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We present a method for introducing students to the classical principle of least action, using a novel
approach based on the ordinary calculus of one variable. We define the classical action for a path and
draw the connection between it and Newton’s laws for a free particle and for a particle in a
conservative potential. The use of software to help students visualize the principle of least action
and analyze rectilinear motion is discussed. We also briefly discuss the origin of the principle of
least action in Feynman’s sum over paths formulation of quantum mechanieso3american
Association of Physics Teachers.
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[. INTRODUCTION But the location of subsectioA along the worldline was
chosen arbitrarily. Therefore, we require that the worldline
Since Newton’s time, classical mechanics has been eWith minimal action must also satisfy the principle of least
egantly reformulated as a single unifying principle known asaction between any pair of intermediary points. Conse-
Hamilton’s principle. Following Feynmanand Landad,  quently, the principle for the entire path can be stated in
Hamilton’s principle is frequently called “the principle of Feynman’s infinitesimal form:the action along an arbitrary
least action.” According to the least action formulation of infinitesimal section of the true worldline has a minimal
classical mechanics, a particle moves along the path foyalue. For an infinitesimal section it is unimportant how the
which the actionsymbolized byS) is a minimum. In some Potential varies from one place to another place far away;
cases the true path does not yield a minimumSdout an only the local first-order change in the potential is important.

inflection point or, in general, a stationary value. Hence aS.O the rgsult can depend OF" on the derivative of the poten-
tial that is the force at a poirit.

more accurate name for this principle is the principle of sta- ! :
tionary actior® P P P P If we proceed from this formulatiofdue to Feynmanof
A clear and interesting introduction to the principle of t€ Principle for an infinitesimal section of the path, we see
hat the principle of least action leads to Newton’s second

least action can be found in Ref. 1. How are we to find th . . .
path of least action? This is a difficult problem belonging to'2% and only ordinary calculus is needed to derive almost all
f classical mechanics.

the calculus of variations. We will describe one way around® .
In Sec. Il we illustrate some of the features of our software

this complicated mathematics which we believe provides a hich d ical 100l for introducing the least
deep understanding of the principle of least action for begin¥/"'c" W€ US€ as a pedagogical tool for introducing the leas
ction formulation of classical mechanics. In Sec. Ill we use

nin nts. The key i i n from Fey- . - -
nmgrf’;u?eitltjsreé vShe?Z r?:a;nZnt;?osnesd tﬁatifptarllseszgcz 8]?3 G e definition of the classical action to relate it to Newton'’s

minimum alond the true path. then it is also a minimumlaws in two cases: the motion of a free particle and a particle
long ever % tion fpth ’ th in a conservative potential field. Our variational method re-

along every subsection ot the pain. ) . quires only ordinary derivatives. Section IV briefly describes
To explain the meaning of Feynman’s statement, we will

id tion i | di . d olot th the meaning of action in quantum mechanics and the origin
consider mo 'O,n In-only one space dimension and plot ey¢ 1he classical principle of least action in Feynman’s sum
actual particle’s motion in space and times(t), a plot gy qr paths formulation of quantum mechanics.

called aworldline. The principle of least action says that the - Tragjtionally the principle of least action is taught in ad-
worldline xa(t) yields a minimal action. Now choose an ar- yanced classical mechanics courses. However, the method
bitrary subsectior of this worldline. Draw a nearby world- described in this paper has allowed us to teach it as early as
line xg(t) that differs fromx,(t) only on the sectiom, secondary school. We include three pedagogical notes on
wherexg(t) creates a new sectid® (see Fig. 1. As we will  teaching strategies derived from our use of the principle of
see in Sec. lllA, the total action for a worldline can be least action with classes at both the secondary school and
expressed as a sum of actions for each of its sections. THéniversity levels>

value of the action is identical along common sections of

both Worldlir?esxA(t) andxg(t). Therefor_e, the difference in Il INTRODUCTION TO THE PRINCIPLE OF

the total action betweer,(t) andxg(t) is due to different LEAST ACTION

contributions to the action from sectioAsandB. In order to

not violate the condition of minimal total action, the action Feynmaf tells us that there are two natural ways to find
for sectionB must be greater than action for the sectdon  the path that satisfies the principle of least action. Orthés
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A values of the action and the following mechanical quantities
on the particle’s path: position, velocity, acceleration, mo-
mentum, and energy.

The second way to find the path that satisfies the principle
of least action is mathematical. In contrast to the trial-and-
error method, mathematics allows us to include all possible
paths and to prove that the path minimizing actt®is the
one that obeys Newton'’s laws.

Ill. PRINCIPLE OF LEAST ACTION AND
- NEWTON'S LAWS

f ¢

’ A. Definition of action and some special cases
Fig. 1. Two nearby worldlinegheight vs elapsed timex,(t) and xg(t),
wherex,(t) represents the actual particle’s worldline aggt) is an alter- Consider a particle of masa that starts from some fixed
native worldline, which differs fromx,(t) only on sectionA, which is initial position at timet; and moves to a fixed final position
modified as a new sectidB. at a later time,. The general expression for the action along

the particle’s trajectory is

trial-and-error method We calculate the action for millions N P
of paths and find the one that has the smallest value of the S= 4 (KE=PBdt. (13

action. Because this method is straightforward but tedious, )
we turn it over to a computérUsing a computer also can We use unconventional double letters KE and PE as symbols

help students to visualize and develop an intuition for thdfor the kinetic and potential energies, respectively, because
process. Such a computer program is illustrated in Fig. 2. I4hey are more mnemonic than the usual symbolandV.
manipulating this program, the student naturally becomes ad=quation(1a) can be written in the form
cust_omfad to Fhe central concepts o_f worldlif@eplot of the S=(KEg~PE,)(t,—ty). (1b)
particle’s position as a function of timend event(a point
on the worldlin@. With almost no mathematical formalism The average energies, KFand PE,, are given by integrals
the student can explore the motion of a particle in varioussimilar to that in Eq(1a) divided by ¢,—t;). Each of these
potentials by comparing the action along the true worldlineaverages is a functiofor more exactly a functionalof the
with that along alternative worldlines. For the worldline of worldline taken by the particle. Equatidfib) can be rewrit-
least action the result is the same as that derived from Newten in many convenient ways, depending on the nature of the
ton’s laws. On the display the student can see the numericanalysis.
(2) If the worldline is straight, then the particle moves at a
constant velocity and therefore with a constant kinetic energy

KE. In this case the action has the form
| Table Endpoints Giid Finding
S=(KE—PE,)(t,—t). 2
:Elfiinm n S [6145  Smin |-0175 Again | Menu | Hints | ( EaV)( 2 1) . . . ( a)
= . (2) If, in addition, the potential energy is a linear function
e ko Potential |oravity H along the straight worldline, then the average value of PE
- el equals the value of PE at the midpoint of the path. In this
: 1.point 9.8 Case
| zms S= (KE ~ PEigpoind (12~ 11). (2b)
i ESE iéf'f'" (3) Equation(1b) is valid for any increment of a particle’s
e a:::;m Py worldline:
T 9.point 9.8
"o tpomt | 58 AS=(KE,,— PE,)At. (20)
o 9F oy W TS Wi AT G T Gr G ’ g (4) For a very small(or infinitesima) increment of the
e worldline (therefore taken to be straightve can again use
IChuuse item Eq (2b)
AS=(KE— I:)Emidpoint)At- (2d)

Fig. 2. A worldline of a particle in the Earth’'s gravitational field. At this ; PR
point students know only that for every path represented by a worldline (5) As we see from EC{']@’ the action for an infinitesimal

X(t), there exists one number, which is called the acBemnd that the real segment of worldline can be expressed as

path obeys the principle of least action. The software shows students how AS=(KE—PE)At. (20

the principle of least action leads to a unique worldline. Students can choose

any worldline for the particle by selecting poinfesvents that the computer  Equation(1b) leads to the same conclusion, because for an
connects with a line. Students drag these points while the computer immegnfinitesimal segment of a worldline, the average energies
diately displays the value of the acti@hand the table of acceleration or can be substituted for the instantaneous energies. Equations

other quantitiegposition, velocity, momentum, energglescribing the mo- . . e
tion. Students soon discover that the path with minimal action has the sam(ela) and (1b) embOdy the fact that the action is an additive

acceleration £ 9.8 m/$) at each point, which describes free fall due to quantity. . ) . .
gravity. The path that satisfies the principle of least action also conserves Pedggp_glcal note 1From the mthemat|Ca| point of view,
total energy. the definitionsg(1a and(1b) are equivalent, as can be shown
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A Consider three events 1, 2, 3 connected by a broken world-
line connecting points 1, 2, 3 that are not collinear. Without
loss of generality we can take events with equally spaced
timestq, t,, t3. (The analysis is the same for events not
equally spaced in time, but is less transparent because it re-
quires more subscripdsin particular we want to prove that
S(13)<S(12)+ S(23), where contributions to the action
S(13), S(12), andS(23) correspond to the path segments
13, 12, and 23 respectively. Consider the sB(l2)
+S(23), which is equal to the total actidd,, for the bro-

> ken line 123 and recall that the action is additive. From Eq.
(2a) and the classical expression for the kinetic energy, we

Fig. 3. Some of the possible motions of a free particle. The true path ishave
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represented by a straight worldline, as we know from Newton'’s first law. . 1 (XZ_X1)2 . 1 (X3—X2)2
SA=om—xy  SZ=ym—g

by using the integral definition of the average value for agpq

function. But psychologically they are quite different, espe- 5 5

cially for students new to calculus. In our experience stu- 1 (Xa—X1)® 1 (X3—Xp)

dents find the nonintegral definition more acceptable. An- S‘Ota'_im At +§m At (33

other advantage of beginning with E(.b) is that students wherex. denotes the positions of eveinti = 1,2.3), andat

already are aware of similar average quantities from kine- ] e
matics. is the difference between the corresponding times.

Expressions for the averages used in the action formula W€ assume a nonzero spatially uniform potential energy
(1b) do not require the solution of integrals in simple cases”E- Then PE, equals PE and according to E@a), corre-
[see Eqs(2a and(2b)]. Because the integral is the same asSPonding actions have the form
the area under a curve, elementary methods for the calcula- 1 (Xp—Xq)2
tion of average values are sufficient, quick, and easy. This S(12)= EmT—PEAt,
connection between the integral and the area also provides a

natural way to pass from definitiofib) to the integral(1a). 1 (X3—Xp)?
[End of the pedagogical note]l S(23) = SM— i PEAt,
B. Free particles and
2 2
First we look at the predictions of the principle of least :E (X2—xy) 1 (X3~ X2)
action for free particles in a zer(r constant potential. Stota 2m At * 2m At 2PEAL. (3D

Newton’s first law of motion tells us that the free object . . . .
If only x, is variable, then the sum in both cases is a qua-

moves along a straight worldline. So our first task is to solve, = ; . . o ;
the following problem. dratic function ofx, with a positive coefficient(lt is easy to

Problem 1 From the principle of least action, show that a Verify this property by multiplying out the expressiprin
free particle that starts from some position at titpéevent this case the parabola has a vertex that describes the mini-

. : . . mum of the function.

ao?/gg ;rc:g/ge Sa ir:i gdr:{'f(\j\:gn(tj"}:;]oeslltlon at timg (event 2, If we take the derivative of Eq3a) with respect to,, the

Solution: Consider only motion in one dimensiofit is result is
not difficult to generalize to higher dimension&igure 3 dSiotal (Xo—X1) (X3—X5)
shows some of the infinite number of worldlines that can dx =m At -m At (4)
connect events 1 and 2. Which worldline is the one actually 2
followed by the particle? Note that we also obtain E@4) for the derivative in a non-

Consider any smoothly curved worldline that is different zero spatially uniform potential, because the derivative of the
from a straight worldline between two events. We can apadditional term in the action in Eq3b) corresponding to
proximate this worldline by a series of straight-line segmentgonstant potential energy has zero value.
that create a broken but continuous worldline. The number of If we set the right-hand side in E(4) equal to zero to find
these segments can be arbitrary. Denote this number &g the minimum of the sum, we obtdin
will be seen, for the case of a broken worldline, it is easy to (Xo—Xy) (X3—X5)

m -m

show by induction that the smallest value of the action be- 0= AL At (53
longs to a straight worldline between the two events. Be-

cause the smooth worldline can be considered as a limitingr

case of straight-line segment approximatiomagpproaches (Xo—X1)  (Xa—Xp)

infinity and the validity of the least action statement does not = . (5b)

change as increases without limit, the action for the smooth At At
worldline will always be greater than the action along the Equation(5b) tells us that the slopes of the two segments
straight worldline. have to be equal, which is true only for a straight line. There-

To take the first step of proof by induction, demonstratefore events 1, 2, and 3 lie on a straight worldline, which also
the triangle inequality for action on any broken worldline. implies the law of conservation of momentum. So for both
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Fig. 4. Consider a broken worldline 1234. According to the triangle inequal-

ity, the action for the broken worldline 123 is greater than the action for Imesegment)sof a particle moving in the potential field described by RE(

segment 13. It follows that the broken worldline 134 has a lower action thany o . cnie 1 2 and 3 are three successive events on the particle’s world-
1234. For 134 we can use the triangle inequality again, so that the action f?r T

segment 14 is less than the one for 134, and thereby less than the action o All space and time coordinates are fixed, with the exception,of
1234.

Fig. 5. Section of worldline(represented by two connected straight-line

\Which we change to satisfy the principle of least action.

. . . __responding times. Now use the principle of least action to
zero potential and uniform potential, every broken worldlinefing the true worldline representing real motion between 1
has a greater value of the action than the value corresponding,q 3.
toa stralg_ht WorIdI|n¢ connecting the same two end events. T, start, fix all times and positions with the exception of
By induction (see Fig. 4 the same result holds for any . Then vary the position of, to minimize the action for
worldline composed ofi straight-line segments, and in the {he once-broken path. To simplify the algebra, use equal time
limit as n— o, it holds for any continuous smooth worldline. ntervals denoted byAt:
The action has the smallest value for a straight worldline
connecting the events, that is, the motion corresponds to con- At=t—t;=t3—t5. (6)
stant velocity. . __ The small loss in generality involved in equal time intervals

Pedagogical note 2it is helpful to have students first .54 pe removed easilgee pedagogical note.3

consider the simplest possible case of the motion of a free ag in sec. 1I1A especially from Eqs2d) and (6), we

object in zero potential, namely, one in which the space Cogpain contributions to the action for segmeataind B:
ordinates of the initial and final events are the same (

=X,). In this case the straight worldline with constant S(A)zlm(xz_xl)z—P X2+ X1 At @
coordinate in the space—time diagram yields the value zero 2 At 2 '
for the actionS(12). Definition (1b) for the action shows

that the action is always non-negative, because the kinetic S(B)= }m(XS_XZ)Z—PE( X3t Xo At (®)
energy is a non-negative quadratic function at every point on 2 At 2 '

the worldline so its average value in the expression for thq\IOW we have to find the value of, that minimizes the total
action must be a non-negative number. Therefore, an arbi- _. )

trary worldline connecting events 1 and 2 will have an action?CtioN Stral-

greater than zero unless it is the straight worldline connect-  dS,,,, d S(A)+S(B)]

ing the two points. Consequently, the principle of least action = =0 9)

tells us that the particle remains at rest at the same point in dxz oz

space between the initial and final events. This demonstraAfter taking the derivatives ${A)/dx, and &5(B)/dx,, we
tion avoids calculus completelyEnd of the pedagogical obtain

note 2] dS(A)  (x—xy) dPHX) 1
do " At 24t (10
C. Newton’s second law 2 X= (Xq+X5)12
When the potential energy varies with position, we can  dS(B) (X3—x5) dPEX) 1
show that the path with minimal action satisfies Newton’s d—X2=—m At dx SAt (1)
second law for forces derivable from a conservative poten- X= (xp1X3)/2

tial. In the following"® we apply Feynman's formulation of Because events 1, 2, 3 are close to one another, we can write
the principle of least action for the infinitesimal path seg-for the derivatives

ments mentioned in Sec. |.

Consider an object moving in a potential energy field ~ dPEX) %dPE(X)
PE(X). Choose three events 1, 2, 3 that are infinitesimally dx X= (%0 43012 dx ex
close together on its worldline, as shown in Fig. 5; these roe 2
events approximate the real-worldline segment by a once- d PEx)
broken line and represent a little section of a real worldline ~ T dx (12
that is initially unknown. Label the segment between 1 and x= (Xptxg)/2

2 andB the segment between 2 and 3. ixgt x,, X3 be the  If we substitute Eqs(12), (10), and (11) into Eq. (9), we
spatial coordinates of these events apdt,, t; be the cor-  arrive at the condition for the minimal action,
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(X,—Xq) (X3—X,) dPHEX) Our softwareg(see Fig. 2 calculates the acceleration at any
0=m -m - At.  (13)  point of the broken worldline according to a more general
At At dx _ X :
X=Xy formula that involves unequal timest, and Atg for seg-
After some rearrangements, we obtain mentsA andB,
d PEX) (X3=X2)  (Xp=Xy)] a= (X3~ X2) - SCRRCY / %4_& (17)
2 Equation(17) leads to the derivation of Newton’s second law
or in a way closely similar to the case of equal time lapses. The
numerator of Eq(17) is again the change in velocity, and the
—2X,+ 3 X . S
_ dPEXx) :mx3 2X22 Xl_ (14b) denominator is the time between the midpoints of the seg-
dx %, (At) ments. Students can use this fact to generalize the accelera-

tion formulas(149—(17) without needing to derive Newton's

On the left-hand side of Eq14) is the well-known ex-  second law for unequal time interva€nd of the pedagogi-
pression, the negative derivative of the potential energy for aa| note 3]

force F acting on a particle at point 2 in the potential field.
The right-hand side of Eq14b) divided bym is simply the
three-point formula for the second derivative sofwith re- V. PRINCIPLE OF LEAST ACTION: WHERE DOES
spect tot.** In the limit of infinitesimalAt, this term gives |T COME FROM?

the instantaneous acceleratianat the point 2. Hence, we

obtain The principle of least action says that a particle moves on

the path for which the actio8 is a stationary. After deriving
F=ma (15)  Newton’s laws from the principle of least action, then, ac-
i cording to Feynman, some questions naturally arise: What is
We could continue and add other segme@t®,E,... SO the origin of the principle of least action? How does the
that we would cover the entire worldline that describes th article find the r|ght pathior W0r|d|ine)'_) Does it “smell”
motion of the particle. For each of these segments the ou?;e neighboring paths to find out whether or not they have
come yields the same E{L5). So we have found the con- jncreased actiod?
nection between the principle of least action and Newton's Newtonian mechanics cannot answer these questions. In-
second law. The worldline representing the path with mini-geed, the principle of least action has a deep explanation in
mal (stationary action is the one satisfying Newton's law.  guantum mechanics. There are three apparently different
Following Feynmart,we remark on some other generali- mathematical formulations of nonrelativistic quantum me-
zations. Consider a situation in which a partlcle_ ina POtenUal:hanics due to Schdinger, Heisenberg, and Feynman. The
field moves on an arbitrary path-2-3 inthree-dimensional  |ast one provides a simple justification of a minimum prin-
space. Each translation in space can be analyzed as an incgpme that is very accessible to students.
pendent transl.ation in OnQ of the three dimensions. .Thelje- We recapitu'ate br|ef|y the basic ideas of Feynman’s for_
fore, we can think of carrying out independent translations inmylation of quantum mechaniééAccording to this formu-
thex, y, andz directions, thus arriving at the resulting three |ation, the particle explores all possible paths between fixed
equations represent the component notation of one vectafitial and final events. The action along these many paths
equationF,=ma,, F,=ma,, F,=ma, or the vector equa- plays a fundamental role. As Feynman s&ys:

tion “The complete quantum mechanics... works as
F=ma. (16) follows: The probability that a particle starting at

point 1 at the time; will arrive at point 2 at time

t, is the square of probability amplitude. The to-
tal amplitude can be written as the sum of the
amplitudes for each possible pdthorldline] for
each way of arrival. For ever(t)... wehave to
calculate an amplitude. Then we add them all
together. The amplitude is proportional to some

Equation(16) is the general expression for Newton'’s second
law. Using a similar procedure, we can also generalize to the
case of many particle’s.

Pedagogical note 3The preceding general variational
method is a bit difficult for students. It is sufficient if stu-
dents are introduced to the result using a special case of the
potential field, such as the earth’s gravitational field, for . . . X
which the potential function is linear in one space dimension, ~ constant times exif%), whereS is action for
In that case the above procedure is more understandable and ~ that path.
much more straightforward. Moreover, the case of a linear It is the magnitude oS that leads to a seamless transition
potential energy function leads to only a quadratic functionpetween classical and quantum mechanicS i very large
which again allows us to use a noncalculus derivation. compared to Planck’s constafit(as is the typical situation

The right-hand side of Eq14a can be explained to stu- for systems described successfully by classical mechanics
dents without knowledge of the three-point formula for thewe can say roughly that the amplitudes for all paths have
second derivative. We identify the two terms in the numeravery different phases and cancel out in taking the sum, ex-
tor on the right-hand side of E¢l4a as the average veloci- cept for those that are extremely close to the path with mini-
ties on segmentéd andB. In other words, these velocities mal action. So in the classical limifi—0, the quantum
are the values at the midpoints of line segmehtandB.  result reduces to the principle of least action.

Because the estimated change in velocity takes just the time It is appropriate to remark that the demarcation between
At, the time between the midpoints of the segments, the ratdhe domains of quantum and classical theory does not neces-
in Eq. (149 represents the average acceleration. sarily coincide with the one separating macroscopic objects
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from microscopic onegSee the next example dealing with a would like to thank Edwin F. Taylor for providing the book,
Wristwatc_h_ and a microproce$s)0T.he previous criterio_n for materials, and helpful comments on this paper. We are also
the transition can be generalized to the quantum critéfion: grateful to Slavko Chalupka of the P. J. Safarik University,

If an action(or a parameter characterizing the physical situ-who discussed with us many of the problems mentioned in
ation or phenomenon that has the dimension of agti@s a  the paper and also encouraged us.

numerical value comparable to Planck’s constant, then the
behavior of the system must be described using quantumgectronic mail: jozef.hanc@tuke.sk
physics. If the action is much I_arger th&nclassical theory  bEjectronic mail: tuleja@stonline.sk
offers an approximation sufficiently accurate for most pur- 9glectronic mail: hancova@science.upjs.sk
poses. So the magnitude of the action characterizes the limit&R. P. Feynman, R. B. Leighton, and M. San@lke Feynman Lectures on
of validity of classical theories. Physics(Addison-Wesley, Reading, MA, 19840l. 2, Chap. 19.

Here we g|ve two examples for Wh|Ch the typlcal magnl_ L. D. Landau and E. M. LifshitzMechanics(Butterworth-Heinemann,
tude of the action can be successfully estimated from a pro,Oxford. 1976, Sec. 1.2. _ _
cedure based on dimensional analysis. A mechanica™V: R. Hamilton, “On a general method of expressing the paths of light,

wristwatcH® has movin arts with an approximate sige and of the planets by the coefficients of a characteristic function,” Dublin
gp PP University Review and Quarterly Magazide 795—-826(1833, available

—10-4 ~10-4 i et ~
~10"" m, massm- ]_-0 kg, an_d typ|_cal t|met~1_3- S_O at (http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Papers)html
the characteristic action using dimensional analytsie unit edited by David R. Wilkins.

of Sis J9 is S~md® t 1~10 1% Js~10°%. “Reference 1, p. 19-8.
The microprocessor is the heart of every computer. The®Our analysis will consider Hamilton’s principle in the form that describes
first Pentium processor (22 cm) was made using 0,8m the mechanics of conservative systefmsgeneralized potentiglsOn the

technology which means that the thinnest wires were of Sizeother hand, there exists an extension of Hamilton’s principle that includes
’ nonconservative and nonholomonic systems. See H. Gold€&ssical

0.8 um (d=10"° m). Because it is an electronic device, the Mechanics(Addison-Wesley, New York, 1970Chaps. 2—4.

operation of the microprocessor depends on electrons ( ethe contents of this article were taught by the first author as a special topic
~10%° kg). The processor executes instructions during in a semester quantum mechanics course developed after Taylor’s course
clock cycles. So the power of processor is approximately (Ref. § for future teachers of physics at the Faculty of Science, P. J.
given by the maximum clock speed, which was 60 MHz for Safarik University, Kosice, Slovakia. It was also tried for three months in
the first Pentium chip, corresponding to the angular fre- & special physics seminar devoted to modern physics at a secondary
quency w~400 MHz. The typical action is represented by 7school, Gymnazium of J. A. Rayman, Presov, in Slovakia.
S~mdPw~4x10 3* Js<4#. Although these two systems S$Efere”.°e.l' p. 19-3. , .

. . . e basic idea of using computers comes from E. F. Taylor; see especially
are comparable in size, the result is that the maker of a Me-) 192 in E. F. Taylor, S. Vokos, J. M. O'Meara, and N. S. Thornber,
chanical watch needs to kn_OW nOthmg about quantl_Jm theo_ryf‘Teaching Feynman’'s sum over paths quantum theory,” Comput. Phys.
whereas the creators of microprocessors, the basic constitui2 190-199(1998; and E. F. TaylorDemystifying Quantum Mechanjcs
ents of modern information technology, must use quantuma workbook for quantum mechanics available —athttp://
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