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In this paper we use scalar energy, rather than 
vector force and momentum, to predict how a 
particle will move. The result is a quantity called 

action. Action and its relatives undergird Newton’s laws 
and transcend them, also predicting motion in the 
quantum world and in the curved spacetime of general 
relativity. An example exhibits action in action.

Most introductory physics courses begin with 
mechanics, as physics itself did historically. We recall 
everyday experiences with toy wagons, balls, and auto-
mobiles and refine descriptions of their motion using 
vectors: force, momentum, and acceleration. Newton 
tells us that F = dp/dt. Beyond equations, we learn to 
represent motion graphically with a worldline, a plot of 
displacement versus time, which provides a complete 
description of the path a particle takes through space 
and time. 

Energy, which is mathematically simpler than force 
because it is not a vector, wafts in as a breath of fresh 
air with forms kinetic K and potential U. But potential 
energy leads back once again to a vector formulation 
F = – grad U, telling us that the sharper the incline on 
which you stand the more difficult it is to resist rolling 
downhill in the steepest direction. 

In spite of its awesome power, conservation of ener-
gy cannot predict the motion of even a single particle. 
Why not? Surprise! Because energy is a scalar without 
direction while displacement of a particle is a vector. 
Knowing a particle’s kinetic energy, we know its speed, 
and thus the distance ds it will move during the next 
clock tick dt, but not the direction of that motion, espe-
cially in two and three dimensions (Fig. 1).

In this paper we force energy to predict how a par-
ticle will move. The result is a quantity called action, 
the invention of a string of geniuses that lived after 
Newton. To start toward action, think of the simplest 
possible motion, that of a free particle—a particle 
subject to no forces. Newton tells us that with respect 
to an inertial reference frame, a free particle moves in 
a straight line at constant speed. So choose our space 
dimension x to lie along the direction of motion of this 
free particle and plot its worldline (Fig. 2). (Note that 
the axes are t and x in Fig. 2, not x and y as in Fig. 1.) 
Constant speed means constant slope of the worldline 
in the spacetime diagram; that is, a free particle follows 
a straight worldline. That is what Newton tells us.

Predicting Motion Using Kinetic 
Energy

Now we go over Newton’s head and appeal directly 
to Nature herself, respectfully requesting that she jus-
tify the straight worldline of a free particle in terms 
of our sweet scalar energy. Can she give us an energy 
reason why the particle follows the straight worldline 
direct from P to Q in Fig. 2? For example, why doesn’t 
the particle take the alternative worldline PRQ com-
posed of segments A and B? To take this alternative 
path, the particle would move with higher kinetic en-
ergy along the first segment A between P and R, arriv-
ing at the final x-value in half the time. Then the parti-
cle would relax at rest—with zero kinetic energy—let-
ting time carry it along the horizontal segment B from 
R to Q. Tell us, oh Nature, is there an energy reason 
why this alternative worldline PRQ is not acceptable?

146                                                DOI: 10.1119/1.2173320       THE PHYSICS TEACHER ◆ Vol. 44, March 2006



Let’s guess:  Nature wants the particle to have the 
lowest possible value of kinetic energy needed to move 
from P to Q. If the straight worldline satisfies Nature’s 
desire, then the value of the kinetic energy along this 
path PQ should be less than the kinetic energy along 
the alternative path PRQ. Check this out by calculat-
ing the kinetic energy along the different worldlines 
using the symbols in Fig. 2. Along the direct worldline 
the kinetic energy is
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Kinetic energy along each of the two alternative seg-
ments A and B is
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We guessed that Nature wants “the lowest possible 
value of particle kinetic energy from P to Q.” But 
what do we (and Nature) mean by “lowest possible 
value”? For the direct worldline there is only one value 
of kinetic energy. Along the alternative worldline 
PRQ, however, there are two different values of kinet-
ic energy given in Eq. (2). How do we combine these 

two values to give “the value of kinetic energy along 
AB”? Again we have to guess: We predict that Nature 
wants the smallest possible average value of the kinetic 
energy between P and Q, and she chooses an average 
over time. Call this average value K direct for the di-
rect line PQ and simply K  for the indirect line PRQ. 
Along the direct path the kinetic energy is constant, so 
that value is its average:
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Here’s how we compute the average, K , when the 

worldline is broken into segments A and B:

   
      (4)

For segments A and B in Fig. 2, each of these frac-
tions is one-half. Therefore, from Eq. (2):

       (5)
 

y

ds

x
Fig. 1. Path of a particle in two dimensions x, y. 
From the value of the potential energy U at a given 
location, the conservation of total energy E tells 
us the value of kinetic energy K at that location. 
From the scalar kinetic energy we find the scalar 
distance ds of the next incremental step along the 
path during the next time step dt. But this pro-
cedure does not tell us the direction of that next 
step. The result is a pincushion of possible next 
steps as shown above.

∆x A

B

P

x

∆t ∆t

t

QR

Fig. 2. Alternative worldlines between events P 
and Q. Can we force energy to tell us why the 
particle follows the straight worldline from P to 
Q rather than the alternative worldline along seg-
ments A and B from P to R to Q? (For simplicity we 
choose R at the midpoint in time between P and 
Q; any other fixed fraction of the time would yield 
the same results as the analysis in the text.)
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     Comparing the right-hand sides of Eqs. (5) and 
(3), we see that the value of the average kinetic 
energy along the alternative worldline PRQ is twice 
that along the direct worldline PQ. This result con-
forms to our guess: Nature prefers the direct world-
line because the time-average kinetic energy is less. 
This is a start toward predicting motion with energy 
alone, but we need to check it more carefully.

Let’s try to squeeze Nature’s use of kinetic energy 
to predict motion of a free particle by picking an 
alternative worldline PRQ that is close to the direct 
one, as shown in Fig. 3. To be specific, we examine 
a small portion PQ of a longer worldline, a portion 
divided into two equal times ∆t, and call δx the small 
displacement of the center point that changes direct 
worldline PQ into alternative worldline PRQ. How 
do we prove that average kinetic energy is a minimum 
along the straight worldline? Minimum implies zero 
change in K  for small values of δx. We will calculate 
δK  along PRQ and find the consequences if this 
change is zero for small values of δx.

As the center point R in Fig. 3 is moved up by δx, 
the slope of the first segment of the worldline increas-
es, while the slope of the second segment decreases. 
The slope of the worldline is the velocity v; change of 
slope means change of velocity. 
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The average kinetic energy K  along segments A 
and B is (remember each value is multiplied by the 
fraction of time it spends at that value, namely one-
half )
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Kinetic energy is K = (1/2)mv2; the change in kinetic 
energy is approximated by its differential:
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(8)

Apply Eq. (8) to segments A and B, noting that in 
Eqs. (6) the signs are opposite (because raising the 
midpoint in Fig. 3 tilts segment B down while it tilts 
segment A up):
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The change in the average kinetic energy is
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Is K  a minimum for the straight worldline? When 
a minimum occurs, a small deviation δx must not 
change the value of K , thus making δK  = 0. Equa-
tion (10) tells us that for small δx we have δK  = 0 
provided dp/dt = 0. No change in momentum between 
segments A and B means no change in velocity, which 
means no change in slope of the worldline. The world-
line is straight, which we derived by asking that the 
average kinetic energy of the particle be a  minimum.

Victory! Nature agrees with our guess that mini-
mizing the average kinetic energy of a free particle 
leads to a straight worldline. This is a big step away 
from Newton’s vector equation and toward using en-
ergy to predict motion. The next step is to add poten-
tial energy to the minimization process.

Predicting Motion Using Kinetic and 
Potential Energy

A particle with potential energy U(x) accelerates 
under force F = –dU/dx, resulting in a curved world-
line, approximated by a change of direction at the 
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Fig. 3. Small portion of a longer worldline with two 
alternative nearby worldlines connecting P and Q, the 
whole thing enormously magnified. 



joints of our segmented worldline. Assume that seg-
ments A and B in Fig. 4 are very short, so the potential 
energy U varies a small amount along each segment. 
Then we approximate the average potential energy 
along any segment by its value in the middle of that 
segment. Let δU be the change in the potential energy 
at the center point R in Fig. 4 when it moves up by δx  
on the spacetime diagram. Then Fig. 4 shows us that 
the midpoint of each segment moves up half as much.
For short segments, we assume that half the displace-
ment means half the change in potential energy:
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The change in average potential energy over the two 
segments is
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When potential energy is combined with kinetic 
energy, what is Nature’s preference about their aver-
age values? The simplest idea is that Nature wants the 
average of the total energy E = K + U to be a minimum 
along every segment of the worldline. Again, when 
it is a minimum this average cannot change for small 
values of δx. So ask what is required for δE  to be zero 
for small δx. From Eqs. (10) and (12):
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Equation (13) tells us that when δE is zero for small 
δx, the quantity in the parenthesis equals zero, or

                   (14) dp
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dU
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This is WRONG. Equation (14) says that if the 
potential energy U increases with x, the momentum 
will increase as the particle rises. Objects would race 
uphill faster and faster; both kinetic and potential 
energy would increase, violating conservation of 
energy. Climbing Mount Everest would be a push-
over (actually a push-up); getting down again would 
be the problem. Indeed, everything on Earth would 
fly into space!

How can we modify Eq. (13) to avoid the flying-
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into-space catastrophe? The next-simplest assumption 
is that Nature wants to minimize the difference be-
tween kinetic and potential energy. Try that:

                (15)δ δ δ δK U K U
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For small values of δx, this equation is satisfied  
provided

                   (16)
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This is Newton’s second law of motion. When 
we satisfy Nature’s demand that the average K – U  
be a minimum along a short segment of worldline, 
Newton’s second law of motion automatically appears. 
And look where this victory leads! Equation (15) ap-
plies to every short segment of a worldline. Therefore 
it applies to the entire worldline; so this must be the 
worldline followed by the particle. 

We have found that minimizing the time-average 
of a particle’s kinetic minus potential energy leads to 
Newton’s laws of motion. Next we show how to find 
the entire worldline of a particle by minimizing  
K – U  .
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Fig. 4. For a particle moving in a potential, its worldline may 
be bent (heavy line, using straight segments to approximate 
the worldline). Two alternative worldlines connect P and Q. 
Approximate the change in potential along each segment as 
the change in the potential in the middle of the segment. 
Each midpoint of segments A and B moves up half as much 
as the displacement of the connecting point R.
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Predicting Motion Using Action

Minimizing K – U  on every small portion of a 
worldline gives us one way to construct the actual 
worldline. Start with a trial worldline, our best guess 
of the path the particle will take through spacetime 
between some fixed initial event P at the beginning 
and a fixed final event Q at the end occurring a (fixed) 
total travel time T later. We divide that trial worldline 
into tiny segments, each spanning an incremental 
time dt. The fraction of time the particle spends on 
each segment is dt/T. Now we temporarily freeze all 
intermediate events except one, and move that event 
up and down in the spacetime diagram (as in Figs. 3 
and 4) to minimize K – U along the adjacent pair of 
segments, then do this in turn for every intermediate 
event along the worldline. For incremental dt the re-
sulting summation becomes an integral:
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Total travel time T is fixed by the events P and Q 
that anchor the two ends of the worldline. This leads 
to what is called the action, given the symbol S:
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Moving one intermediate event at a time while 

freezing the others typically does not allow each event 
to move far enough to reach that event’s final location 
on the worldline with minimum action along every 
segment. We usually need repeated sweeps through all 
intermediate events for every one of them to reach a 
position in which action is a minimum along the pair 
of adjacent segments, verifying that the worldline is 
a correct one between P and Q. When we reach this 
condition, further small adjustment of any intermedi-
ate event does not change the total action:

δS = 0.                  (19)

The technical term for the condition δS = 0 is that 
the action is stationary. Stationary means that if you 
vary the correct worldline just a little, the change in 
action is negligibly small. Our result is called the prin-
ciple of stationary action:

When the action is a minimum along every segment of a 
worldline between fixed end-events (resulting in station-
ary action S), that worldline is one that a particle will 
follow between those events.

Nature has granted our request; we have gone over 
Newton’s head to predict motion using scalar energy. 
Finding stationary action is often simpler than ap-
plying Newton’s mechanics with its vector forces and 
momenta because the principle of stationary action 
involves simple addition and subtraction of scalar 
energies. An added benefit of scalar addition of en-
ergy is that Eqs. (18) and (19) work just as well for 
three-dimensional motion of a particle as they do for 
one-dimensional motion. Indeed, the scalar nature of 
action allows us to generalize these equations to pre-
dict motion of more than one particle, particles con-
nected with springs and rods, rigid bodies suspended 
from pivots, and a wealth of simple and complicated 
systems.

The principle of stationary action is especially pow-
erful when you want to control in advance the initial 
and final conditions in space and time. For example, 
firing a space probe from Earth orbit to the Moon 
requires that the probe arrive at the location of the 
Moon when the Moon is there; we specify initial and 
final events in advance. The principle of stationary ac-
tion is perfect for planning this Moon shot.

The principle of stationary action has some draw-
backs. Often we do not know ahead of time where a 
particle is going; rather we want to use the laws of mo-
tion to find out where it is going. For example, will an 
incoming asteroid miss the Earth? Moreover, action 
does not easily predict motion when friction is pres-
ent. In these cases, Newton can often help us more 
than action. 

For technical reasons the specific process of finding 
a worldline by multiple sweeps through intermedi-
ate events does not always work; sometimes it does not 
move the initial guessed trial worldline toward the 
correct worldline. But that is another story for another 
day; we can always find some calculating method that 
finds a worldline with minimum action along every 
small portion, which therefore satisfies the principle 
of stationary action. An example is shown in Box 1. 
All successful methods have this in common: They are 
repetitive and boring—a perfect task for a computer. 
One of us (ST) has created computer programs that 
allow you to use stationary action to hunt for world-



EXAMPLE: Using Action to Find the Worldline

See how the action principle can help construct the worldline of an apple thrown verti-
cally upward in a uniform gravitational field. We use an approximation that can be gen-
eralized to an automatic computer program. Divide a portion of the worldline into four 
adjacent straight line segments, each of duration ∆t, as shown in Fig. 5. 
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Take the potential energy on each segment to be the value at its center. Then the straight-segment approximation 
yields the action along segment A: 
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We fix initial and final events 1 and 5 and ask: What should be the positions of events 2, 3, and 4 in order to minimize 
the value of Stotal in our straight-segment approximation? Answer: The derivatives of Stotal with respect to each of the 
three intermediate coordinates should vanish. Take the derivative with respect to x2 and set the result equal to zero to 
obtain

dS
dx

m
x x x x

t
mg ttotal

2

2 1 3 20= =
−( )− −( )

−
∆

∆ .

Similar expressions result from setting equal to zero derivatives of Stotal with respect to x3 and x4. The result is three equa-
tions in the three unknowns x2, x3, and x4. Divide each equation through by m and multiply through by ∆t  to obtain
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As an example, fix initial and final positions x1 = 2 m and x5 = 3 m and elapsed time = 1 s, so that ∆t = 0.25 s. Setting 
g = 9.8 m/s2 yields three equations that anyone can solve (no need for a computer!) to give x2 = 3.17 m, x3 = 3.72 m, and 
x4 = 3.67 m. The result fixes this portion of a worldline so that action is a minimum along each pair of adjacent segments. 
Instead of just four segments, we can use N segments that span and approximate the entire worldline from initial fixed 
event to final fixed event; the larger the value of N the better the approximation. The result is N – 1 linear equations in  
N – 1 unknowns. You can easily use the four-segment, three-equation example above to write down these N – 1 equa-
tions directly. There are well-established computer solutions for such equations, one of them used by the interactive 
programs in Ref. 1. By such a method the action principle minimizes action along every section of a worldline, leading to 
stationary action, Eq. (19), and the construction of the entire worldline with a single procedure.

Fig. 5. Four worldline segments 
used in computer solution
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Box 1.
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lines for various kinds of motion.1
The principle of stationary action is a powerful tool 

that helps us to get from here-now to there-then.  
Adding the action principle to our toolbox multiplies 
our understanding of Nature and our ability to influ-
ence her. But there are deeper reasons to have respect, 
even passion, for the action principle. Unlike force,  
action roots the world of Newton deep in the quan-
tum world, as Richard Feynman showed us decades 
ago.2 As particle mass increases from electron to tennis 
ball, Feynman’s description of quantum motion goes 
over seamlessly into the principle of stationary action.3 
On the other end of the cosmic scale, the motion of a 
particle in Einstein’s curved spacetime is elegantly pre-
dicted using a version of the principle of stationary  
action.4 Hook onto the action principle and hitch 
your understanding to a star!
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