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We derive conservation laws from symmetry operations using the principle of least action. These
derivations, which are examples of Noether’s theorem, require only elementary calculus and are
suitable for introductory physics. We extend these arguments to the transformation of coordinates
due to uniform motion to show that a symmetry argument applies more elegantly to the Lorentz
transformation than to the Galilean transformation. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

‘‘It is increasingly clear that the symmetry group of natu
is the deepest thing that we understand about nature to
~Steven Weinberg!.1 Many of us have heard statements su
as for each symmetry operation there is a corresponding
servation law. The conservation of momentum is related
the homogeneity of space. Invariance under translation
time means that the law of conservation of energy is va
Such statements come fromNoether’s theorem, one of the
most amazing and useful theorems in physics.

When the German mathematician Emmy Noether pro
her theorem,2,3 she uncovered the fundamental justificati
for conservation laws. This theorem tells us that conserva
laws follow from the symmetry properties of nature. Sym
metries~called ‘‘principles of simplicity’’ in Ref. 1! can be
regarded as a way of stating the most fundamental prope
of nature. Symmetries limit the possible forms of new phy
cal laws. The deep connection between symmetry and c
servation laws requires the existence of a minimum princ
in nature: the principle of least action. In classical mech
ics, symmetry arguments are developed using high le
mathematics. On the other hand, the corresponding phy
ideas often are much easier to understand than the m
ematical derivations.

In this paper we give an elementary introduction to t
relation between symmetry arguments and conserva
laws, as mediated by the principle of least action. We s
use only elementary calculus so that our approach can
used in introductory university physics classes.

Because the paper deals mainly with symmetry, it is i
portant how we define or characterize this concept in
framework of introductory physics. We adopt Feynma
simple description of symmetry from his lectures
physics,4 which says that anything is symmetrical if one c
subject it to a certain operation and it appears exactly
same after the operation.

Like Feynman, we will concentrate on symmetry in phy
cal laws. The question is what can be done to a physical
so that this law remains the same. Noether’s theorem der
conservation laws from symmetries under the assump
that the principle of least action governs the motion o
particle in classical mechanics. This principle can be phra
as ‘‘The action is a minimum for the path~worldline! taken
428 Am. J. Phys.72 ~4!, April 2004 http://aapt.org/ajp
y’’
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by the particle,’’5 which leads to the reformulation of ou
basic question about symmetry: What changes can we m
in the worldline that do not lead to changes in either t
magnitude or the form of the action?

We will explore and apply symmetry operations to t
action along an infinitesimally small path segment. Beca
the action is additive, conclusions reached about a path
ment apply to the entire path. The simplest examples of s
metry show the independence of the action on the differe
in some quantity such as position, time, or angle.6 When
such a symmetry exists, Noether’s theorem tells us tha
physical quantity corresponding to this symmetry is a co
stant of the motion that does not change along the entire
of the particle.7 The existence of such a constant implies
conservation law, which we then identify.

Section II briefly describes our software that helps s
dents study the action and its connection to conserva
laws. Section III analyzes four examples of symmetry ope
tions: translation in space and time, rotation through a fix
angle, and symmetry under uniform linear motion, nam
the Galilean transformation. The first three symmetries le
to three conservation laws: momentum, energy, and ang
momentum. Section IV extends the analysis to symmetry
relativity, showing that these conservation laws exist in t
realm. Moreover, for uniform linear motion the symmet
argument applies more elegantly to the Lorentz transform
tion than to the Galilean transformation.

In the following we often talk about variations or chang
in the action. Consistent with standard practice, we will on
be interested in variations representing infinitesimal fir
order changes in the action. To keep the arguments sim
we also assume that the particle’s invariant massm ~rest
mass! does not change during the motion to be studied.

II. SOFTWARE

We start with the well-known definition of action for
particle of massm that moves from some initial position a
time t1 to some final position at timet2 :

S5E
t1

t2
~KE2PE!dt, ~1a!

or equivalently
428© 2004 American Association of Physics Teachers
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Fig. 1. The use of software helps students study
action along a worldline for a particle moving verticall
in a gravitational field~as shown! or in other conserva-
tive potentials. The user clicks on events to create
worldline and then drags the events to minimize t
action, which the computer continuously calculates a
displays. The computer also displays a table of ener
momentum, or other quantities that demonstrate cons
vation of these quantities. Students discover that for
worldline of minimum action, momentum is conserve
for the motion of a free particle and that in a gravita
tional field total energy is conserved.
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S5~KEav2PEav!~ t22t1!. ~1b!

Here KEav denotes the time averaged kinetic energy and Pav

the time averaged potential energy betweent1 and t2 . We
use the notation KE and PE as symbols for kinetic and
tential energies, respectively, because they are more m
monic than the traditional symbolsT andV.

Action is not a familiar quantity8 for many students, so we
employ an interactive computer program9 to help them de-
velop an intuition about the nature of the action and
principle of least action. By using an interactive compu
display, the student cannot only explore the operation of
principle of least action, but also study the relation betwe
this principle and conservation laws in specific cases~Fig. 1!.
In carrying out this manipulation, the student naturally wor
with the central concepts of a worldline~a graph of the time
dependence of a particle’s position! and an event~a point on
a worldline!. Unlike the trajectory in space, the worldlin
specifies completely the motion of a particle. For backgrou
on the symmetry properties of nature, we suggest that
students read a selection from Ref. 10.

III. SYMMETRY AND CONSERVATION LAWS IN
NEWTONIAN MECHANICS

A. Translation in space

We first examine the symmetry related to translation
space. When we perform an experiment at some location
then repeat the same experiment with identical equipmen
another location, then we expect the results of the two
periments to be the same. So the physical laws should
symmetrical with respect to space translation.

As a simple example, consider the action of a free part
~in zero potential or uniform potential! moving along thex
axis between two events 1@ t1 ,x1# and 2@ t2 ,x2# infinitesi-
mally close to one another along its worldline. Because
worldline section is considered to be straight, the parti
moves at constant velocityv5(x22x1)/(t22t1) and there-
fore with a constant kinetic energy (1/2)mv2. According to
429 Am. J. Phys., Vol. 72, No. 4, April 2004
-
e-

e
r
e
n

s

d
ur

nd
at
x-
be

le

e
e

Eq. ~1b!, the action along this straight segment in zero p
tential is ~the consideration for uniform potential is anal
gous!

Sfor segment5
1

2
m

~x22x1!2

~ t22t1!
. ~2!

If we change the positions of both observed events b
fixed displacementa, the action remains unchanged~invari-
ant!, because the value of the action depends only on
difference between the positions:x21a2(x11a)5x22x1 .
The principle of least action is symmetrical with respect to
fixed displacement of the position. Noether’s theorem i
plies that this symmetry is connected with a conservat
law. In the following, we demonstrate that the conservat
law related to symmetry under space translation is conse
tion of momentum.

1. Principle of least action and momentum

Think of the motion of a free particle along thex axis. To
explore the connection between the principle of least ac
and the conservation of momentum, we take advantage
the additive property of the action to require that the act
along an arbitrary infinitesimal section of the true worldlin
have a minimal value.11 Thus we consider three successi
infinitesimally close events, 1, 2, and 3 on the particl
worldline and approximate a real worldline by two co
nected straight segments,A andB ~see Fig. 2!.

Because we are considering translation in space, we fix
first and last events, 1 and 3, and change the space coord
x2 of the middle event 2 so as to minimize the value of t
total actionS. This minimum condition corresponds to a ze
value of the derivative ofS with respect tox2 :

dS

dx2
50. ~3!

Because the action is an additive quantity, the total act
equals the sum of the actions for segmentsA and B, so S
5S(A)1S(B). If we use Eq.~2!, we can write
429Hanc, Tuleja, and Hancova
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S5
1

2
m

~x22x1!2

~ t22t1!
1

1

2
m

~x32x2!2

~ t32t2!
. ~4!

If we perform in Eq.~4! the derivative indicated in Eq.~3!,
we obtain the condition:

m
~x22x1!

~ t22t1!
5m

~x32x2!

~ t32t2!
. ~5!

The expression on the left-hand side of Eq.~5! is the mo-
mentumpA for segmentA while the expression on the righ
hand side is the momentumpB for segmentB, so pA5pB .
We could continue and add other segmentsC, D, E,... to
cover the entire worldline that describes the particle moti
For all these segments the momentum will have the sa
value, which yields the conservation law of momentum. T
action for this free particle depends only on the change of
coordinatex and the result of this dependence is the cons
vation of the particle’s momentum.

However, this derivation uses only the displacement
one event on the worldline. Therefore, we have not yet de
onstrated the relation between the conservation of mom
tum and the symmetry of translation in space in which
three events are displaced.

2. Symmetry and the conservation of momentum

Now we show the straightforward relation between t
symmetry of translation in space and conservation of m
mentum. Again consider three infinitesimally close events
the worldlinex(t) of the free particle shown in Fig. 3~the
extension to the entire worldline will be discussed later!.

We shift the worldlinex(t) so that every event changes i
position by a fixed infinitesimal displacementa. The new
events create a shifted worldline which we indicate by
asterisk:x* (t). As pointed out, the form of the action fo
x* (t) remains unchanged and does not depend on the pa
etera. Thus the change in action with respect to the displa
menta is zero:

DaS[S~1* 2* 3* !2S~123![0. ~6!

Note that the worldlinex* (t) is just as valid as the origi
nal one. Therefore the worldlinex* (t) also obeys the prin-
ciple of least action. In translating fromx(t) to x* (t) we do
not need to shift all the events simultaneously. The sa
effect is obtained if we first change the position of event 1~in

Fig. 2. Segment of the worldline of a particle that passes through t
infinitesimally close events, for which every smooth curve can be appr
mated by two connected straight segments.
430 Am. J. Phys., Vol. 72, No. 4, April 2004
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Fig. 3 only coordinatex1 changes, which creates the world
line 1*23!, then event 3~only x3 changes, which create
1*23* ! and finally event 2~only x2 changes, which create
1*2*3* !. The total change in action for displacementa can
be written as:

DaS5DS1→1* 1DS3→3* 1DS2→2* , ~7!

whereDS1→1* , DS2→2* , DS3→3* denotes the changes i
the action after the shifts in the corresponding events.

Equation~6! tells us thatDaS is always zero. The fina
changeDS2→2* must also be zero, from the principle of lea
action applied to the new worldline. Hence Eqs.~6! and ~7!
give

2DS1→1* 5DS3→3* . ~8!

If we now calculate the changes in the action in Eq.~8!, we
obtain the conservation law of momentum. Because the
placementa is infinitesimal, we can write:

DS1→1* [S~1* 23!2S~123!5
dS

dx1
a, ~9a!

DS3→3* [S~1* 23* !2S~1* 23!5
dS

dx3
a. ~9b!

If we substitute Eq.~9! into Eq. ~8! and use the fact that th
fixed infinitesimal displacementa is arbitrary, we have12

2
dS

dx1
5

dS

dx3
. ~10!

The application of the derivatives in Eq.~10! to the ex-
pression for the action in Eq.~4! yields the identical result
for a free particle as Eq.~5!, but this time as a result o
spatial translation of the entire incremental worldline se
ment. Thus the left-hand side of Eq.~10! can also be inter-
preted as the momentum at event 1 and the right-hand sid
the momentum at event 3.

The preceding considerations can be applied to the en
worldline x(t). We did not specify the location of the seg
mentsA andB. Therefore, an arbitrary number of addition
segments can be added between them. Then we shift
segments as before~see Fig. 4!. By the same analysis we
conclude that the momentum for segmentA ~effectively the
momentum at event 1! has the same value as for segmenB
~effectively at event 3!. The arbitrariness of position of thes
segments on the worldline means that the value of the

e
i-

Fig. 3. Three infinitesimally close events 1, 2, 3 on the actual worldline.
shift this worldline through a fixed infinitesimal displacementa. An arbitrary
displacement can be composed from a sequence of such infinitesima
placements.
430Hanc, Tuleja, and Hancova
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mentum remains constant at every event on the worldl
Thus, in classical mechanics, the symmetry of spatial tra
lation means that momentum is conserved for a free part

The invariance of the action with respect to translation
space is also called the homogeneity of space, which me
that all points in space are equivalent. In other words, it d
not matter where an experiment is performed. Therefore,
can state that the law of momentum conservation res
from the homogeneity of space.

B. Translation in time

It is easy to envision the symmetry related to translation
time. Repeating an experiment on identical initial syste
yields the same result when the two experiments are s
rated by a lapse of time. Our conclusion is that physical la
should not change with translation in time.

Again we will show the relation of translation in tim
symmetry to a relevant conservation law. We start with
expression for the action of a particle moving in thex direc-
tion along an infinitesimally small worldline segment in
potential field described by PE(x). As in Sec. III A the action
for this segment can be written according to Eq.~1b! as

Sfor segment5
1

2
m

~x22x1!2

~ t22t1!
2PES x11x2

2 D ~ t22t1!, ~11!

where the potential energy is evaluated at the average p
tion along the segment. Now suppose that we translate
time t by an amountt. It is easy to see that the action will no
change, because only the difference of the time,t21t2(t1

1t)5t22t1 , appears in the equation for the action. So
action is symmetrical with respect to a fixed displacemen
time t. What conservation law is related to this time symm
try? We will show that it is conservation of energy.

We follow the same line of reasoning as for the case
translation in space, but now we fix all position and tim
coordinates with the exception oft2 . Think of a particle that
moves along thex axis in the potential field with potentia
energy PE(x). To simplify the algebra, we denote space a
time differences by

DxA5x22x1 , DxB5x32x2 ,
~12!DtA5t22t1 , DtB5t32t2 .

Fig. 4. Following the same analysis as before, we conclude that the mo
tum at event 1 is the same as at event 3. The events 1 and 3 can be c
arbitrarily. The arbitrariness of position of these events on the world
implies the same value of momentum at every point~event! along the whole
worldline of the moving object.
431 Am. J. Phys., Vol. 72, No. 4, April 2004
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According to Eqs.~11! and ~12!, the values of the actions
S(A) andS(B) for segmentsA andB are equal to

S~A!5
1

2
m

DxA
2

DtA
2PES x21x1

2 DDtA , ~13a!

S~B!5
1

2
m

DxB
2

DtB
2PES x31x2

2 DDtB . ~13b!

The principle of least action leads to the following conditio
for the total actionS:

dS

dt2
5

d@S~A!1S~B!#

dt2
50. ~14!

If we substitute Eq.~13! into Eq. ~14!, differentiate, and re-
arrange the terms, we obtain

1

2
m

DxA
2

DtA
2

1PES x21x1

2 D5
1

2
m

DxB
2

DtB
2

1PES x31x2

2 D . ~15!

The expressions on both sides of Eq.~15! are sums of aver-
age kinetic and potential energies. For infinitesimally clo
events, Eq.~15! gives an equality for the instantaneous va
ues (1/2)mvA

21PEA5(1/2)mvB
21PEB , and expresses th

conservation of mechanical energy.
Next we carry out an argument that translates all th

timest1 , t2 , andt3 by the same amountt, similar to the way
we translated positions for the momentum case. Equat
~6!–~8! apply to the present case as well, and also Eq.~9!
when the derivatives are taken with respect to time rat
than position. Then the result of the temporal translation
an equation similar to Eq.~10!:

2
dS

dt1
5

dS

dt3
, ~16!

which yields Eq.~15! multiplied by ~21!. We again obtain
conservation of energy, but this time as a result of symme
under time translation. For infinitesimally close events,
left-hand side of Eq.~16! also can be interpreted as the neg
tive of the total energy at event 1 and the right-hand side
the negative of the energy at event 3. The energy is a c
stant of the motion for the entire worldlinex(t). Similar to
the last paragraph of Sec. III A, we can say that the symm
try of translation in time, or in other words the homogene
of time, implies conservation of energy.

C. Rotation through a fixed angle

We now trace the implications of another symmetry, sy
metry under rotation in space. If we rotate an experimen
setup through a fixed angle, the experiment will yield t
same result. If this symmetry were not true, a laboratory
New York would not be able to verify what is measured
another laboratory in Los Angeles. Indeed, repeating the
periment in New York must lead to the same results as
earth rotates. So physical laws should remain invariant w
respect to rotation.

We use polar coordinates to determine which conserva
law corresponds to this symmetry and consider the pla
motion of a particle in a spherically symmetric potential fie
of energy PE(r ). As before, we consider the expression f
the action along the infinitesimal segment. The definiti
~1b! shows that the action is equal to

n-
sen

e
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Sfor segment5
1

2
m

Ds2

Dt
2PE~r av!Dt. ~17!

The incrementDs is the length of a path segment traveled
the particle during the time intervalDt andr av is the average
position of the particle on this segment.

Consider three infinitesimally close points on the real p
of a particle and approximate the real path by a broken
consisting of two infinitesimally small segmentsA and B
~Fig. 5!. ~In this case we do not display a worldline becau
it would require curves in three-dimensional space–time.! To
find the required expression for the action in polar coor
nates, we use the Pythagorean theorem. The infinites
lengthsDsA andDsB of segmentsA andB are

DsA
25Dr A

21~r ADwA!2,
~18!

DsB
25Dr B

21~r BDwB!2,

where Dr A5r 22r 1 , DwA5w22w1 , Dr B5r 32r 2 , and
DwB5w32w2 . If we substitute Eq.~18! into Eq. ~17!, we
find values of the action for segmentsA, B:

S~A!5
1

2
m

Dr A
21r A

2DwA
2

DtA
2PE~r A!DtA , ~19a!

S~B!5
1

2
m

Dr B
21r B

2DwB
2

DtB
2PE~r B!DtB . ~19b!

Once again, note that the action for these two segments
pends only on the difference in thew coordinate, and not on
the w coordinate itself. As before, we conclude that neith
S(A) nor S(B) will change as we increase allw coordinates
by a fixed angleF, becausew21F2(w11F)5w22w1 . As
a result, the motion of the particle is symmetrical with r
spect to a fixed change in anglew. Conservation of angula
momentum which arises from this symmetry is derived
follows.

The condition of stationary actionS is expressed as:

dS

dw2
5

d@S~A!1S~B!#

dw2
50. ~20!

We substitute Eq.~19! into Eq. ~20!, differentiate and do
some rearrangement and obtain:

Fig. 5. Path segment of planar motion with three infinitesimally close po
whose positions are described by polar coordinates. The radiusr A(r B) rep-
resents the average position of the particle on segmentA(B). All coordi-
nates of the points 1, 2, 3 are fixed with the exception of the angle coo
natew2 , which we vary to satisfy the principle of least action.
432 Am. J. Phys., Vol. 72, No. 4, April 2004
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2DwA

DtA
5m

r B
2DwB

DtB
. ~21!

Equation~21! represents conservation of angular moment
L, soLA5LB . The rate of change of the angle is the angu
velocity v. Thus Eq. ~21! can be expressed asmrA

2vA

5mrB
2vB .

A derivation dealing with the fixed change in the ang
coordinate for all three events, similar to those of the pre
ous cases of translations in space and time, yields

2
dS

dw1
5

dS

dw3
, ~22!

which immediately implies conservation of angular mome
tum ~21!. Moreover, the left-hand side of Eq.~22! can be
interpreted as the angular momentum at point 1 and
right-hand side as the angular momentum at point 3. Angu
momentum is conserved for the entire path. The result is
symmetry under rotation through a fixed angle implies co
servation of angular momentum.

The condition that physical laws remain invariant wi
respect to rotation through a fixed angle is called the isotr
of space. That is, space has the same properties in e
direction. Therefore conservation of angular momentum
sults from the isotropy of space.

D. Galilean transformation

Finally, we present a simple example of an interesting a
very important symmetry: symmetry under uniform line
motion, known in classical mechanics as Galileo’s princip
of relativity. We will be surprised to find that the classic
action is not invariant under a Galilean transformation.

Consider again a free particle moving along thex axis
between closely adjacent events 1 and 2 as observed
laboratory frame, where the action takes the form~2!. The
~slowly moving! rocket observer, moving with a velocityv rel
with respect to the laboratory, calculates the particle’s act
given by the same equation

Sfor segment8 5
1

2
m

~x282x18!2

t282t18
. ~23!

Here we use primes for rocket coordinates, not for the
rivative. If we apply the Galilean transformation

x85x2v relt, t85t ~24!

for the rocket coordinates to Eq.~23!, we obtain the follow-
ing form of the actionS8 in the laboratory frame:

Sfor segment8 5
1

2
m

~x22x1!2

t22t1
2v relm~x22x1!

1 1
2 mv rel

2 ~ t22t1!. ~25!

This form of action is not the same as Eq.~2!. The action is
not invariant under a Galilean transformation. Which actio
S in Eq. ~2! or S8 in Eq. ~25!, governs the motion of the
particle in the laboratory? Or is the Galilean transformat
incorrect? According to Appendix A everything is consiste
The two actionsS and S8 differ by a function that depend
only on the coordinates of a given event,F(x,t)52v relmx

s

i-
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1 1
2mv rel

2 t, so the mechanical laws are the same as de
mined by usingS as they are by usingS8.

If we use slightly more general considerations, but reas
ing similar to that employed previously,13 we can demon-
strate that the corresponding conservation law to Galil
transformation~24! is related to the uniform motion of th
center of mass.

IV. SYMMETRY AND CONSERVATION LAWS IN
RELATIVITY

A. Action in relativity

We have shown that the classical action is not symmetr
with respect to uniform linear motion, but all laws of motio
remain unchanged under a Galilean transformation. We
lieve that this asymmetry for the principle of least action
not accidental, but rather results from the fact that the G
ilean transformation and Newton’s laws are only appro
mate laws of motion. Symmetry under uniform linear moti
is a basic assumption of Einstein’s special relativity.

We consider the same free particle, but now we use
special theory of relativity. The action for linear segme
between 1 and 2 has the form:14

Sfor segment52mc2S 12
v2

c2D 1/2

Dt, ~26!

where c is the velocity of light,Dt5t12t2 , and v5(x2

2x1)/(t22t1). It can be seen from Eq.~26! that Newtonian
mechanics is a special case of relativistic mechanics in
low-velocity limit (v!c):

S'2mc2S 12
1

2

v2

c2D Dt5
1

2
mv2Dt2mc2Dt. ~27!

According to Appendix A, if we takeF(x,t)52mc2t, Eq.
~27! will give the same laws of motion for a free particle
the classical Newtonian action in Eq.~2!.

B. Lorentz transformation

Now we outline the symmetry argument connected to
relativistic Lorentz transformation which has the formc
51):

x5g~x81v relt8!, t5g~ t81v relx8!, ~28!

whereg51/(12v rel
2 )1/2. Herev rel has the same meaning a

in Sec. III D. We express the action~26! along a segment o
the worldline:

Sfor segment52m@~ t22t1!22~x22x1!2#1/2. ~29!

The expression in the square root is the particle’s proper t
~wristwatch time! between the two events, which is eas
verified to be an invariant under the Lorentz transformati
Hence the relativistic action is symmetrical under a trans
mation connected to uniform linear motion.

Noether’s theorem can be used also in relativity. The sa
procedure used in Sec. III can be repeated in special rela
ity to yield the laws of conservation of relativistic energ
momentum, and angular momentum:

mDx

Dt
5prelativistic5constant,
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mDt

Dt
5Erelativistic5constant, ~30!

mr2Dw

Dt
5L relativistic5constant,

where Dt is the particle’s proper time. As for the Lorent
transformation, there also exists a corresponding conse
tion law, but its derivation goes beyond the scope of t
paper.15

We see that the theory of relativity eliminates the asy
metry of the action under translation. The invariance of
action under all the transformations we have conside
makes the theory of relativity a more beautiful and eleg
theory than the Newtonian theory of classical mechanics

If one uses the correct expression for the action~or proper
time!, the constants of motion also can be derived for gene
relativity without complicated or advanced mathematics.16

V. SUMMARY

We have discussed the connection between symme
and conservation laws provided by Noether’s theorem us
only elementary calculus. This approach can be used to
familiarize students with the powerful consequences of sy
metry in the physical world. In addition, students can se
unified and systematic approach to all the conservation la
mediated by Noether’s theorem and the principle of le
action.

All our considerations can be easily generalized to th
dimensions. We note that all symmetries in this paper
one-parameter transformations, which provide the cen
conservation laws using the most common form of Noethe
theorem related to the invariance of the Lagrangian~see Ap-
pendix B!. Reference 17 and the pedagogically orient
Refs. 18 and 19 give clear, elegant, and more mathematic
precise~but much more mathematically oriented! applica-
tions of Noether’s theorem to particle dynamics.
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APPENDIX A: THE ADDITION OF CERTAIN
TERMS TO THE ACTION HAS NO EFFECT ON THE
LAWS OF MOTION

Think of two expressions for the actionS(12) andS* (12)
for a given worldline between any two events 1 and 2
space–time. Suppose that these two expressions are re
to each other as

S* ~12!5S~12!1F~2!2F~1!, ~31!

where F is an arbitrary function that depends only on t
space and time coordinates of a given event. For exam
F(1) could be the value ofF at the event 1. Then laws o
433Hanc, Tuleja, and Hancova



du
an
s

he

th

al

ee
th
n

an

.
i

o
e
s

f

first
ym-
any

ance
end
m-

ions.
ari-

ym-

path
ctly
V.

,
/

H.

and
stant

ction
an

r, S.
um

n in

ore
s it

to an
al

9.
and

de-

tic

s,’’

n-

r stu-
motion are the same for both forms of action. Why?
We answer this question by repeating the same proce

as for earlier symmetries, starting with three events 1, 2,
3. If we apply Eq.~31!, we obtain the following equation
relating actionS andS* for segment 1–2 and 2–3:

S* ~12!5S~12!1F~2!2F~1!, ~32a!

S* ~23!5S~23!1F~3!2F~2!. ~32b!

The total actionS* (123) is the sum of~32a! and ~32b!:

S* ~123!5S~123!1F~3!2F~1!. ~33!

The two total actionsS* andS in Eq. ~33! differ only in the
difference inF at the fixed events 3 and 1. If we change t
space or time coordinate~generallyu2) of the middle event
2, this difference remains constant. So the minima ofS and
S* yield the same position of event 2, or in other words,
first derivatives ofS andS* with respect tou2 are the same
~all other variables being fixed!:

dS*

du2
5

dS

du2
. ~34!

According to Eq.~34!, the principle of least action forS*
gives the same particle’s path as in the case ofS. The laws of
motion are unchanged if an additive constant~the difference
in an arbitrary function between final position and initi
position of a particle! is added to the action.21

APPENDIX B: NOETHER’S THEOREM AND THE
LAGRANGIAN

Noether’s theorem determines the connection betw
constants of the motion and conditions of invariance of
action under different kinds of symmetry. The functio
KE-PE in Newtonian mechanics is called the Lagrangian
is denoted by the symbolL. So we can writeSfor segment

[DS5LDt. ~Do not confuse the symbolL for the action
with the symbolL for angular momentum used in Sec. III C!
If we discuss symmetry transformations such that time
transformed identically,t* 5t, or transformations involving
a uniform time translation,t* 5t1t, whereDt5Dt* , then
the invariance of the Lagrangian implies the invariance
the action. Therefore, most textbooks state Noether’s th
rem as: for each symmetry of the Langrangian, there i
corresponding conserved quantity.
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