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We present a method for introducing students to the classical principle of least action, using a novel
approach based on the ordinary calculus of one variable. We define the classical action for a path and
draw the connection between it and Newton’s laws for a free particle and for a particle in a
conservative potential. The use of software to help students visualize the principle of least action
and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of
least action in Feynman’s sum over paths formulation of quantum mechanics. ©2003 American

Association of Physics Teachers.
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I. INTRODUCTION

Since Newton’s time, classical mechanics has been
egantly reformulated as a single unifying principle known
Hamilton’s principle. Following Feynman1 and Landau,2

Hamilton’s principle is frequently called ‘‘the principle o
least action.’’ According to the least action formulation
classical mechanics, a particle moves along the path
which the action~symbolized byS) is a minimum. In some
cases the true path does not yield a minimum forS but an
inflection point or, in general, a stationary value. Hence
more accurate name for this principle is the principle of s
tionary action.3

A clear and interesting introduction to the principle
least action can be found in Ref. 1. How are we to find
path of least action? This is a difficult problem belonging
the calculus of variations. We will describe one way arou
this complicated mathematics which we believe provide
deep understanding of the principle of least action for beg
ning students. The key idea is based on a passage from
nman’s lectures,4 where he mentions that if the actionS is
minimum along the true path, then it is also a minimu
along every subsection of the path.

To explain the meaning of Feynman’s statement, we w
consider motion in only one space dimension and plot
actual particle’s motion in space and time,xA(t), a plot
called aworldline. The principle of least action says that th
worldline xA(t) yields a minimal action. Now choose an a
bitrary subsectionA of this worldline. Draw a nearby world
line xB(t) that differs from xA(t) only on the sectionA,
wherexB(t) creates a new sectionB ~see Fig. 1!. As we will
see in Sec. III A, the total action for a worldline can b
expressed as a sum of actions for each of its sections.
value of the action is identical along common sections
both worldlinesxA(t) andxB(t). Therefore, the difference in
the total action betweenxA(t) and xB(t) is due to different
contributions to the action from sectionsA andB. In order to
not violate the condition of minimal total action, the actio
for sectionB must be greater than action for the sectionA.
386 Am. J. Phys.71 ~4!, April 2003 http://ojps.aip.org/aj
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But the location of subsectionA along the worldline was
chosen arbitrarily. Therefore, we require that the worldli
with minimal action must also satisfy the principle of lea
action between any pair of intermediary points. Con
quently, the principle for the entire path can be stated
Feynman’s infinitesimal form:4 the action along an arbitrary
infinitesimal section of the true worldline has a minim
value. For an infinitesimal section it is unimportant how t
potential varies from one place to another place far aw
only the local first-order change in the potential is importa
So the result can depend only on the derivative of the po
tial that is the force at a point.4

If we proceed from this formulation~due to Feynman! of
the principle for an infinitesimal section of the path, we s
that the principle of least action leads to Newton’s seco
law, and only ordinary calculus is needed to derive almost
of classical mechanics.5

In Sec. II we illustrate some of the features of our softwa
which we use as a pedagogical tool for introducing the le
action formulation of classical mechanics. In Sec. III we u
the definition of the classical action to relate it to Newton
laws in two cases: the motion of a free particle and a part
in a conservative potential field. Our variational method
quires only ordinary derivatives. Section IV briefly describ
the meaning of action in quantum mechanics and the or
of the classical principle of least action in Feynman’s su
over paths formulation of quantum mechanics.

Traditionally the principle of least action is taught in a
vanced classical mechanics courses. However, the me
described in this paper has allowed us to teach it as earl
secondary school. We include three pedagogical notes
teaching strategies derived from our use of the principle
least action with classes at both the secondary school
university levels.6

II. INTRODUCTION TO THE PRINCIPLE OF
LEAST ACTION

Feynman7 tells us that there are two natural ways to fin
the path that satisfies the principle of least action. One isthe
386p/ © 2003 American Association of Physics Teachers
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trial-and-error method. We calculate the action for millions
of paths and find the one that has the smallest value of
action. Because this method is straightforward but tedio
we turn it over to a computer.8 Using a computer also ca
help students to visualize and develop an intuition for
process. Such a computer program is illustrated in Fig. 2
manipulating this program, the student naturally becomes
customed to the central concepts of worldline~a plot of the
particle’s position as a function of time! and event~a point
on the worldline!. With almost no mathematical formalism
the student can explore the motion of a particle in vario
potentials by comparing the action along the true worldl
with that along alternative worldlines. For the worldline
least action the result is the same as that derived from N
ton’s laws. On the display the student can see the nume

Fig. 1. Two nearby worldlines~height vs elapsed time! xA(t) and xB(t),
wherexA(t) represents the actual particle’s worldline andxB(t) is an alter-
native worldline, which differs fromxA(t) only on sectionA, which is
modified as a new sectionB.

Fig. 2. A worldline of a particle in the Earth’s gravitational field. At th
point students know only that for every path represented by a world
x(t), there exists one number, which is called the actionS and that the real
path obeys the principle of least action. The software shows students
the principle of least action leads to a unique worldline. Students can ch
any worldline for the particle by selecting points~events! that the computer
connects with a line. Students drag these points while the computer im
diately displays the value of the actionS and the table of acceleration o
other quantities~position, velocity, momentum, energy! describing the mo-
tion. Students soon discover that the path with minimal action has the s
acceleration (29.8 m/s2) at each point, which describes free fall due
gravity. The path that satisfies the principle of least action also conse
total energy.
387 Am. J. Phys., Vol. 71, No. 4, April 2003
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values of the action and the following mechanical quantit
on the particle’s path: position, velocity, acceleration, m
mentum, and energy.

The second way to find the path that satisfies the princ
of least action is mathematical. In contrast to the trial-an
error method, mathematics allows us to include all poss
paths and to prove that the path minimizing actionS is the
one that obeys Newton’s laws.

III. PRINCIPLE OF LEAST ACTION AND
NEWTON’S LAWS

A. Definition of action and some special cases

Consider a particle of massm that starts from some fixed
initial position at timet1 and moves to a fixed final positio
at a later timet2 . The general expression for the action alo
the particle’s trajectory is

S[E
t1

t2
~KE2PE!dt. ~1a!

We use unconventional double letters KE and PE as sym
for the kinetic and potential energies, respectively, beca
they are more mnemonic than the usual symbolsT and V.
Equation~1a! can be written in the form

S5~KEav2PEav!~ t22t1!. ~1b!

The average energies, KEav and PEav, are given by integrals
similar to that in Eq.~1a! divided by (t22t1). Each of these
averages is a function~or more exactly a functional! of the
worldline taken by the particle. Equation~1b! can be rewrit-
ten in many convenient ways, depending on the nature of
analysis.

~1! If the worldline is straight, then the particle moves a
constant velocity and therefore with a constant kinetic ene
KE. In this case the action has the form

S5~KE2PEav!~ t22t1!. ~2a!

~2! If, in addition, the potential energy is a linear functio
along the straight worldline, then the average value of
equals the value of PE at the midpoint of the path. In t
case

S5~KE2PEmidpoint!~ t22t1!. ~2b!

~3! Equation~1b! is valid for any increment of a particle’s
worldline:

DS5~KEav2PEav!Dt. ~2c!

~4! For a very small~or infinitesimal! increment of the
worldline ~therefore taken to be straight!, we can again use
Eq. ~2b!:

DS5~KE2PEmidpoint!Dt. ~2d!

~5! As we see from Eq.~1a!, the action for an infinitesima
segment of worldline can be expressed as

DS5~KE2PE!Dt. ~2e!

Equation~1b! leads to the same conclusion, because for
infinitesimal segment of a worldline, the average energ
can be substituted for the instantaneous energies. Equa
~1a! and ~1b! embody the fact that the action is an additi
quantity.

Pedagogical note 1:From the mathematical point of view
the definitions~1a! and~1b! are equivalent, as can be show
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by using the integral definition of the average value fo
function. But psychologically they are quite different, esp
cially for students new to calculus. In our experience s
dents find the nonintegral definition more acceptable. A
other advantage of beginning with Eq.~1b! is that students
already are aware of similar average quantities from ki
matics.

Expressions for the averages used in the action form
~1b! do not require the solution of integrals in simple cas
@see Eqs.~2a! and~2b!#. Because the integral is the same
the area under a curve, elementary methods for the calc
tion of average values are sufficient, quick, and easy. T
connection between the integral and the area also provid
natural way to pass from definition~1b! to the integral~1a!.
@End of the pedagogical note 1.#

B. Free particles

First we look at the predictions of the principle of lea
action for free particles in a zero~or constant! potential.
Newton’s first law of motion tells us that the free obje
moves along a straight worldline. So our first task is to so
the following problem.

Problem 1. From the principle of least action, show that
free particle that starts from some position at timet1 ~event
1! and arrives at a different position at timet2 ~event 2!,
moves along a straight worldline.

Solution: Consider only motion in one dimension.~It is
not difficult to generalize to higher dimensions.! Figure 3
shows some of the infinite number of worldlines that c
connect events 1 and 2. Which worldline is the one actu
followed by the particle?

Consider any smoothly curved worldline that is differe
from a straight worldline between two events. We can
proximate this worldline by a series of straight-line segme
that create a broken but continuous worldline. The numbe
these segments can be arbitrary. Denote this number byn. As
will be seen, for the case of a broken worldline, it is easy
show by induction that the smallest value of the action
longs to a straight worldline between the two events. B
cause the smooth worldline can be considered as a limi
case of straight-line segment approximation asn approaches
infinity and the validity of the least action statement does
change asn increases without limit, the action for the smoo
worldline will always be greater than the action along t
straight worldline.

To take the first step of proof by induction, demonstra
the triangle inequality for action on any broken worldlin

Fig. 3. Some of the possible motions of a free particle. The true pat
represented by a straight worldline, as we know from Newton’s first law
388 Am. J. Phys., Vol. 71, No. 4, April 2003
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Consider three events 1, 2, 3 connected by a broken wo
line connecting points 1, 2, 3 that are not collinear. Witho
loss of generality we can take events with equally spa
times t1 , t2 , t3 . ~The analysis is the same for events n
equally spaced in time, but is less transparent because i
quires more subscripts.! In particular we want to prove tha
S(13),S(12)1S(23), where contributions to the actio
S(13), S(12), andS(23) correspond to the path segmen
13, 12, and 23 respectively. Consider the sumS(12)
1S(23), which is equal to the total actionStotal for the bro-
ken line 123 and recall that the action is additive. From E
~2a! and the classical expression for the kinetic energy,
have

S~12!5
1

2
m

~x22x1!2

Dt
, S~23!5

1

2
m

~x32x2!2

Dt
,

and

Stotal5
1

2
m

~x22x1!2

Dt
1

1

2
m

~x32x2!2

Dt
, ~3a!

wherexi denotes the positions of eventi ( i 51,2,3), andDt
is the difference between the corresponding times.

We assume a nonzero spatially uniform potential ene
PE. Then PEav equals PE and according to Eq.~2a!, corre-
sponding actions have the form

S~12!5
1

2
m

~x22x1!2

Dt
2PEDt,

S~23!5
1

2
m

~x32x2!2

Dt
2PEDt,

and

Stotal5
1

2
m

~x22x1!2

Dt
1

1

2
m

~x32x2!2

Dt
22 PEDt. ~3b!

If only x2 is variable, then the sum in both cases is a q
dratic function ofx2 with a positive coefficient.~It is easy to
verify this property by multiplying out the expression.! In
this case the parabola has a vertex that describes the m
mum of the function.

If we take the derivative of Eq.~3a! with respect tox2 , the
result is

dStotal

dx2
5m

~x22x1!

Dt
2m

~x32x2!

Dt
. ~4!

Note that we also obtain Eq.~4! for the derivative in a non-
zero spatially uniform potential, because the derivative of
additional term in the action in Eq.~3b! corresponding to
constant potential energy has zero value.

If we set the right-hand side in Eq.~4! equal to zero to find
the minimum of the sum, we obtain9

05m
~x22x1!

Dt
2m

~x32x2!

Dt
~5a!

or

~x22x1!

Dt
5

~x32x2!

Dt
. ~5b!

Equation~5b! tells us that the slopes of the two segmen
have to be equal, which is true only for a straight line. The
fore events 1, 2, and 3 lie on a straight worldline, which a
implies the law of conservation of momentum. So for bo

is
388Hanc, Tuleja, and Hancova
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zero potential and uniform potential, every broken worldli
has a greater value of the action than the value correspon
to a straight worldline connecting the same two end eve
By induction ~see Fig. 4! the same result holds for an
worldline composed ofn straight-line segments, and in th
limit as n→`, it holds for any continuous smooth worldline
The action has the smallest value for a straight worldl
connecting the events, that is, the motion corresponds to
stant velocity.

Pedagogical note 2:It is helpful to have students firs
consider the simplest possible case of the motion of a
object in zero potential, namely, one in which the space
ordinates of the initial and final events are the samex1

5x2). In this case the straight worldline with constantx
coordinate in the space–time diagram yields the value z
for the actionS(12). Definition ~1b! for the action shows
that the action is always non-negative, because the kin
energy is a non-negative quadratic function at every poin
the worldline so its average value in the expression for
action must be a non-negative number. Therefore, an a
trary worldline connecting events 1 and 2 will have an act
greater than zero unless it is the straight worldline conn
ing the two points. Consequently, the principle of least act
tells us that the particle remains at rest at the same poin
space between the initial and final events. This demons
tion avoids calculus completely.@End of the pedagogica
note 2.#

C. Newton’s second law

When the potential energy varies with position, we c
show that the path with minimal action satisfies Newto
second law for forces derivable from a conservative pot
tial. In the following10 we apply Feynman’s formulation o
the principle of least action for the infinitesimal path se
ments mentioned in Sec. I.

Consider an object moving in a potential energy fie
PE(x). Choose three events 1, 2, 3 that are infinitesima
close together on its worldline, as shown in Fig. 5; the
events approximate the real-worldline segment by a on
broken line and represent a little section of a real worldl
that is initially unknown. LabelA the segment between 1 an
2 andB the segment between 2 and 3. Letx1 , x2 , x3 be the
spatial coordinates of these events andt1 , t2 , t3 be the cor-

Fig. 4. Consider a broken worldline 1234. According to the triangle inequ
ity, the action for the broken worldline 123 is greater than the action for
segment 13. It follows that the broken worldline 134 has a lower action t
1234. For 134 we can use the triangle inequality again, so that the actio
segment 14 is less than the one for 134, and thereby less than the acti
1234.
389 Am. J. Phys., Vol. 71, No. 4, April 2003
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responding times. Now use the principle of least action
find the true worldline representing real motion between
and 3.

To start, fix all times and positions with the exception
x2 . Then vary the position ofx2 to minimize the action for
the once-broken path. To simplify the algebra, use equal t
intervals denoted byDt:

Dt5t22t15t32t2 . ~6!

The small loss in generality involved in equal time interva
can be removed easily~see pedagogical note 3!.

As in Sec. III A, especially from Eqs.~2d! and ~6!, we
obtain contributions to the action for segmentsA andB:

S~A!5
1

2
m

~x22x1!2

Dt
2PES x21x1

2 DDt. ~7!

S~B!5
1

2
m

~x32x2!2

Dt
2PES x31x2

2 DDt. ~8!

Now we have to find the value ofx2 that minimizes the total
actionStotal:

dStotal

dx2
5

d@S~A!1S~B!#

dx2
50. ~9!

After taking the derivatives dS(A)/dx2 and dS(B)/dx2 , we
obtain

dS~A!

dx2
5m

~x22x1!

Dt
2

d PE~x!

dx U
x5 ~x11x2!/2

1

2
Dt, ~10!

dS~B!

dx2
52m

~x32x2!

Dt
2

d PE~x!

dx U
x5 ~x21x3!/2

1

2
Dt. ~11!

Because events 1, 2, 3 are close to one another, we can
for the derivatives

d PE~x!

dx U
x5 ~x11x2!/2

'
d PE~x!

dx U
x5x2

'
d PE~x!

dx U
x5 ~x21x3!/2

. ~12!

If we substitute Eqs.~12!, ~10!, and ~11! into Eq. ~9!, we
arrive at the condition for the minimal action,

l-
e
n

for
for

Fig. 5. Section of worldline~represented by two connected straight-lin
segments! of a particle moving in the potential field described by PE(x).
The events 1, 2, and 3 are three successive events on the particle’s w
line. All space and time coordinates are fixed, with the exception ofx2 ,
which we change to satisfy the principle of least action.
389Hanc, Tuleja, and Hancova
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05m
~x22x1!

Dt
2m

~x32x2!

Dt
2

d PE~x!

dx U
x5x2

Dt. ~13!

After some rearrangements, we obtain

2
d PE~x!

dx U
x2

5mF ~x32x2!

Dt
2

~x22x1!

Dt G Y Dt ~14a!

or

2
d PE~x!

dx U
x2

5m
x322x21x1

~Dt !2 . ~14b!

On the left-hand side of Eq.~14! is the well-known ex-
pression, the negative derivative of the potential energy fo
force F acting on a particle at point 2 in the potential fiel
The right-hand side of Eq.~14b! divided bym is simply the
three-point formula for the second derivative ofx with re-
spect tot.11 In the limit of infinitesimalDt, this term gives
the instantaneous accelerationa at the point 2. Hence, we
obtain

F5ma. ~15!

We could continue and add other segmentsC,D,E,... so
that we would cover the entire worldline that describes
motion of the particle. For each of these segments the
come yields the same Eq.~15!. So we have found the con
nection between the principle of least action and Newto
second law. The worldline representing the path with mi
mal ~stationary! action is the one satisfying Newton’s law.

Following Feynman,1 we remark on some other genera
zations. Consider a situation in which a particle in a poten
field moves on an arbitrary path1–2–3 inthree-dimensiona
space. Each translation in space can be analyzed as an
pendent translation in one of the three dimensions. Th
fore, we can think of carrying out independent translations
thex, y, andz directions, thus arriving at the resulting thre
equations represent the component notation of one ve
equation:Fx5max , Fy5may , Fz5maz or the vector equa-
tion

F5ma. ~16!

Equation~16! is the general expression for Newton’s seco
law. Using a similar procedure, we can also generalize to
case of many particles.1

Pedagogical note 3:The preceding general variation
method is a bit difficult for students. It is sufficient if stu
dents are introduced to the result using a special case o
potential field, such as the earth’s gravitational field,
which the potential function is linear in one space dimensi
In that case the above procedure is more understandable
much more straightforward. Moreover, the case of a lin
potential energy function leads to only a quadratic functi
which again allows us to use a noncalculus derivation.9

The right-hand side of Eq.~14a! can be explained to stu
dents without knowledge of the three-point formula for t
second derivative. We identify the two terms in the nume
tor on the right-hand side of Eq.~14a! as the average veloci
ties on segmentsA and B. In other words, these velocitie
are the values at the midpoints of line segmentsA and B.
Because the estimated change in velocity takes just the
Dt, the time between the midpoints of the segments, the
in Eq. ~14a! represents the average acceleration.
390 Am. J. Phys., Vol. 71, No. 4, April 2003
a

e
t-

’s
-

l

de-
e-
n

or

e

he
r
.
nd
r
,

-

e
te

Our software~see Fig. 2! calculates the acceleration at an
point of the broken worldline according to a more gene
formula that involves unequal timesDtA and DtB for seg-
mentsA andB,

a5F ~x32x2!

DtB
2

~x22x1!

DtA
G Y FDtA

2
1

DtB

2 G . ~17!

Equation~17! leads to the derivation of Newton’s second la
in a way closely similar to the case of equal time lapses. T
numerator of Eq.~17! is again the change in velocity, and th
denominator is the time between the midpoints of the s
ments. Students can use this fact to generalize the acce
tion formulas~14a!–~17! without needing to derive Newton’s
second law for unequal time intervals.@End of the pedagogi-
cal note 3.#

IV. PRINCIPLE OF LEAST ACTION: WHERE DOES
IT COME FROM?

The principle of least action says that a particle moves
the path for which the actionS is a stationary. After deriving
Newton’s laws from the principle of least action, then, a
cording to Feynman, some questions naturally arise: Wha
the origin of the principle of least action? How does t
particle find the right path~or worldline!? Does it ‘‘smell’’
the neighboring paths to find out whether or not they ha
increased action?1

Newtonian mechanics cannot answer these questions
deed, the principle of least action has a deep explanatio
quantum mechanics. There are three apparently diffe
mathematical formulations of nonrelativistic quantum m
chanics due to Schro¨dinger, Heisenberg, and Feynman. T
last one provides a simple justification of a minimum pri
ciple that is very accessible to students.

We recapitulate briefly the basic ideas of Feynman’s f
mulation of quantum mechanics.12 According to this formu-
lation, the particle explores all possible paths between fi
initial and final events. The action along these many pa
plays a fundamental role. As Feynman says:13

‘‘The complete quantum mechanics... works as
follows: The probability that a particle starting at
point 1 at the timet1 will arrive at point 2 at time
t2 is the square of probability amplitude. The to-
tal amplitude can be written as the sum of the
amplitudes for each possible path@worldline# for
each way of arrival. For everyx(t)... wehave to
calculate an amplitude. Then we add them all
together. The amplitude is proportional to some
constant times exp(iS/\), whereS is action for
that path.’’

It is the magnitude ofS that leads to a seamless transitio
between classical and quantum mechanics. IfS is very large
compared to Planck’s constant\ ~as is the typical situation
for systems described successfully by classical mechan!,
we can say roughly that the amplitudes for all paths ha
very different phases and cancel out in taking the sum,
cept for those that are extremely close to the path with m
mal action. So in the classical limit,\→0, the quantum
result reduces to the principle of least action.

It is appropriate to remark that the demarcation betwe
the domains of quantum and classical theory does not ne
sarily coincide with the one separating macroscopic obje
390Hanc, Tuleja, and Hancova
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from microscopic ones.~See the next example dealing with
wristwatch and a microprocessor.! The previous criterion for
the transition can be generalized to the quantum criterio14

If an action~or a parameter characterizing the physical si
ation or phenomenon that has the dimension of action! has a
numerical value comparable to Planck’s constant, then
behavior of the system must be described using quan
physics. If the action is much larger than\, classical theory
offers an approximation sufficiently accurate for most p
poses. So the magnitude of the action characterizes the li
of validity of classical theories.

Here we give two examples for which the typical mag
tude of the action can be successfully estimated from a
cedure based on dimensional analysis. A mechan
wristwatch15 has moving parts with an approximate sized
'1024 m, massm'1024 kg, and typical timet'1 s. So
the characteristic action using dimensional analysis~the unit
of S is J s! is S'md2 t21'10212 J s'1022\.

The microprocessor is the heart of every computer. T
first Pentium processor (232 cm) was made using 0.8mm
technology, which means that the thinnest wires were of s
0.8 mm (d'1026 m). Because it is an electronic device, t
operation of the microprocessor depends on electronsm
'10230 kg). The processor executes instructions dur
clock cycles. So the power of processor is approximat
given by the maximum clock speed, which was 60 MHz
the first Pentium chip, corresponding to the angular f
quencyv'400 MHz. The typical action is represented b
S'md2v'4310234 J s'4\. Although these two system
are comparable in size, the result is that the maker of a
chanical watch needs to know nothing about quantum the
whereas the creators of microprocessors, the basic cons
ents of modern information technology, must use quant
theory to design their chips.

V. CONCLUSION

We have obtained Newton’s second law from the princi
of least action only for conservative forces, for which the
exists a potential function. But the Newtonian formulation
classical mechanics extends readily from this conserva
case to nonconservative~dissipative! cases like friction. Are
Newton’s laws of motion more general than the principle
least action? The answer is again in Feynman’s lectures.16 At
the microscopic level, there are no dissipative forces. F
tion appears only because we neglect microscopic comp
tions resulting from a large number of interacting particl
for which it would be practically impossible to carry out a
exact analysis. Although the Newtonian formulation he
effectively to eliminate complications such as the case
friction, Newton’s laws cannot be extrapolated to things t
are very small or very fast or very large. Indeed, it turns
that the fundamental laws can be set in the form of a p
ciple of least action. From a principle of least action we c
derive Maxwell’s equations,17 and can use this principle in
relativity10 if we find the correct form for the action. Th
action is very important in many fields of modern physic
We believe that students should be introduced to it early
that the present approach18 is one possible way of doing so
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