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Abstract
Newton was obliged to give his laws of motion as fundamental axioms. But
today we know that the quantum world is fundamental, and Newton’s laws
can be seen as consequences of fundamental quantum laws. This article
traces this transition from fundamental quantum mechanics to derived
classical mechanics.

Explaining
It is common to present quantum physics and the
behaviour of quantum objects such as electrons or
photons as mysterious and peculiar. And indeed,
in Richard Feynman’s words, electrons do ‘behave
in their own inimitable way . . . in a way that is like
nothing that you have ever seen before.’ (Feynman
1965, p 128).

But it was also Richard Feynman who
devised a way to describe quantum behaviour with
astounding simplicity and clarity (Feynman 1985).
There is no longer any need for the mystery that
comes from trying to describe quantum behaviour
as some strange approximation to the classical
behaviour of waves and particles. Instead we
turn the job of explaining around. We start from
quantum behaviour and show how this explains
classical behaviour.

This may make you uncomfortable at first.
Why explain familiar things in terms of something
unfamiliar? But this is the way explanations have
to work. Explanations that don’t start somewhere
else than what they explain don’t explain!

In this article we show that quantum
mechanics actually explains why Newton’s laws
of motion are good enough to predict how footballs
and satellites move. For Newton, fundamental
laws had to be axioms—starting points. For us,
Newton’s laws are seen to be consequences of the
fundamental way the quantum world works.

Fermat’s principle: source of the key
quantum idea
Geometrical optics predicts the formation of
images by light rays. Examples are images due
to reflection and images formed by eyeglasses and
camera lenses. All of geometrical optics—every
path of every light ray—can be predicted from a
single principle: Between source and reception
point light travels along a path that takes the
shortest possible time. This is called Fermat’s
principle after the Frenchman Pierre de Fermat
(1601–1665).

A simple example of Fermat’s principle is the
law of reflection: angle of incidence equals angle
of reflection. Fermat’s principle also accounts
for the action of a lens: a lens places different
thicknesses of glass along different paths so that
every ray takes the same time to travel from a
point on the source to the corresponding point on
the image. Fermat’s principle accounts for how
a curved mirror in a telescope works: the mirror
is bent so that each path takes the same time to
reach the focus. These and other examples are
discussed in the Advancing Physics AS Student’s
Book (Ogborn and Whitehouse 2000).

Fermat’s contemporaries had a fundamental
objection to his principle, asking him a profound
question, ‘How could the light possibly know in
advance which path is the quickest?’ The answer
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goes very deep and was delivered fully only in the
twentieth century. Here is the key idea: The light
explores all possible paths between emission and
reception. Later we will find a similar rule for
motion of atomic particles such as the electron: a
particle explores all possible paths between source
and detector. This is the basic idea behind the
formulation of quantum mechanics developed by
Richard Feynman (1985).

The idea of exploring all possible paths raises
two deep questions: (1) What does it mean to
explore all paths? (2) How can ‘explore all
paths’ be reconciled with the fact that everyday
objects (such as footballs) and light rays follow
unique single paths? To answer these questions
is to understand the bridge that connects quantum
mechanics to Newton’s mechanics.

What does Explore all paths! mean?
The idea of exploring all paths descends from
Christiaan Huygens’ idea of wavelets (1690).
Huygens explained the propagation of a wavefront
by imagining that each point on the wavefront
sends out a spherical wavelet. He could then
show that the wavelets reconstitute the wavefront
at a later time; the parts of the wavelets going
everywhere else just cancel each other out. In 1819
the French road and bridge engineer Augustin
Fresnel put the idea on a sound mathematical
basis and used it to explain optical diffraction and
interference effects in precise detail.

In the 1940s Richard Feynman (following a
hint from Dirac) adapted Huygens’ idea to give
quantum physics a new foundation, starting with
the quantum of light: the photon. Nature’s simple
three-word command to the photon is Explore all
paths!; try every possible route from source to
detector. Each possible path is associated with a
change of phase. One can imagine a photon having
a ‘stopclock’ whose hand rotates at the classical
frequency of the light. The rotation starts when
the photon is emitted; the rotation stops when the
photon arrives at the detector. The final position
of the hand gives an ‘arrow’ for that path.

The photon explores all paths between
emission event and a possible detection event. The
arrows for all paths are to be added head-to-tail
(that is, taking account of their phases, just as
wavelets are to be superposed) to find the total
resultant quantum amplitude (resultant arrow) for
an event. This resultant arrow describes the

emission of a photon at one place and time and its
detection at a different place and time. (There are
also rules for how the length of the arrow changes
with distance, which yield an inverse square law
of intensity with distance. For simplicity we
consider only cases where the distances vary little
and changes in arrow length can be ignored.)

The resultant arrow determines the probabil-
ity of the event. The probability is equal to the
(suitably normalized) square of the length of the
arrow. In this way the classical result that the in-
tensity is proportional to the square of the wave
amplitude is recovered.

We have outlined Feynman’s simple and vivid
description of ‘quantum behaviour’ for a photon.
In effect he steals the mathematics of Huygens’
wavelets without assuming that there are waves.
For Huygens, wavelets go everywhere because
that is what waves do. For Feynman, photons ‘go
everywhere’ because that is what photons do.

The bridge from quantum to classical
physics
The next question is this: How can Nature’s
command Explore all paths! be made to fit with
our everyday observation that an object such as a
football or a light ray follows a single path?

The short answer is It does not follow a
single path! There is no clean limit between
particles that can be shown to explore many paths
and everyday objects. What do you mean by
everyday objects anyway? Things with a wide
range of masses and structural complexity are
‘everyday’ objects of study by many scientists.
A recent example is interference observed for
the large molecules of the fullerene carbon-70,
which has the approximate mass of 840 protons
(www.quantum.at).

In fact quantum behaviour tapers off gradually
into classical behaviour. This and the following
sections show you how to predict the range of
this taper for various kinds of observations. In the
meantime, as you look around you, think about the
deep sense in which the football goes from foot to
goal by way of Japan. So do the photons by which
you see your nearby friend!

The key idea is illustrated in figure 1 for the
case of photons reflected from a mirror. The mirror
is conceptually divided into little segments, sub-
mirrors labelled A to M. The little arrows shown
under each section in the middle panel correspond
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Figure 1. Many paths account of reflection at a mirrror
(adapted from Feynman 1985, p 43). Each path the light
could go (in this simplified situation) is shown at the
top, with a point on the graph below showing the time
it takes a photon to go from the source to that point on
the mirror, and then to the photomultiplier. Below the
graph is the direction of each arow, and at the bottom
is the result of adding all the arrows. It is evident that
the major contribution to the final arrow’s length is
made by arrows E through I, whose directions are nearly
the same because the timing of their paths is nearly the
same. This also happens to be where the total time is
least. It is therefore approximately right to say that light
goes where the time is least.
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to the hand of the stopclock when the little ray from
that section arrives at the point of observation P.
In the bottom panel these little arrows are added up
head-to-tail1 in order to predict the resulting large
arrow at point P. It is the squared magnitude of this
resulting arrow that determines the probability that
the photon will arrive at P.

As the caption to the figure comments, the
arrows E to I make the greatest contribution to
the final arrow because their directions are almost
the same as one another. Arrows from nearby
mirror segments on either end of the mirror point

1 This method of adding up contributions was invented by
Fresnel. If we make the mirror very wide and divide it into
thousands of much smaller segments, the resulting plot of
combined arrows becomes smooth, and is known as Cornu’s
spiral.

in many directions, so total contributions from
these end-segments never amount to much. Even
if we extend the mirror AM on each side to make
it longer, the contributions to the resulting arrow
made by reflections from the sections of these
right-and-left extensions add almost nothing to the
total resulting arrow. Why? Because they will
all curl even more tightly than arrows ABC and
KLM at the two ends of the resulting arrow shown
in the bottom panel of the figure. Most of the
resulting arrow comes from the small proportion
of arrows that ‘line up’, and almost nothing comes
from those that ‘curl up’.

Now you see how Explore all paths! leads to a
narrow spread of paths that contribute significantly
to the resulting arrow at P. And that narrow spread
must lie near the path of minimum time of travel,
because that is where the time, and so the phase,
varies only slightly from path to nearby path.

Here then is the answer to Fermat’s critics.
They asked ‘How could the light possibly know in
advance which path is the quickest?’ Answer: the
photon does not know in advance: it explores all
paths. However, only paths nearest to the quickest
path contribute significantly to the resulting arrow
and therefore to its squared magnitude, the
probability that the photon will arrive at any point
P.

This answer delivers more than a crushing
riposte. It goes further and tells by how much
Fermat’s prescription can be in error. How big
is the spread of paths around the single classical
path? To give as wide a range as possible to the
paths that contribute to the resulting arrow, find the
arrows nearest to the centre that point in nearly the
opposite direction to the central arrows G and H in
figure 1. Little arrows C and K point in nearly the
opposite direction to G and H. So our generous
criterion for contribution to the resulting arrow is
the following:

Find the little arrows that point most
nearly in the direction of the resulting
arrow. Call these the central arrows.
The range of arrows around these central
arrows that contribute most significantly
to the resulting arrow are those which
point less than half a revolution away
from the direction of the central arrows.

As an example, think of viewing a source of
light through a slit, as shown in figure 2. Limit
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Figure 2. Extreme paths through a slit (not to scale).
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the infinite number of possible paths to those
consisting of two straight segments of equal length
between source and eye. How wide (width 2d in
the figure) does the slit have to be in order to pass
most of the light from the source that we would
observe by eye?

We can get numbers quickly. Apply
Pythagoras’ theorem to one of the right triangles
abd in the figure:

a2 + d2 = b2

or

d2 = b2 − a2 = (b + a)(b − a) ≈ 2a(b − a).

In the last step we have made the assumption that a
and b are nearly the same length; that is, we make
a small percentage error by equating (b + a) to 2a.
We will check this assumption after substituting
numerical values.

Our criterion is that the difference 2(b − a)

between the paths be equal to half a wavelength,
the distance over which the stopclock hand
reverses direction. Take the distance a between slit
and either source or receptor to be a = 1 metre and
use green light for which λ = 600 nm = 60×10−8

metres. Then

d2 ≈ a
λ

2
= 1 × 30 × 10−8 m2 (1)

so that d is about 5 × 10–4 m. Therefore 2d, the
width of the slit, is about one millimetre. (Check:
b2 = a2 +d2 = (1 + 3×10−7) m2, so our assump-
tion that b + a ≈ 2a is justified.)2

2 Try looking at a nearby bright object through the slit formed
by two fingers held parallel and close together at arm’s length.
At a finger separation of a millimetre or so, the object looks just
as bright. When the gap between fingers closes up, the image
spreads; the result of diffraction. For a very narrow range of
alternative paths, geometrical optics and Fermat’s principle no
longer rule. But arrow-adding still works.

Electrons do it too!
In our analyses of photon reflection and straight-
line transmission we assumed that the hand of the
photon stopclock rotates at the frequency f of the
classical wave. If we are to use a similar analysis
for an electron or other ‘ordinary’ submicroscopic
particle, we need to know the corresponding
frequency of rotation of its quantum stopclock.

With this question we have reached bottom:
there is nothing more fundamental with which
to answer this question than simply to give
the answer that underlies nonrelativistic quantum
mechanics. This answer forms Feynman’s
new basis for quantum physics, then propagates
upward, forming the bridge by which quantum
mechanics explains Newtonian mechanics.

Here then is that fundamental answer: For
an ‘ordinary’ particle, a particle with mass, the
quantum stopclock rotates at a frequency

f = L

h
= K − U

h
(nonrelativistic particles).

(2)
In this equation h is the famous quantum of
action known as the Planck constant. L is called
the Lagrangian. For single particles moving at
nonrelativistic speeds the Lagrangian is given by
the difference between the kinetic energy K and
the potential energy U .

Is this weird? Of course it is weird.
Remember: ‘Explanations that don’t start some-
where else than what they explain don’t explain!’
If equation (2) for a particle were not weird, the
ancients would have discovered it. The ancients
were just as smart as we are, but they had
not experienced the long, slow development of
physical theory needed to arrive at this equation.
Equation (2) is the kernel of how the microworld
works: accept it; celebrate it!

For a free electron equation (2) reduces to

f = K

h
(nonrelativistic free particle). (3)

This looks a lot like the corresponding equation
for photons:

f = E

h
(photon)

(though mere likeness proves nothing, of course).
With the fundamental assumption of equa-

tion (2), all the analysis above concerning the
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photon can be translated into a description of
the behaviour of the electron. We can ask,
‘For what speed does the free electron have the
same frequency as green light?’ Green light has
frequency f = c/λ = 0.5 × 1015 Hz. From
equation (3) you can show that the speed v of
such an electron is about one-tenth of the speed of
light, near the boundary between nonrelativistic
and relativistic phenomena. The energy of this
electron is approximately 3 × 10−16 J or 2000 eV,
a modest accelerating voltage. For a proton or
hydrogen atom the mass is about 2000 times
greater and the speed is less by the square root
of this, a factor of about 1/45. For the carbon-
70 molecule mentioned previously, the speed is
less than a kilometre per second to get a quantum
frequency equal to that of green light.

For particles of greater mass the quantum
frequency in equation (3) increases and the
effective wavelength decreases. Because the
numerical magnitude of the quantum of action h

is so small, the range of trajectories like those
in figure 2 contracts rapidly, for particles of
increasing mass, toward the single trajectory we
observe in everyday life.

It is possible to compare the Try all paths!
story to a wave story, and identify a ‘wavelength’
for an electron (see the Appendix). The result is
the well-known de Broglie relation:

λ = h

mv
. (4)

This lets us estimate the quantum spread in the
trajectory of a football. Think of a straight path,
a mass of half a kilogram and a speed of 10
metres per second. Then the wavelength from
equation (4) is approximately

λ = h

mv
≈ 7 × 10−34 J s

0.5 kg × 10 m s−1
≈ 10−34 m.

How wide a slit is necessary for a straight-line
path (figure 2)? For a path length 2a = 20 m,
equation (1) gives us

d2 ≈ 10−33 m2

so the effective transverse spread of the path due
to quantum effects is

2d ∼ 10−16 m.

In other words, the centre of the football follows
essentially a single path, as Newton and everyday
experience attest.

‘Explore all paths’ and the principle of
least action
Equation (2) is important enough to be worth
repeating here:

f = L

h
= K − U

h
.

It gives the rate of rotation of the quantum arrow
along a path. Thus the sum (integral) of (L/h) dt

along a path gives the total number of rotations
along a path. The integral of L dt has a name and
a long history. The Irish mathematician William
Rowan Hamilton (1805–1865) formulated this
integral, to which we give the name action. He
showed that the classical path between two points
fixed in space and time was always the path that
had the least (or anyway, stationary) value for the
action. He called this the principle of varying
action. Most nowadays call it the principle of least
action, not worrying about the fact that sometimes
the action is stationary at a saddle point. The action
along a path is just the sum of a lot of contributions
of the form

L dt = (K − U) dt.

Feynman’s crucial and deep discovery was that
you can base quantum mechanics on the postulate
that L divided by the quantum of action h

is the rate of rotation of the quantum arrow.
We have therefore started at that point, with
the fundamental quantum command Explore all
paths! We then went to the classical limit in which
all paths contract toward one path and the quantum
command is transformed into Follow the path of
least action!

Least action explains Newton’s laws of
motion
We complete the transition to Newtonian
mechanics by showing, by illustration rather than
proof, that the principle of least action leads
directly to Newton’s second law: F = dp/dt . We
adapt a simple way to do this described by Hanc
et al (2003). We choose the special case of one-
dimensional motion in a potential energy function
that varies linearly with position. To be specific,
think of a football rising and falling in the vertical
y-direction near Earth’s surface, so the potential
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Figure 3. From least action to Newton.
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energy function U(y) is given by the expression
mgy and the Lagrangian L becomes

L = K − U = 1
2mv2 − mgy

with the velocity v in the y-direction.
Now look at figure 3, which plots the vertical

position of the centre of a rising and falling football
as a function of time. This position–time curve is
called the worldline. The worldline stretches from
the initial position and time—the initial event of
launch—to the final event of impact. Suppose that
the worldline shown is the one actually followed
by the football. This means that the value of the
action along this worldline is a minimum.

Now use scientific martial arts to throw the
problem onto the mat in one overhand flip: If the
action is a minimum along the entire worldline
with respect to adjacent worldlines, then it is a
minimum along every segment of that worldline
with respect to adjacent worldlines along that
segment. ‘Otherwise you could just fiddle with
just that piece of the path and make the whole
integral a little lower.’ (Feynman 1964, p 19-8).
So all we have to do is to ensure that the action is
a minimum along any arbitrary small segment.

We take a short segment of the worldline and
vary the y-position of its centre point, shifting it
up by a small amount δy. Then we demand the
condition that such a shift does not change the
action along the segment (leaving the end-points
fixed).

We consider the change in the action over the
two parts A and B of the segment, which occupy
equal times δt . The change in the action is

δSAB = δSA + δSB = (δLA + δLB)δt.

Since δt is fixed, the only changes that matter are
those in δLA and δLB. These are

δLA = δ(KA − UA) δLB = δ(KB − UB).

Rearrange the terms to write their sum as

δ(LA + LB) = δ(KA + KB) − δ(UA + UB). (5)

It remains to see how the two sums KA + KB and
UA + UB change when the centre of the worldline
is shifted by δy. We shall require the changes to
be equal, so that the change in the action, which
is their difference multiplied by the fixed time
interval δt , then vanishes, and we know that the

action is unvarying with respect to such a worldline
shift.

Take first the change in potential energy. As
can be seen in figure 3, the average change in y

along both parts A and B due to the shift δy in
the centre point is δy/2. The football is higher up
by δy/2 in both parts of the segment of worldline.
Thus the total change in potential energy is

δ(UA + UB) = mg δy. (6)

Thus we have the change in the sum of potential
energies, i.e. the second term in equation (5). An
easy first wrestling move!

Getting the first term, the change in the sum
of kinetic energies, needs a trifle more agility.
The effect of the shift δy in the centre point of
the worldline is to increase the steepness of the
worldline in part A, and to decrease it in part
B (remember the end points are fixed). But the
steepness of the worldline (also the graph of y

against t) is just the velocity v in the y-direction.
And these changes in v are equal and opposite, as
can be seen from figure 3. In parts A and B the
velocity changes by

δvA = δy

δt
δvB = −δy

δt
.

But what we want to know is the change in the
kinetic energy. Since

K = 1
2mv2

then for small changes

δK = mv δv = p δv.

Thus we get for the sum of changes in kinetic
energy

δ(KA + KB) = pAδvA + pBδvB

or, remembering that the changes in velocity are
equal and opposite,

δ(KA + KB) = (pA − pB)
δy

δt
.

The change in momentum from part A to part B
of the segment is the change δp = pB − pA.
Thus the total change in kinetic energy needed for
equation (5) is simply

δ(KA + KB) = −δp

δt
δy. (7)
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Now for the final throw to the mat!
Equation (5) says that if the changes of kinetic
energy (from equation (7)) are equal to the changes
in the potential energy (from equation (6)) then
their difference is zero, and the action does not
change (for fixed δt). Thus we must equate the two
to find the condition for no change in the action:

−δp

δt
δy = mg δy.

That is, the change in the action is zero if

δp

δt
= −mg.

In the special case chosen, mg is the gravitational
force in the negative (downward) direction. In the
limit of small segments this result becomes

F = dp

dt
Newton’s Second Law.

It’s all over: the problem lies at our feet! The force
must be equal to the rate of change of momentum.
Newton’s law is a consequence of the principle
of least action, which is itself a consequence of
quantum physics.

What about a more general potential energy
function? To begin with, every actual potential
energy function is effectively linear for a small
increment of displacement. So the above analysis
still works for a small enough increment along
every small segment of every actual potential
energy function. By slightly modifying the
derivation above, you can show that the general
case leads to

−dU

dy
= dpy

dt

where −dU/dy is the more general expression
for force, and we have added the subscript y to
the momentum, since the motion took place up
and down along the y-axis. For three-dimensional
motion there are two more equations of similar
form, one for the x-direction and one for the
z-direction (and, to be technically correct, the
derivative of U becomes a partial derivative with
respect to that coordinate).

“I have been saying that we get Newton’s
law. That is not quite true, because Newton’s
law includes nonconservative forces like friction.
Newton said that ma is equal to any F . But
the principle of least action only works for

conservative systems—where all forces can be
gotten from a potential function." (Feynman 1964,
p 19-7). Friction dissipates organized mechanical
energy into disorganized internal energy; we are
not trying to explain thermodynamics in this
article!

Classical and quantum?
Let’s get away from the algebra and try to
describe how it all works at the fundamental
level. Newton’s law fixes the path so that changes
in phase from changes in kinetic energy exactly
match those from changes in potential energy.
This is the modern quantum field theory view
of forces: that forces change phases of quantum
amplitudes. We see it here in elemental form.
What Newtonian physics treats as cause and effect
(force producing acceleration) the quantum ‘many
paths’ view treats as a balance of changes in
phase produced by changes in kinetic and potential
energy.

So finally we have come all the way from
the deepest principle of nonrelativistic quantum
mechanics—Explore all paths!—to the deepest
principle of classical mechanics in a conservative
potential—Follow the path of least action! And
from there to the classical mechanics taught in
every high school. The old truths of the classical
world come straight out of the new truths of the
quantum world. Better still, we can now estimate
the limits of accuracy of the old classical truths.

Half-truths we have told
In this article we have deliberately stressed an
important half-truth, that every quantum object
(a photon, an electron etc) is significantly like
every other quantum object: namely, that all
obey the same elemental quantum command Try
everything! But if electrons as a group behaved
exactly like photons as a group, no atom would
exist and neither would our current universe, our
galaxy, our Earth, nor we who write and read this
article.

The Try everything! half-truth does a good job
of describing the motion of a single photon or a
single electron. In that sense it is fundamental.
But the behaviour of lasers and the structure of
atoms depend respectively on collaboration among
photons and collaboration among electrons. And
collaboration is very different between electrons
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and between photons. Photons belong to the group
bosons, electrons to the group fermions. Bosons
tend to cluster in the same state; fermions avoid
occupying the same state.

If two identical particles come to the same
final state, the same result must come from
interchanging the two particles—that is the
symmetry consequence of identity. The Try
everything! command has to include the command
‘Add up the arrows for both processes.’ If the
particles are bosons, the arrows are the same and
just add, doubling the amplitude (and multiplying
the probability by four). We summarize by saying
that photons ‘like to be in the same state’; this
is why lasers work (and also why we experience
radio-frequency streams of photons as if they were
radio waves). But if the particles are fermions, the
arrows combine with reversal of phase. Now the
amplitude to be in the same state is zero. That’s
why electrons obey the Pauli exclusion principle;
why electrons in an atom are in different states.
The structure of our world and our observation of
it both depend on this difference between the group
behaviour of photons and the group behaviour of
electrons.
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Appendix. The de Broglie wavelength
We show here that the fundamental expression
L/h for the rate of rotation of the quantum arrow
as a particle propagates along a path, leads to the
de Broglie relationship λ = h/mv, in a suitable
approximation.

We consider a free particle, where the
potential energy U = 0 and L = K = 1

2mv2:

Rate of rotation of arrow = mv2

2h
.

Over a time t , the number of rotations of the arrow
is

Number of rotations n = mv2

2h
t.

One wavelength corresponds to the distance x

along which the arrow makes one complete turn.
So we need to express the number of rotations in

terms of x rather than v and t , using v = x/t . This
gives

Number of rotations n = mx2

2ht
.

If x is large and increases by a small amount δx,
the number of rotations increases by

δn = mx δx

ht
(neglecting terms in δx2).

We now introduce the wavelength. Provided that
λ � x, we can say that δn = 1 rotation when
δx = λ. That is

1 = mxλ

ht
.

Writing v = x/t and rearranging gives the de
Broglie relationship

λ = h

mv
.

Received 15 September 2004
doi:10.1088/0031-9120/40/1/001

References
Feynman R P 1964 The Feynman Lectures on Physics

vol. II (New York: Addison Wesley)
Feynman R P 1965 The Character of Physical Law

(Cambridge, MA: MIT Press)
Feynman R P 1985 QED: The Strange Story of Light

and Matter (London: Penguin)
Hanc J, Tuleja S and Hancova M 2003 Simple

derivation of Newtonian mechanics from the
principle of least action Am. J. Phys. 74 386–91

Huygens 1690 Traité de la Lumière facsimile edition
(1966) (London: Dawsons of Pall Mall)

Ogborn J and Whitehouse M (eds) 2000 Advancing
Physics AS (Bristol: Institute of Physics
Publishing)

Jon Ogborn directed the Institute of
Physics’ Advancing Physics project,
and is Emeritus Professor of Science
Education, Institute of Education,
University of London.

Edwin Taylor is a retired member of the
Physics Department at the Massachusetts
Institute of Technology and coauthor of
introductory texts in quantum mechanics,
special relativity and general relativity as
well as interactive software to learn these
subjects.

34 P H Y S I C S E D U C A T I O N January 2005


