decay of a uranium nucleus627

into an alpha particle plus a thorium nucleus. Label this process as b→ c+ d:Third process:
uranium nucleus
decays

628

235U→ 4He + 231Th (43)

b→ c + d (labels) (44)

This reaction conserves the total energy and total momentum observed inConservation of
energy-momentum
in ring frame

629

every local inertial frame. We choose the ring frame. The ring frame observer630

verifies the following conservation statements:631

Ering,b = Ering,c + Ering,d (45)

px,ring,b = px,ring,c + px,ring,d (46)

py,ring,b = py,ring,c + py,ring,d (47)

We do not assume that the initial uranium nucleus (label b) is at rest in the632

ring frame; in general Ering,b > mb with non-zero linear momentum633

components px,ring,b = vx,ring,bEring,b and py,ring,b = vy,ring,bEring,b, and similar634

equations apply for each of the two daughter fragments.635

Equations (45) through (47), combined with equations (96) and (97) in636

Appendix B imply that637

Eb = Ec + Ed (map quantities) (48)

Lb = Lc + Ld (49)

Surprise! Even though map energy and map angular momentum are notSurprise conservation
of map quantities

638

directly measured, they are conserved in the sense that when a uranium639

nucleus splits in two, the total map E and total map angular momentum L are640

each unchanged. This remarkable fact shows how map angular momentum and641
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map energy can act as (conserved!) proxies for measurable quantities, as642

Section 18.7 anticipated.643

To milk energy from the spinning black hole, a successful Penrose process644

requires that Ed > Eb; therefore Ec < 0 in equation (48). We shall see thatMore map energy
out than in

645

this is possible only for r < rS = 2M , and then only if Lc < 0 (retrograde646

motion). Particle d recoils with increased map energy and map angular647

momentum: Ed > Eb and Ld > Lb. This is surprising, because a spontaneous648

decay that takes place in the ring frame always removes energy:649

Ed = Eb − Ec > Eb (50)

Ering,d = Ering,b − Ering,c < Ering,b (51)

The map energy increases while the ring frame energy decreases!650

The Penrose process takes advantage of the fact—shown in equation651

(91)—that ring frame energy is proportional to E − ωL, not map energy E652

alone. Consequently, even if E increases, Ering can decrease if L increases:653

Lb − Lc = Ld must be sufficiently positive. The process works only if ω > 0.654

Spacetime curvature “makes a contribution” to ring frame energy through the655

negative spin factor −ω in equation (91). When map angular momentum isDifference milked
from spin

656

also negative, L < 0, then spacetime curvature increases the ring frame energy:657

E − ωL > E. The stone draws from spacetime curvature through the term658

−ωL to create a daughter nucleus (thorium) that escapes with more map659

energy than the initial nucleus (uranium) had when it arrived.660

Objection 8. How can a stone “draw from spacetime curvature” to661

increase its map energy? Never before have we equated curvature with662

energy.663

Curvature is not energy, just as map energy is not measured energy. Map664

energy depends on the metric, and therefore on spacetime curvature, even665

though measured energy is independent of the metric. Measurements are666

local, curvature is global. But global affects local!667

Next look at the second process, in which a stone of mass mb withStone decays into
light flash plus
recoiling stone

668

(r, Lb, Eb) emits a light flash c with ring frame momentum components669

(px,ring,c, py,ring,c). The ring-frame energy of the light flash is670

Ering,c = (p2
x,ring,c + p2

y,ring,c)
1/2. We want to find the mass, map angular671

momentum, and map energy of the stone—labeled d—that recoils from its672

backward emission of light. Note that md < mb because, in the rest frame of b,673

the light flash carries away energy. To determine the trajectory of stone d674

following the emission, we need both md and Ed because the motion depends675

on Ed/md and not on Ed alone.676

Let φring,c be the angle of photon momentum in the ring frame, defined so677

that678
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px,ring,c = Ering,c cosφring,c (light) (52)

py,ring,c = Ering,c sinφring,c (light) (53)

(For tangential retrograde motion, φring,c = π.) Equations (48), (96), and (97)679

lead to the following equations (54) and (55). Equation (56) for md derives680

from equations (52) through (55) when substituted into the special relativity681

equations m2
d = E2

ring,d − p2
ring,d and 0 = E2

ring,c − p2
ring,c.682

Ld = Lb − Lc = Lb −REring,c cosφring,c (54)

Ed = Eb − Ec = Eb − Ering,c

(
rH

R
+ ωR cosφring,c

)
(55)

md =
[
m2
b + 2Ering,c (−Ering,b + px,ring,b cosφring,c + py,ring,b sinφring,c)

]1/2
(56)

Substitute equations (54) and (55) into equations (91) and (92) to give:683

Ering,b =
R

rH
(Eb − ωLb) (57)

px,ring,b =
Lb
R

(58)

py,ring,b = ±
(
E2

ring,b −m2
b − p2

x,ring,b

)1/2
(59)

We have written (Ld, Ed,md) in terms of (r,mb, Lb, Eb, Ering,c, φring,c) and can684

now determine under what conditions Ed > Eb.685

The simplest case to analyze is for stone b to be in a tangential prograde686

circular orbit, px,ring,b > 0 and py,ring,b = 0. In this case, Ed is maximized andSimplest case 687

md is minimized when φring,c = π, that is when the light flash is emitted688

tangentially in the reverse (retrograde) direction.689

Objection 9. You said the stone was launched toward the black hole.690

That’s not a circular orbit!691

The stone can be deflected into a circular orbit as it approaches the black692

hole, for example by encountering an accretion disk. The stone slowly693

loses energy to friction in the disk. After spiralling inward, it will be694

conveniently in a nearly circular prograde orbit inside the static limit from695

which the Penrose process can begin.696

We choose initial conditions (rb, Lb/mb, Eb/mb). The use of Lb/mb and697

Eb/mb as parameters instead of Lb and Eb generalizes the results to a stone of698

any mass mb. All of the unknowns in equations (54) and (55) are now fixedFraction q of
stone’s mass
becomes photon

699

except Ering,c/mb, which we rewrite for the case in which the fraction q of the700

mass mb is emitted as a photon:701
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Ering,c

mb
=
EIIRF,c

mb

(
1− vx,ring,b

1 + vx,ring,b

)1/2

≡ q
(

1− vx,ring,b

1 + vx,ring,b

)1/2

(60)

where EIIRF,c is the energy of photon c in the initial rest frame (the rest frame702

of b), and we have used the Doppler formula of special relativity, equation (48)703

in Section 1.13. The ratio q on the right side of (60) can also be expressed704

using (56) with φring,c = π in terms of the final/initial mass ratio of the stone:705

m2
d = m2

b − 2Ering,c (Ering,b + px,ring,b) (61)

1− m2
d

m2
b

= 2
Ering,c

mb

Ering,b

mb

(
1 +

px,ring,b

Ering,b

)
1

2

(
1− m2

d

m2
b

)
=
Ering,c

mb

Ering,b

mb
(1 + vx,ring,b) (62)

From special relativity:706

Ering,b

mb
=
(
1− v2

ring,b

)−1/2
= (1− vring,b)

−1/2
(1 + vring,b)

−1/2
(63)

Substitute from (63) with vy,ring,b = 0 into (62) and use (60):707

1

2

(
1− m2

d

m2
b

)
=
Ering,c

mb

(
1 + vx,ring,b

1− vx,ring,b

)1/2

(64)

= q

(
1− vx,ring,b

1 + vx,ring,b

)1/2(
1 + vx,ring,b

1− vx,ring,b

)1/2

= q

so that finally the fraction q of stone b’s mass that is carried away by photon c708

is given by the expression:709

q ≡ EIIRF,c

mb
=

1

2

(
1− m2

d

m2
b

)
(65)

Assume that stone b is unable to escape the black hole without help,710

Eb/mb < 1. This will be the case, for example, if the stone spirals inward in an711

accretion disk: the sequence of circular orbits in an accretion disk have712

E/m < 1 (Section 18.10). Can the stone escape by emitting a photon?713

Answer this by evaluating Ed/md using (55) and (60):714

md

mb

(
Ed
md

)
=
Eb
mb
− q

(
1− vx,ring,b

1 + vx,ring,b

)1/2(
rH

R
− ωR

)
(66)

a similar calculation using (54) gives715

md

mb

(
Ld
md

)
=
Lb
mb

+ qR

(
1− vx,ring,b

1 + vx,ring,b

)1/2

(67)
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How large can Ed/md be? First, in order for the stone’s map energy to716

increase, Ed > Eb, the final factor in (66) must be negative:717

ωR >
rH

R
(first condition for Penrose process) (68)

Equation (68) is equivalent to r < rS ≡ 2M . The region rEH < r < rS is calledDefinition of
ergoregion

718

the ergoregion.719

720

QUERY 5. Where is a Penrose process possible?721

A. Starting from (8), show that (70) implies r < rS ≡ 2M . This explains the origin of the term722

ergoregion for rEH < r < rS: inside the ergoregion it is possible to extract energy from a723

spinning black hole.724

B. Show that for r > rS, all particles (both stones and photons) have E > 0. Thus, a stone with725

E < 0 is trapped inside the ergoregion. [Hint: use (97).]726

C. Show that for r < rS, a retrograde photon (φring = π) necessarily has E < 0, a prograde photon727

(φring = 0) necessarily has E > 0, and a photon moving in other directions may have E > 0 or728

E < 0. 729

D. Show that as r → rEH, a photon with even a slight backwards direction, φring = π
2 + ε, has730

E < 0 and is therefore trapped.731

732

Every Penrose process relies on the existence of particles with negative733

map energy. When is this possible? From (97), particle c (stone or photon) has734

negative map energy when735

−vx,ring,c >
rH

ωR2
(second condition for Penrose process) (69)

The two conditions can be combined into one equation:Conditions for the
Penrose process

736

rH

ωR2
< −vx,ring,c ≤ 1 (Conditions for Penrose process) (70)

For a photon moving tangentially backward, vx,ring,c = −1 so that737

Ec = −Ering,c

(
ωR− rH

R

)
< 0 (for r < rS) (71)

The emission of a negative map energy photon inside the ergoregion738

increases the map energy of a stone but does not guarantee that the stone will739

escape, which requires Ed/md > 1. Equation (66) shows that this ratio740

depends on several quantities: the E/m of the original stone b, the velocity of741

the stone in the ring frame, and the ratio of final to original mass md/mb or742

equivalently the fraction q of the stone’s original mass that is converted to743

retrograde-moving photons. For a stone in a given orbit, q is the only quantity744

that we can vary. The Penrose process is most efficient when q is maximized.745
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Equation (65) shows that largest possible value is q = 1
2 . This limit746

corresponds to md/mb = 0, i.e., the stone loses all its mass! If the stone is halfMaximal energy:
annihilation

747

matter and half anti-matter, their annihilation can extract the largest possible748

energy from the spinning black hole. Half the mass goes into the energy of a749

photon emitted in the prograde direction, and half to a photon emitted in the750

retrograde direction. The escaping photon (“stone d”) has energy751

Ed = Eb +
1

2
mb

(
1− vx,ring,b

1 + vx,ring,b

)1/2(
ωR− rH

R

)
(72)

The energy extracted depends on the motion of the stone before it annihilates752

into photons. Amazingly, the map energy is largest when the stone is moving753

retrograde, vx,ring,b < 0.754

Objection 10. This is crazy! How can going backwards increase the755

stone’s map energy?756

You’re right, this is wild, but it’s true! As your intuition suggests, the map757

energy of stone b is decreased by backward motion, as shown by equation758

(97) with vx,ring,b < 0. However, the stone’s final map energy Ed also759

depends on the map energy of photon c. The measured energy of photon760

c depends on the motion of the emitter, stone b. From the Doppler formula761

(60), when vx,ring,b decreases, Ering,c increases and is positive:762

increasing stone b’s velocity in the backward direction increases the763

energy of a photon emitted in that direction.764

Now comes the real wildness: inside the ergoregion, the map energy Ec765

has the opposite sign to Ering,c! Increasing Ering,c makes Ec more766

negative. The result? Ed = Eb − Ec increases when vx,ring,b decreases.767

Converting all one’s mass to photons is a steep price to pay to escape from768

a black hole. Consider the first process described in the beginning of thisSaving a crippled
spaceship

769

section and ask what is the minimum energy fraction q that will allow a770

crippled spaceship to escape from inside the ergoregion without using rockets771

aside from a single thrust of a photon rocket. We seek the most frugal solution,772

which retains as much mass as possible.773

Previous sections showed that it is very costly to transfer to circular orbits774

inside the Cauchy horizon (e.g., Table 19.2). Take instead the innermost stable775

circular orbit, the ISCO, to be the one from which we seek to return home.776

Taking advantage of the Penrose process requires rISCO < rS. Exercise 1 below777

shows that this condition gives778

a

M
>

2

3

√
2 = 0.94281 (rISCO < rS) (73)

We do not know whether real black holes have such high spins (though some779

astronomers think so, e.g. Risalti et al., Nature, 494, 449, 2013;780
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doi:10.1038/nature11938). (In 1974, Kip Thorne set a theoretical limit of781

a/M < 0.998: ApJ 191, 507, 1974).782

As an example, take a/M = 0.96, for which rEH = 1.2M . At the ISCO,Fast spinning
black hole!

783

rISCO = 1.84 300 573M ,
Lb
mb

= 1.83 102 239M ,

Eb
mb

= 0.798 919 307 , vb,x,ring = 0.621 811 282 . (74)

784

QUERY 6. ISCO for a rapidly spinning black hole785

Confirm the entries in equation (74) using equations (31), (32), and (75)–(77) of Chapter 18 and (94)786

below. 787

788

Given these parameters, find the minimum q for an escape orbit, by789

setting Ed/md = 1. Solve (66) using a numerical method and substitute into790

(67) to find791

q = 0.173 658 866 ,
Ld
md

= 2.50 581 328M . (75)

After this photon rocket thrust, the spaceship has tangential velocity given by792

(24), which evaluates to793

vx,ring,d = 0.735 812 177 (76)

As in previous sections, we calculate the velocity change provided by this794

rocket thrust to put the spaceship into an escape orbit from rISCO. The795

velocity change in the instantaneous initial rest frame follows from equation796

(54) of Section 1.13:797

∆vx,IIRFb =
vx,ring,d − vx,ring,b

1− vx,ring,bvx,ring,d
(from the ISCO . . . (77)

= 0.210 153 964 into an escape orbit) (78)

Compared with the velocity changes required to transfer from the ISCO to798

orbits inside the Cauchy horizon of a more slowly spinning black hole (Thrusts799

4 and 5 in Table 19.2), this is economical!800

Figure 12 shows the effective potentials of the spaceship (stone b) before801

and after the rocket thrust. Compare with thrust #3 in Figure 4, which802

inserted the spaceship into orbit at the ISCO. Figure 12 shows the opposite:803

ejection from the ISCO.804

The final to initial mass ratio follows from equation (26) or (65):805

md

mb
= (1− 2q)1/2 = 0.807 887 533 (79)
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E/m=1

L/(mM)=1.8310

r/M=1.84301
(ISCO)

L/(mM)=2.5058

0.64

0.72

r/M

Veff/m

0.80

0.88

0.96

1.00

1.04

1.12

0 0.04 0.08 1.2 2.8 3.2 3.62.42 41.6

FIGURE 12 Effective potentials for a spinning black hole with a/M = 0.96 and
two choices of the map angular momentum. The energy expended in the rocket thrust
is less than the difference in map energy, providing a potential power source.

This result seems almost mundane (it is comparable to thrust #3 in Table806

19.2) until we compare it with Eb/mb in equation (74), which is smaller than807

md/mb. Although the difference is small, it reveals a crucial opportunity: theExtracting energy
from the spinning
black hole

808

spinning black hole is an energy source!809

To see this, recall that the map energy is the energy at infinity. As a stone810

spirals inward in an accretion disk, the photons emitted can escape to infinity,811

where their total energy is the difference in map energy, or812

1− (Eb/mb) = 20.1% of the original rest mass mb. In principle, that energy is813

available to do work at infinity. Then, in order to escape back to infinity, a814

thrust must be applied that reduces mb by a factor 1− (md/mb) = 19.2%. The815

energy difference is 0.9% of the rest mass, vastly more than the energy816

released by fission of uranium into thorium, and more even than is liberated817

by fusion of hydrogen into helium, 0.7%.818

Objection 11. Your numbers don’t add up! You said that q = 17.4% of the819

initial mass goes into rocket thrust, and 80.8% is left. You’re missing 1.8%!820

‘The missing piece is the change in kinetic energy, (γ − 1)md, where γ is821

calculated using ∆vx,IIRFb.822
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We can now justify the statement in Section 17.1, “The spinning black823

hole is an immense energy source, waiting to be tapped by an advanced824

civilization.” Suppose you drop a stone from rest far from the black hole.825

Initially, E/m = 1 (a raindrop) and the stone enters an accretion disk. It loosesJustify claim:
“Immense source
of energy.”

826

map energy as it spirals inward (Section 18.8) emitting this map energy as827

photons. Recall that the energy of photons received at infinity is just the map828

energy lost, described in Sections 8.6 and 18.10 for accretion disks. By the time829

the stone reaches the ISCO, it has radiated a fraction 1− Eb/mb = 0.20108 of830

its mass, as measured at infinity. In order to return to infinity, the stone’s mass831

must decrease by a fraction 1−md/mb = 0.19211. Thus the radiation received832

at infinity more than makes up for the loss of mass by the stone. We’ve833

extracted energy from the spinning black hole! This is possible because of the834

negative map energy of the retrograde photons emitted inside the static limit.835

Comment 8. Many cycles; large extracted energy836

The difference between Eb/mb and md/mb seems small, but a stone or837

spaceship can be reused to extract lots of energy over many cycles. Some of the838

energy radiated to infinity can be used to replenish the stone for another trip to839

the black hole. Note that the amount extracted is larger when the black hole spin840

is greater or the rocket thrust is applied closer to the event horizon.841

Objection 12. Great! We have an endless supply of energy; a perpetual842

motion machine! We just toss stones into the spinning black hole and843

program them to emit powerful laser pulses when they are inside the static844

limit.845

Sorry, this is a false hope. Here’s the hitch: The photons with negative map846

energy fall into the black hole, where they decrease the black hole mass.847

We do not prove it here, but the gravitational effect of negative map energy848

is to decrease the gravitational field far from the black hole, exactly as if849

the black hole mass decreases. (Back to Newtonian physics for slow850

motion far from the black hole!) Still, the spinning black hole is a promising851

energy source for an advanced civilization.852

Summary of the Penrose process for a/M = 0.96853

1. Initially a stone with Eb = mb drops from rest at a great distance.Summary:
Penrose process

854

2. The stone enters an accretion disk, where it radiates 20.1% of its mass855

as it descends to the ISCO. The radiation—“quasar light”—travels to a856

great distance.857

3. At the ISCO, the stone emits a photon rocket thrust; the surviving858

piece has mass md = 0.808mb859

4. The surviving piece with Ed = md escapes to a great distance, where it860

comes to rest and can be furbished or replaced.861

5. The stone’s mass decreased by 19.2%, but more than this was received862

at a great distance as quasar light.863
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The Penrose process is reminiscent of Hawking radiation (Box 5 in Section864

6.6), whereby energy is also extracted from a black hole. For Hawking865

radiation, however, the stone that falls into the black hole is a virtual stone, a866

temporary entity living on time borrowed from the Heisenberg Uncertainty867

Principle. In contrast the Penrose process photons with negative map energyPenrose process
compared with
Hawking radiation

868

are real, not virtual. In addition, non-spinning and spinning black holes both869

emit Hawking radiation, while the Penrose process works only for the spinning870

black hole.871

19.8 APPENDIX A: KILLER TIDES NEAR THE SPINNING BLACK HOLE872

How close is a safe orbit?873

In the Appendix of Chapter 9 we saw how local inertial frames are874

“spaghettified” by tidal accelerations when they move near a non-spinning875

black hole. Equations (38) to (40) and (46) to (48) in that chapter gave the876

expressions for the components of the tidal acceleration ∆glocal for local877

inertial frames that move along the Schwarzschild r-direction and along the878

Schwarzschild φ-direction, respectively.879

In the present Appendix A we list similar expression for the spinning black880

hole. We give all the equations in Boyer-Lindquist coordinates. (See the881

Project: Boyer-Lindquist Global Coordinates at the end of Chapter 17.) In the882

local inertial frames the x−, y−, and z− directions are along the global883

φ−direction, r−direction, and perpendicular to the spinning black hole’s884

equator, respectively.885

TIDES IN THE LOCAL RING FRAME886

Expressions for the the tidal accelerations around the spinning black hole are887

messy. Fortunately, in the equatorial plane the equations reduce to a fairly888

simple form. For the local ring frame:889

∆glocal,y ≈
M

r̄3

2 + Z

1− Z
∆ylocal (80)

∆glocal,x ≈ −
M

r̄3
∆xlocal (81)

∆glocal,z ≈ −
M

r̄3

1 + 2Z

1− Z
∆zlocal (82)

where890

Z ≡ a2H̄r̄

(r̄2 + a2)
2 (83)

The value of the dimensionless quantity Z always lies between 0 and 0.043891

(ref: Bardeen, Press, and Teukoilsky, 1972), so the deviations for the892

expressions from the Schwarzschild case are small.893
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As an exercise, check that for a = 0, the three equations above reduce to894

Schwarzschild expressions (38) through (40) in Chapter 9.895

As another exercise, check that896

∆glocal,x

∆xlocal
+

∆glocal,y

∆ylocal
+

∆glocal,z

∆zlocal
≈ 0 (84)

and compare the result with equation (45) in Chapter 9.897

TIDES IN THE LOCAL ORBITER FRAME898

The orbiter frame moves with speed v in the x-direction relative to the ring899

frame. The tidal acceleration components for the local orbiter frame are:900

∆glocal,y ≈
M

r̄3

2 + Z

1− Z
∆ylocal − 3

M

r̄3

H̄a(r̄2 + a2)

r̄R̄2

v

(1− v2)1/2
∆xlocal (85)

∆glocal,x ≈ −
M

r̄3(1− Z)

(
1− Z 1 + 2v2

1− v2

)
∆xlocal (86)

−3
M

r̄3

H̄a(r̄2 + a2)

r̄R̄2

v

(1− v2)1/2
∆ylocal

∆glocal,z ≈ −
M

r̄3(1− Z)

(
1 + Z

2 + v2

1− v2

)
∆zlocal (87)

Note the second term on the right side of (85). It tells us that the901

y-component of the tidal acceleration depends on the x-coordinate too, not902

only the y-coordinate. Similarly, the second term on the right side of (86) tellsDefinition:
Shear terms

903

us that the x-component of the tidal acceleration depends on the y-coordinate904

too, not only the x-coordinate. We call these two terms shear terms.905

TIDES IN THE LOCAL RAIN FRAME906

The tidal acceleration components in the local rain frame are:907

∆glocal,y ≈
M

r̄3

2 + Z

1− Z
∆ylocal − 3

M

r̄3

a(r̄2 + a2)3/2

r̄2R̄2

2M

r̄
∆xlocal (88)

∆glocal,x ≈ −
M

r̄3

(
1− 3a2(r̄2 + a2)

r̄2R̄2

(
2M

r̄

)2
)

∆xlocal (89)

−3
M

r̄3

a(r̄2 + a2)3/2

r̄2R̄2

2M

r̄
∆ylocal

∆glocal,z ≈ −
M

r̄3

(
1 +

3a2

r̄2

)
∆zlocal (90)
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Again, note the presence of shear terms in the y-component and the908

x-component of the tidal acceleration: the second term on the right side of (88)909

and the second term on the right side of (89), respectively. A raindrop is not910

simply stretched in its local y-direction and compressed in its local x- and911

z-directions, but feels a sideways tension (shear) in its own rest frame too.912

19.9 APPENDIX B: RING FRAME ENERGY AND MOMENTUM913

Measured energy and momentum914

This appendix derives the map energy E and map angular momentum L of a915

stone from its ring frame energy Ering and components of momentum px,ring916

and py,ring at a given r. The result is valid for any motion of the stone for917

which H2 > 0, that is, everywhere except between the horizons. Start with918

equation (21):919

Ering

m
≡ lim

∆τ→0

∆tring

∆τ
=
rH

R

dT

dτ
− β

H

dr

dτ
=

R

rH

(
E − ωL
m

)
(91)

The last step uses equation (111) of Section 17.10. Next, apply similar limits920

to equations (22) and (23) to obtain momentum components in the local ring921

frame:922

px,ring

m
≡ lim

∆τ→0

∆xring

∆τ
= R

(
dΦ

dτ
− ωdT

dτ

)
− rω

β

dr

dτ
=

L

mR
(92)

py,ring

m
≡ lim

∆τ→0

∆yring

∆τ
=

1

H

dr

dτ
(93)

The velocity components in the local ring frame follow from these923

equations:924

vx,ring =
px,ring

Ering
=
rH

R2

(
L

E − ωL

)
(94)

vy,ring =
py,ring

Ering
=

r

R

(
m

E − ωL

)
dr

dτ
(95)

Solve equations (91) and (92) for the map constants of motion in terms ofExpressions for
map L and E.

925

the locally-measured ring energy and ring x-momentum:926

L = Rpx,ring (not between horizons) (96)

E =

(
rH

R

)
Ering + ωRpx,ring = Ering

(
rH

R
+ ωRvx,ring

)
(97)

Section 19.7 uses these two equations in the description of the Penrose process.927
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19.10 EXERCISES928

1. When the ISCO lies at the static limit929

The innermost stable circular orbit (ISCO) for the non-spinning black hole lies930

at r = 6M . For the non-spinning black hole there is no distinction between931

prograde and retrograde orbits. For the maximum spinning black hole932

(a/M = 1), the prograde ISCO drops to rISCO1 = M , while the retrograde933

orbit rises to rISCO2 = 9M . Figure 15 in Section 18.9 plots rISCO as a function934

of a/M for both prograde and retrograde circular orbits.935

A. What is the intermediate value of a/M at which the prograde ISCO lies936

at the same r-value as the static limit, rS = 2? Use equations (75)—(77)937

of Section 18.8 to show that this intermediate value is a/M = 0.94281.938

B. Verify that the numerical value of a/M in Item A is equal to 23/2/3.939

C. What is the r value of the retrograde ISCO for the value of a/M in940

Item A?941

2. Choose incoming spaceship energy E/m for exploration program942

Figure 2 shows that our explorers choose E/m = 1.001 for their initial energy943

as they start their journey from far away towards the spinning black hole.944

Justify this choice for the incoming value of E/m. Why should they not choose945

a value of E/m much larger than this? a value of E/m much closer to 1 than946

this? Are your reasons fundamental to general relativity theory or practical for947

particular spaceships and black holes?948

3. Can a transfer orbit violate Kepler’s second law?949

Examine the second-to-last row of Table 19.3. For the transfer orbit between950

the circular orbit at rISCO ≈ 2.537M and the circular orbit at r1 ≈ 0.170M ,951

the value of vx,ring,transfer appears to contradict Kepler’s second law: The952

freely-moving probe appears to move faster at the larger r-coordinate than at953

the smaller r-coordinate. Explain how this is possible.954

4. What kind of motion is raindrop motion?955

Section 19.1 reviewed definitions of prograde/retrograde motions and956

forward/backward motions. Does raindrop motion provide the dividing line957

between forward and backward motion? between prograde and retrograde958

motion? Summarize your answers in a clear definition of raindrop motion.959

5. “Size” of the ring singularity960

How large is the ring singularity at r = 0?961

A. Is the size of the ring singularity zero, as Figure 7 in Section 19.5 seems962

to show?963
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B. Does the radial size of the ring singularity equal the value of the964

spin-parameter a, as Figure 10 and equation (42) seem to imply?965

C. Is the the ring singularity infinitely large, as Figure 8 and equation (39)966

seem to say? Show that from equation (39):967

circumference = lim
r→0

2πR = lim
r→0

2πa

(
1 +

2M

r

)1/2

=∞ (98)

D. If the ring singularity is indeed infinitely large, as Item C implies, does968

this mean that the ring singularity extends to infinity and embraces the969

entire Universe? If so, why the limit r → 0 in equation (98)?970

E. From results of Items A through D, explain why quotes embrace the971

word “Size” in the title of this exercise.972

6. Spacetime trajectory or spatial trajectory of the transfer orbit?973

Figures 7, 9 and 10 are distorted maps, visual representations of transfer orbit,974

similar to the way that every flat map necessarily gives a distorted view of an975

arbitrary airplane route on Earth’s spherical surface. But do these at least976

correctly depict the spatial trajectory of the transfer orbit? To answer this977

question look at the coordinates on the axes of these figures to check whether978

those coordinates are spacelike or timelike.979
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