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We develop heuristic derivations of two alternative principles of least action. A particle moving in
one dimension can reverse direction at will if energy conservation is the only criterion. Such
arbitrary changes in the direction of motion are eliminated by demanding that the Maupertuis–Euler
abbreviated action, equal to the area under the momentum versus position curve in phase space, has
the smallest possible value consistent with conservation of energy. Minimizing the abbreviated
action predicts particle trajectories in two and three dimensions and leads to the more powerful
Hamilton principle of least action, which not only generates conservation of energy, but also
predicts motion even when the potential energy changes with time. Introducing action early in the
physics program requires modernizing the current obscure and confusing terminology of variational
mechanics. ©2005 American Association of Physics Teachers.
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I. PREVIEW: LIST OF ACTORS
IN ORDER OF APPEARANCE

An asteroid named Woolsthorpe, roaming between the
bits of Mars and Jupiter, appears to be heading in the gen
direction of Earth. Should we worry? Given the initial pos
tion and velocity of the asteroid and data on the shift
positions of nearby asteroids and distant planets as we
the Sun, Isaac Newton~1642–1727! tells us how the aster
oid’s velocity changes from instant to instant. By summi
the resulting increments, we derive the reassuring predic
that Woolsthorpe will pass farther from Earth than our Moo
Newton answers the questions, ‘‘What happens next?’’

Newton’s incremental construction of the path is not
useful in basketball. Given the initial position and speed~and
therefore energy! of the ball, the shooter wants to know wh
direction of launch will place the center of the basketball
the center of the basketball hoop. Both launch and ta
points are defined in space. Pierre-Louis Moreau de Mau
tuis ~1698–1759! and Leonard Euler~1707–1783! offer us
their abbreviated principle of least action1 to find the direc-
tion in which to launch the basketball.2 Maupertuis and Euler
answer the question, ‘‘Starting fromhere, how do we get to
there?’’

None of the three, Newton, Maupertuis, or Euler, cou
easily manage a Moon shot. The spaceship launches from
Earth orbit and coasts toward an orbit around the Moon. T
Earth and Moon are in motion; the spaceship must arriv
the correct point in space when the Moon is nearby. B
launch and arrival specifyevents, indexed by time as well as
by location. William Rowan Hamilton~1805–1865! provides
the principle of least action, which can be used to find th
required initial speed~and therefore energy! and direction of
launch to reach the Moon orbit safely. Hamilton answers
question, ‘‘Starting from herenow, how do we get to there
then?’’

As these three examples demonstrate, least action p
ciples and Newton’s laws form a powerful combination f
the analysis of motion. Introductory mechanics courses c
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rently employ Newton’s vector laws of motion to enga
questions similar to that posed by the hurtling asteroid. Le
action principles, which are powerful tools in analyzing tas
similar to basketball and Moon shots, are introduced only
advanced mechanics courses which use difficult and abs
mathematics.

Earlier we have advocated starting the study of mecha
with conservation of energy, leading more or less directly
the principle of least action.3 We have since come to believ
that momentum and Newton’s laws deserve their pres
prominence in introductory physics, but that action pr
ciples can and should be introduced early, not only beca
they prepare the way for advanced mechanics courses
also because they are fundamental tools in many fields
physics such as optics, electromagnetism, quantum mec
ics, and relativity.

We do not yet have a strategy for introducing least acti
this paper presents a first step toward that goal, a story
that such an introduction might follow. Our purpose is
stimulate discussion about introducing action principles ea
in the physics curriculum.

II. ABBREVIATED ACTION IN ONE DIMENSION

A stone moves with varying velocity in they direction in
a time-independent potential such as that due to gravity n
the Earth’s surface. Conservation of energy is~almost! suffi-
cient to predict its motion in one dimension. The total ene
E is

E5K1U5 1
2 mv21U~y!, ~1!

where the kinetic energy is represented byK, the symbol
used in most introductory physics texts,U(y) is the potential
energy, andv is the speed of the stone. This speed is appro
mated byv'Ds/Dt, whereDs is the incremental distanc
covered by the stone in timeDt. For motion in the
y-direction Ds5uDyu. Manipulation of Eq.~1! leads to a
603© 2005 American Association of Physics Teachers
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relation betweenDs and the corresponding time increme
Dt:

Ds'F 2

m
$E2U~y!%G1/2

Dt. ~2!

For the uniform gravitational field near the Earth’s surfa
the differential version of Eq.~2! easily integrates to an ana
lytic solution. But analytic solutions are available for only
limited number of potential energy functions. In contrast,
one-dimensional motion in all reasonable potentials is ea
predicted using a simple numerical integration method ba
on Eq. ~2! or improved numerical methods, which a
straightforward, conceptually transparent, and already in
toolkits of many undergraduates.

Interactive displays can encourage students to manipu
fundamental concepts in mechanics, as illustrated in Fig.4

~bottom panel! the energy diagram;~central panel! the posi-
tion versus time curve called theworldline, a term which
should be introduced long before relativity;~top panel! the
velocity versus position diagram, which becomes thephase
diagramwhen the velocity is multiplied by the mass.

The particle motion shown in Fig. 1 leads to a worldlin
AB that exhibits two ‘‘kinks,’’ sharp changes in slope. Th
energy diagram shows that each kink occurs at the loca
of an abrupt change in the potential energy. The result
sudden change in the velocity~the velocity is the inverse
slope of the worldline!, displayed in the velocity versus po
sition graph. So the kinks in the worldline AB have a phy
cal basis as idealizations.

Fig. 1. Screen shot of the interactive program showing the energy
potential energy diagram in the bottom panel, the worldline~the plot relating
position and time! in the middle panel, and a plot of velocity versus positi
y in the top panel. The diagonal shading of the area under the velo
versus position graph has been added for use in comparing alternative
tions depicted in Fig. 2.
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In two and three dimensions, conservation of energy al
is not sufficient to determine the particle motion. The reas
is that energy is a scalar which tells us only the magnitu
Ds of the next step along the trajectory, not its directio
Predicting motion in two and three dimensions also requ
thedirectionof the next step. Equation~2! gives a preview of
this difficulty for one-dimensional motion. Conservation
energy yieldsDs, the magnitude of the incremental displac
ment Dy. For one-dimensional motion the two possible d
rections are either2v for which Dy52Ds or 1v with
Dy51Ds. For both cases Eq.~2! gives only the magnitude
Ds. These two possibilities are illustrated in Fig. 2. Bo
worldlines AB and AC satisfy conservation of energy. Worl
line AB is the sensible one, the worldline that meets o
expectations as shown in Fig. 1. In contrast, along the wo
line AC the particle reverses direction twice in the vicinity
the positionyo , keeping the same speed and therefore
same kinetic energy. In principle, a particle moving in o
dimension can reverse direction at will if energy conser
tion were the only criterion.

The worldline AC is unacceptable, but not because it h
kinks in it; the worldline AB also has kinks, sudden chang
in velocity at the positions of idealized jumps in the potent
energy as shown in the bottom panel. Rather, the world
AC is unacceptable because it contains spontaneous reve
of the direction unrelated to changes in the potential ene
Worse is that there is no logical or physical safeguard aga
an arbitrary number of such spontaneous reversals of di
tion. It is clear that our understanding of particle motion
terms of conservation of energy alone is incomplete.

d

ty
o-

Fig. 2. Two sequential spontaneous reversals of direction with the s
speed near positionyo satisfy conservation of energy but are unphysical. T
original worldline AB shown in Fig. 1 generates the diagonally shaded a
under the velocity curve at the top of Fig. 1. The worldline AC not on
generates the same enclosed area, but also adds the superposed dot-
areas labeled 1 and 2. Area 1 is enclosed twice in this process.
604Hanc, Taylor, and Tuleja
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What other principles can be used to reject spontane
reversals of direction? Conservation of momentum applie
an isolated system; the presence of a potential energy f
tion due to an external source tells us that the system is
isolated. Newton’s second law allows us to reject sponta
ous reversals of direction. In Fig. 2 the reversal occurs wh
the potential energy is uniform, so the applicati
of Newton’s second law says thatDv'(F/m)Dt
5@(2dU/dy)/m#Dt50 and prohibits these reversals. How
ever, we seek an alternative procedure for predicting mo
which employs conservation of scalar energy instead
Newton’s vector law.

In Fig. 2, worldlines AB and AC have identical slope
~corresponding to identical velocities! everywhere except in
the dot-shaded region of the spacetime diagram. So the
locity versus position curves provide a useful tool for hig
lighting the difference between these two possible motio
Pay attention to the area under the velocity versus posi
graphs in Figs. 1 and 2. The worldline AB generates
diagonally shaded area in Fig. 2, identical to the diagon
shaded area in Fig. 1. The velocities along the worldline
are identical to those along AB except at the double jog n
yo . The resulting multiple-valued velocity versus positio
graph for AC encloses the same diagonally shaded area
in addition encloses the dot-shaded areas labeled 1 an
~Area 1 is enclosed twice during the motion described
worldline AC.!

The area enclosed by the velocity versus position gr
provides a handle by which to understand the difference
tween the realistic motion described by worldline AB and t
unrealistic motion depicted by worldline AC. One way
eliminate spontaneous reversals of motion as a possible
ture of the worldline is to demand that the area under thv
versusy curve have the smallest possible value consis
with conservation of energy.

The momentum versus position diagram is called
phase diagram, and the trajectory in this diagram is calle
the phase curve. The area under the phase curve is theab-
breviated action5 and is given the symbolSo :

S abbreviated
action D[So[S area under

phase curveD
[mS area under velocity

vs. position curveD . ~3!

The reason for ‘‘abbreviated’’ will become apparent. T
condition that eliminates the velocity-reversing jogs in t
worldline now becomes: The particle moves so that the
breviated action has the smallest possible value, subjec
conservation of energy.

The area under the phase curve can be expressed as6

So[E mv ds

~abbreviated action with conservation of energy!.

~4!

Equation~4! uses the speedv and the distanceds instead of
the velocitydy/dt and the displacementdy, because all in-
cremental contributions to the integral are positive. Fo
particle moving in the positivey-direction in Fig. 2, its ve-
locity has the same positive value as the speedv and the
incremental displacementdy is positive and equalsds.
605 Am. J. Phys., Vol. 73, No. 7, July 2005
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Therefore the incremental contribution to the area is posit
mv ds. For a particle moving in the negativey-direction, its
velocity (2v) is the negative of the speedv and the incre-
mental displacement (dy52ds) is the negative of the incre
mental distanceds. As a result, the incremental contributio
to the area also is positive:m(2v)(2ds)5mvds.

The abbreviated principle of least action requires that
value ofSo be a minimum for the actual motion of a particl
In other words, from all possible nearby trajectories in spa
beginning at a fixed launch point and ending at a fixed tar
point, the particle traverses the trajectory with the small
value of So . The construction of the phase curve,m times
the velocity plotted in Fig. 2, requires conservation of e
ergy, so conservation of energy is assumed in the abbrevi
principle of least action. Note that the abbreviated princi
of least action is a prescription for the trajectory as a who
which is different in character from the prescription provid
by Newton’s second law.

III. ABBREVIATED ACTION IN TWO DIMENSIONS

The action integral, Eq.~4!, also applies in two and thre
dimensions, wherev is the speed andds is the incremental
distance along the two- or three-dimensional trajectory. T
minimization of the actionSo selects from possible nearb
energy-conserving trajectories the actual trajectory follow
by the particle. For simplicity, we assume that the poten
energy function varies with they-coordinate only, for ex-
ample,U(y)5mgy for a basketball.

To find a trajectoryy(x) that leads to a minimum value o
So in Eq. ~4! for fixed initial and final locations, we divide
and conquer. If the entire action integral is a minimum, th
the contribution to the integral from each infinitesimal po
tion of the trajectory also must be a minimum.7 Figure 3
shows the initial infinitesimal portion of a trajectory in th
xy plane~the trajectory is not a worldline!. The dotted curve
represents the beginning portion of a trial trajectory appro
mated by line segments A, B, and C. This approximation c
be made as accurate as desired by choosing points 1–4
ficiently close together.

Figure 4 shows an alternative initial portion of the tri
trajectory derived by displacing point 2 in they-direction.
Conservation of energy and the local value of the poten
energy fix the average speed of the particle along each
ment in Figs. 3 and 4. Finding the portion of the trajecto

Fig. 3. The infinitesimal initial portion of the curved trajectory of a partic
in the xy plane~dotted line! might represent the first millisecond of motio
of a particle that starts at fixed point 1. The dotted trajectory is approxima
by three connected straight segments A, B, C.
605Hanc, Taylor, and Tuleja
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given by segments A and B reduces to using algebra
elementary calculus to find they-position of the center poin
2 that minimizes the abbreviated action for these segme
Equation ~4! expresses the abbreviated actionSoAB along
segments A and B:

SoAB5mvAsA1mvBsB . ~5!

The lower cases in sA and sB refers to the incrementa
length of each segment;vA and vB are the corresponding
average speeds whose values are derived from conserv
of energy. To find the minimum value of the abbreviat
actionSoAB , we take the derivative of both sides of Eq.~5!
with respect toy ~all remaining coordinates are fixed! and set
the result equal to zero:

dSoAB

dy
5m

dvA

dy
sA1mvA

dsA

dy
1m

dvB

dy
sB1mvB

dsB

dy
50.

~6!

The notation in Fig. 4 leads to expressions for each of
terms in Eq.~6!. The Pythagorean theorem tells us how t
lengthsA varies withy, the independent vertical coordina
of point 2:

sA5@~x22x1!21~y2y1!2#1/2. ~7!

Equation~6! requires the derivative ofsA with respect toy:

dsA

dy
5

y2y1

sA
. ~8!

Conservation of energy determines the value of the ave
speed along each segment:

vA5F 2

m
$E2UA%G1/2

. ~9!

Here UA is the average potential energy along segment
approximated as the average of the values at its two end

UA'
U~y1!1U~y!

2
. ~10!

The derivative ofvA with respect toy comes from Eqs.~9!
and ~10!:

dvA

dy
52

1

mvA

dUA

dy
52

1

2mvA

dU~y!

dy U
point 2

. ~11!

Fig. 4. We vary they-position of point 2 to minimize the abbreviated actio
along segments A and B.
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The timet22t1 taken to traverse segment A equals the len
of the segmentsA divided by the average speedvA across the
segment:

t22t15
sA

vA
. ~12!

The expressions for segment A from Eqs.~7!–~12! plus the
corresponding expressions for segment B allow us to re
Eq. ~6! into the form

dSoAB

dy
52

~ t22t1!

2

dU~y!

dy U
point 2

1m
y2y1

t22t1

2
~ t32t2!

2

dU~y!

dy U
point 2

2m
y32y

t32t2
50, ~13!

and lead to a powerful result which is hidden in the notatio

2
dU~y!

dy U
point 2

5
m ~y32y!/~ t32t2! 2m ~y2y1!/~ t22t1!

@~ t32t2!/2# 1 @~ t22t1!/2#
. ~14!

The numerator on the right side of Eq.~14! is the difference
between the averagey-momentapyA andpyB on segments A
and B. The denominator approximates the time of tra
from the midpoint of segment A to the midpoint of segme
B. The right side of Eq.~14! thus approximates the tim
derivative of they-component of the particle momentum
The left side of Eq.~14! is the value of the quantity2dU/dy
at the displaced point 2, the expression for they-component
of the force in a given potential. Thus Eq.~14! is an approxi-
mation to they-component of Newton’s second law of mo
tion, an approximation that becomes exact for infinitesim
segments:

Fy5
dpy

dt
[ ṗy , ~15!

where the dot over the momentump indicates the time de-
rivative.

Alternatively, minimizing the abbreviated actionSoAB

along segments A and B by varying thex-coordinate of the
center point 2 leads to

m
x22x1

t22t1
5m

x32x2

t32t2
or pxA5pxB . ~16!

Equation ~16! expresses the conservation ofx-momentum
between segments A and B and is in accord with Newto
second law for the case in which the potential energyU is
not a function ofx, namelyFx52dU/dx505 ṗx so thatpx
does not change with time.

If your allegiance is to Newton’s second law, then you c
treat Eqs.~15! and ~16! as validating the abbreviated prin
ciple of least action when the energy is conserved. Alter
tively, you can view Eqs.~15! and~16! as demonstrating the
priority of the abbreviated principle of least action, becau
Newton’s second law and conservation of momentum b
grow out of it. We prefer to emphasize here the consiste
among these different predictors of motion.
606Hanc, Taylor, and Tuleja
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IV. CONSTRUCTING THE TRAJECTORY

The procedure outlined in Sec. III easily adapts to co
structing the trajectory of a particle with fixed endpoints a
conserved total energy. Let the segments in the left-h
graph in Fig. 5 be infinitesimal portions of a trial trajecto
drawn arbitrarily to connect the fixed launch point~point 1!
with the fixed target point~not shown! for a particle of fixed
total energy. Points 2–4 are a sequence of adjacent po
along the beginning of the trial trajectory. As explained in t
caption of Fig. 5, we first vary they-coordinate and then th
x-coordinate of each intermediate point to find the locat
that minimizesSo along the two adjacent segments. Rep
the sweep along the entire modified trial trajectory until
further displacements of the intermediate points occur.8 The
resulting path approximates the trajectory taken by the p
ticle. Equations~14!–~16! tell us that at every intermediat
point along the resulting trajectory Newton’s second l
holds.

The total energy and the value of the potential energy
the launch point yields the launch speed and the compl
trajectory determines the initial direction of motion
launch. Thus the abbreviated principle of least action tells
how to launch the particle~speed and direction! from the
fixed initial point so that it will arrive at the target.

The trajectory alone does not fully describe the motion
complete description includes not only the trajectory, b
also the time at which the particle passes each point a
the trajectory, plotted as the worldline. The basketball pla
does not care when the center of the ball reaches the ce
of the hoop.9 Nevertheless, our procedure can easily be
tended to find the time at which the particle passes each p
along the trajectory. Equation~12! yields the timet22t1
along segment A and similar equations give the time alo
later segments, resulting in the total time from the launch
any point on the trajectory. The combination of the trajecto
plus the time at each point on the trajectory, embodied in
worldline, provides a complete description of the flight of t
basketball.

A standard result of projectile motion for a value of ener
greater than the minimum is the possibility of two trajec

Fig. 5. Construction of the trajectoryy(x) in two dimensions. The initial
segments are shown. Point 1 is the fixed launch point.~a! We first vary the
y-coordinate and then thex-coordinate of point 2 to find the location tha
minimizes the value of the abbreviated actionSoAB along segments A and B
~b! We move point 2 to that new location, then vary they coordinate, then
the x-coordinate of point 3 to find the location that minimizes the value
SoBC along segments B and C.~c and continuation! We move point 3 to that
new location and continue moving later points on the trial trajectory all
way to the fixed final point~the target, not shown!. We repeatedly sweep th
entire trial trajectory until the intermediate points no longer change.
resulting trajectory approximates that taken by the particle. As describe
Sec. VII, a similar construction withy and t coordinates approximates th
worldline which minimizes Hamilton’s actionS.
607 Am. J. Phys., Vol. 73, No. 7, July 2005
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ries between the launch and target, one path higher an
longer duration, the other flatter and of shorter duration. T
technique for constructing trajectories described here
discover only one of these, depending on the initial ar
trarily chosen trial path. Finding the second trajectory
quires a different initial trial function. This case, with it
alternative analytic solutions, is a good one for introduci
students to the qualitative skills required to guess trial traj
tories when multiple paths are possible.

V. JUST PLAIN ACTION

A small additional step reveals a truly remarkable and g
eral expression due to Hamilton,10 for which the nameaction
stands powerfully alone, with no modifier. This action ear
the symbolS, without a subscript, and is defined as:

S[E
worldline

~K2U !dt5E
tinitial

tfinal
~K2U !dt ~action!. ~17!

The following simple expression relates the actionS to the
abbreviated actionSo :11

So5S1~ tfinal2t initial!E. ~18!

Equation~18! can be derived from an extension of Eq.~4!:

So[E mv ds5E mv
ds

dt
dt5E mv2 dt52E K dt.

~19!

The first integral on the left in Eq.~19! is a summation along
the trajectory in space, from the launch to the target. In
contrast, the last integral on the right in Eq.~19! multiplies
twice the kinetic energy along each segment of the path
the incremental time required to traverse that segment
sums the result. The last integral can be regarded as a s
mation along theworldline. Adding and subtracting the po
tential energy functionU on the right side of Eq.~19! gives
the result:

So52E
worldline

K dt5E
worldline

~K2U1K1U !dt

5E
worldline

~K2U !dt1E
worldline

~K1U !dt. ~20!

The integral containingK2U on the right-hand side of Eq
~20! is the actionS, as defined in Eq.~17!. In the last integral
on the right-hand side of Eq.~20! the total energy
E5K1U does not change with time, and therefore the in
gral equals (tfinal2t initial)E; Eq. ~18! follows immediately.

Equation ~18! deserves close scrutiny. Suppose that
procedure outlined in Sec. IV leads to the actual trajectory
space that minimizesSo on the left-hand side of Eq.~18!.
Section IV tells us how to complete the worldline, whic
gives the time of arrival at the target,tfinal . Hence minimiz-
ing So on the left side of Eq.~18! gives us everything abou
the right side, including the worldline along which the int
gral S is taken and the time limits of the integration.

Instead of employing the abbreviated actionSo on the left
side of Eq.~18!, we try using the actionS on the right side to
predict the motion. The action integralS is taken along the
worldline between the fixed initial and final events. W
boldly postulatethe principle of least action, which requires
that the integralS in Eq. ~17! have a minimum value for the
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worldline taken by the particle between fixed events, that
with known elapsed timetfinal2t initial on the right side of Eq.
~18!. The new least action principle implies a change fro
the original constraints—fixed endpoints in space and fi
energy—to physically less restrictive constraints—fixed i
tial and final events in spacetime. For all nearby worldlin
anchored on the same initial and final events, we predict
the particle moves along that worldline for which the val
of S is a minimum.

Specifying the arrival event means specifying in advan
the arrival timetfinal . But this final time affects the kinetic
energyK along different parts of the worldline required
meet the specified deadline and therefore affects the valu
the total energyE. It turns out that minimizing the value o
the actionS not only validates the conservation of ener
along the actual worldline, but also yields the value of t
conserved energyE.

To simplify our study of the action integralS, we return to
one-dimensional motion and seek a worldliney(t) that mini-
mizes the value ofS between fixed initial and final events
The trial worldline, a portion of which is shown in Fig. 6
need not have a direction-reversing jog in it, as was requ
for alternative worldlines when the value of the energy w
fixed in advance~see Fig. 2!. Our expectation that the de
rived energy-conserving worldline be smooth for a smo
potential energy function will turn out to be justified.

Figure 6 approximates a portion of the trial worldline wi
incremental straight segments, with the independent coo
natet along the horizontal axis, just as Fig. 4 plots the ind
pendent coordinatex along the horizontal axis. Figure 6 fo
cuses on two adjacent segments, A and B, that lie somew
along this trial worldline. We temporarily fix events 1 and
while moving event 2 in they-direction to study the effect o
this displacement on the value of the actionSAB summed
along segments A and B. A student exercise shows that
outcome is the same: they-component of Newton’s lawFy

5 ṗy , Eq. ~15!. Therefore minimizing the actionS is equiva-
lent to invoking Newton’s second law.

In finding the worldline using the principle of least actio
we did not assume in advance that energy is conserved
potential energyU(y). Nevertheless, if the expressionU for
potential energy does not contain the time explicitly, t
principle of least action includes the conservation of ene

Fig. 6. Two adjacent infinitesimal segments A and B are chosen arbitr
along the trial worldline of a particle moving in one dimension in a tim
independent potential. Events 1 and 3 are temporarily fixed, while
y-coordinate of event 2 is displaced in order to find its position 2 for
minimum value of the action along segments A and B.
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The actual worldline of least action must satisfy a minim
condition not only with respect to the space coordinates,
also with respect to time. The equation expressing a z
derivative ofS with respect to time is nothing but conserv
tion of energy. This result follows from varying th
t-location of event 2 in Fig. 6 while keeping itsy-coordinate
constant. The approximate expression for the actionSAB
along worldline segments A and B is

SAB5~KA2UA!~ t2t1!1~KB2UB!~ t32t !

5~ t2t1!KA2~ t2t1!UA1~ t32t !KB2~ t32t !UB , ~21!

where t is the time of event 2. The minimum value of E
~21! follows from setting its derivative with respect tot
equal to zero. The average kinetic energy along segment

KA5
1

2
m

~y22y1!2

~ t2t1!2 so that
d@~ t2t1!KA#

dt
52KA .

~22!

The time derivative of (t32t)KB in Eq. ~21! yields the result
KB .

Because the potential energy is a function of space co
dinatey only, the average potential energyUA along segment
A does not change its value with the time displacement
event 2. Therefore the time derivative of the term in Eq.~21!
that includesUA becomes

d@~ t2t1!UA#

dt
5

d~ t2t1!

dt
UA5UA . ~23!

The time derivative of (t32t)UB in Eq. ~21! yields the result
2UB .

If we substitute Eqs.~22! and~23! for segment A plus the
corresponding expressions for segment B into the expres
for the derivative of Eq.~21! with respect to the timet of
event 2 and set the result equal to zero, we obtain

dSAB

dt
52KA2UA1KB1UB50. ~24!

Equation~24! can be written as

KB1UB5KA1UA or EB5EA , ~25!

which says that energy is conserved along segments A an

VI. CONSTRUCTING THE WORLDLINE

The worldline of a particle derives from the principle o
least action using an iterative process similar to that use
find the trajectory in Sec. IV and illustrated in Fig. 5. Th
sequence of steps is essentially identical to that used for
abbreviated action when the originalx, y coordinates for a
trajectory become thet, y coordinates for a worldline, as
shown by the alternativet, y coordinate axes in Fig. 5. We
first move they-coordinate and then thet-coordinate of each
intermediate event to minimize the action along the adjac
pair of segments, sweeping repeatedly along the world
between fixed initial and final events until the intermedia
events no longer move on the spacetime diagram. The re
ing segmented worldline approximates the worldline f
lowed by the particle.

ly

e
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The limit-taking process of applying the principle of lea
action to each pair of adjacent segments in sequence, w
multiple sweeps along the worldline are completed, satis
Newton’s second law and matches the value of the ene
between every adjacent pair of segments, Eq.~25!, and there-
fore determines the value of the energy on every segmen
the worldline. The value ofE derived from the principle of
least action multiplied by the total elapsed time~fixed at the
beginning of the analysis! completes the right side of Eq
~18!. Knowledge of the worldline yields the trajectory, whic
allows us to evaluate the integralSo on the left side of Eq.
~18! for the now-determined value of the energyE. In brief,
either side of Eq.~18! predicts the motion of a particle in
time-independent potentialU: Minimizing So on the left side
for a fixed energy determines the trajectory; minimizingS on
the right side for a fixed time lapse determines the worldli

One payoff of describing motion using a scalar energy a
a scalar action is the straightforward generalization of
analysis to motion in three dimensions, in which the pot
tial energy function has the general formU(x,y,z). This
generalization requires only a simple extension of the an
sis in Secs. III–VI. The partial derivative with respect to a
spatial coordinate that minimizes the action or the abbre
ated action leads to the corresponding component of N
ton’s second law; the partial derivative with respect to tim
that minimizes action leads to the conservation of energ

VII. TIME-DEPENDENT POTENTIAL ENERGY

In many cases the potential energy changes with time.
example, the gravitational potential at a point in space
tween the Earth and Moon changes as the Moon moves.
time-varying potential can change the energyE of a space-
ship moving through that point. Newton’s second law rela
the acceleration to the instantaneous force described by
spatial derivative of the potential energy, Eq.~14!. Therefore
Newton’s law applies from instant to instant, even if t
potential changes with time.

Constructing the worldline using the principle of least a
tion involves a variation of they-coordinate of each interme
diate event on the worldline, while holding constant the tim
of that event, as illustrated in Fig. 6. Our approximati
takes the value of the potential energy along each segme
be the average of its two endpoints. The endpoints in Fig
are events, and the approximation corresponding to Eq.~10!
is

UA'
U~ t1 ,y1!1U~ t2 ,y!

2
. ~26!

The variation of they-coordinate of event 2 does not chan
the timet2 of that event, so the minimum action again lea
to Newton’s second law. Indeed, it can be shown that
principle of least action is equivalent to Newton’s second l
for nondissipative systems.12 Therefore the principle of leas
action is also valid for time-varying potentials. In contra
the principle of abbreviated action assumes conservatio
energy, so it cannot predict motion when the potential ene
varies with time.

Does the principle of least action also lead to a corr
accounting of the changing particle energy when the po
tial energy changes with time? The analysis is a simple
tension of the one that leads to Eq.~25!. Minimizing the
action along segments A and B in Fig. 6 requires varying
609 Am. J. Phys., Vol. 73, No. 7, July 2005
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t-coordinate of point 2, while keeping itsy-coordinate con-
stant. Equations~21! and ~22! remain valid for the time-
dependent potential energy, but Eq.~23! is altered using Eq.
~26!. Setting the time derivative of the action equal to ze
leads to

KB1UB5KA1UA1Dt
dU

dt U event 2
y5const

, ~27!

whereDt is the elapsed time as the particle moves betw
the midpoints of the adjacent segments. Equation~27! cor-
rectly approximates the increase in the total energy of
particle as it passes across segments A and B.

Another important type of motion takes place under a c
straint, for example, a bead sliding without friction along
rod that rotates at a constant rate.13 In such motion the forces
of constraint typically change the energy of the partic
Newton’s laws are awkward for describing motion und
such a constraint because of its vector nature~and for addi-
tional reasons!. In contrast, the scalar principle of least actio
treats such constrained motion with simplicity and power

VIII. SELF-DESCRIPTIVE TERMINOLOGY

Before we can move the two principles of least action t
position earlier in the physics curriculum, we need to upd
the language of variational mechanics, making its termin
ogy self-consistent, transparent, and easy to understand.
present terminology of variational mechanics is clogged w
the accumulated sludge of ancient trial and error and
detritus of genius. Our Murky Terminology Award goes
adjectives describing constraints of motion:holonomic, semi-
holonomic, rheonomous, andscleronomous. Terms encrusted
with the barnacles of eminent contributors’ names obstr
the flow of understanding. Who could know from the nam
Hamilton’s principal functionor Lagrange’s equationswhat
each is about, how they are used, or why they might
important?14 Students should not be forced to master a po
glot language before they can revel in the simplicity a
power of action.

The terms for our mechanics tools should be se
descriptive. The self-descriptive name of an object, princip
or application recalls for us and drives home its key feat
every time we read, speak, hear, or apply it. First prize fo
self-descriptive name goes toblack hole, which summarizes
the properties of a mighty astronomical object. The te
black hole is not only descriptive but also exciting, firing th
public imagination. The original study of collapsed gravit
tional structures did not lead to this term. The name was lo
sought, stumbled upon, recognized, and promoted by J
Archibald Wheeler.15

Why not replaceabbreviated actionwith the termfixed-
energy actionor trajectory action? CouldLagrange’s equa-
tions becomelocal equations of motion? It may be difficult
to find self-descriptive names for fundamental concepts o
field, but these names should at least be snappy and mot
ing. We would not be writing a paper promoting the use
Hamilton’s principal function, but Landau and Lifschitz, and
later Feynman, renamed itaction, cutting the number of syl-
lables by three-quarters and invigorating the field.16

Even the field of mechanics needs new names.Classical
mechanicscurrently means nonquantum mechanics; spe
and general relativity are classical subjects. This paper
cuses on the more restricted field ofNewtonian mechanics,
609Hanc, Taylor, and Tuleja
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which predicts nonrelativistic, nonquantum motion. Ne
ton’s greatness is not enhanced by using his name to smo
magisterial contributions by Euler, Lagrange, Jacobi, Ham
ton, and others.

ACKNOWLEDGMENTS

The authors wish to thank Kenneth Ford, Don S. Lemo
and Jon Ogborn for useful discussions and helpful sugg
tions.

a!Electronic mail: jozef.hanc@tuke.sk
b!Author to whom correspondence should be addressed. Electronic

eftaylor@mit.edu
c!Electronic mail: tuleja@stonline.sk
1We use the nameleast actioninstead of the technically correctstationary
action for several reasons:~a! Many cases involve a local minimum of th
action.~b! The value of the action is always a minimum for a sufficien
small segment of the curve.~c! The word least is self-descriptive, but
stationaryrequires additional explanation.~d! The word least does not lea
to the error that the value of either form of action, Eqs.~4! and ~17!, can
be a maximum for an actual path, which it cannot.~e! Least action is the
name most often used in the historical literature on the subject. We
ommend that the term stationary action be introduced, with careful ex
nation, not long after the term least action itself.

2For linear gravitational potential energy near the Earth’s surface, we
integrate Newton’s second law to derive an analytic expression for
basketball trajectory and hence the required direction of launch. Howe
in more complicated potentials we are reduced to trial and error to fin
path that passes through the basket. Minimizing the Maupertuis–E
abbreviated action finds the trajectory in one stroke. A similar comm
applies to the Moon shot described in the following paragraph: Minim
ing Hamilton’s action gives us the worldline directly.

3Jozef Hanc and Edwin F. Taylor, ‘‘From conservation of energy to
principle of least action: A story line,’’ Am. J. Phys.72, 514–521~2004!.

4Derivations of the action outlined in this paper were stimulated by
interactive Java program developed by one of the authors~ST!. This dis-
play numerically integrates Eq.~2!, solving for the one-dimensional mo
tion of a particle in a time-independent potential. In its extended form,
program shows all three panels in Fig. 1. The program is availabl
^http://vscience.euweb.cz/worldlines/Worldlines.html&.

5The nameabbreviated actionand the symbolSo are used by L. D. Landau
and E. M. Lifschitz,Mechanics~Butterworth-Heinemann, London, 1999!,
Vol. 1, 3rd ed., p. 141, and Herbert Goldstein, Charles Poole, and J
Safko,Classical Mechanics~Addison–Wesley, San Francisco, 2002!, 3rd
ed., pp. 359, 434. We have named the corresponding variational prin
the abbreviated principle of least action, rather than the more technicall
correctprinciple of least abbreviated action, believing that ‘‘least abbre-
viated’’ might be incorrectly interpreted as ‘‘augmented.’’
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6Wolfgang Yourgrau and Stanley Mandelstam,Variational Principles in
Dynamics and Quantum Theory~Dover, New York, 1979!, pp. 24–29.

7Richard P. Feynman, Robert B. Leighton, and Matthew Sands,The Feyn-
man Lectures on Physics~Addison–Wesley, San Francisco, 1964!, Vol. II,
p. 19-8.

8The minimization procedure for constructing a trajectory or worldline d
scribed in the caption to Fig. 5 is conceptually simple but not the m
effective in practice. In both cases it is more efficient to start with a t
segmented curve with equal increments along the horizontal axis. The
vary only they-coordinates of intermediate points to minimize the actio
obtaining the actual path. The minimization of action with respect to
ordinates along the horizontal axis is not necessary because the res
just points uniformly distributed on the horizontal axis, which was o
initial assumption. We do not discuss here the proof of this statemen
the convergence of the algorithm, because it goes beyond the scope
present paper.

9According to the official rules of the National Basketball Association
basket is scored after the final buzzer provided the ball is launched be
the buzzer sounds.

10For Hamilton’s development of the principle of least action, see two of
papers at ^http://www.maths.tcd.ie/pub/HistMath/People/Hamilto
Dynamics/&.

11Landau and Lifschitz, Ref. 5, p. 141, Eq.~44.3!; Goldsteinet al., Ref. 5, p.
359.

12Our derivation can be reversed to show the equivalence of Newton’s
ond law and the principle of least action. See also Goldsteinet al., Ref. 5,
p. 35.

13The example of a bead sliding along a uniformly rotating rod is in Go
steinet al., Ref. 5, pp. 28–29. Additional example is a pendulum who
string support is slowly pulled up through a small hole. See Corne
Lanczos, The Variational Principle of Mechanics~Dover, New York,
1986!, 4th ed., p. 124.

14Further examples of name-encrusted terminology: d’Alembert’s princi
Hamiltonian, Hamilton’s principle, Hamilton’s equations, Hamilton
Jacobi equation, Jacobi identity, Jacobi principle, Jacobi condition, J
bi’s theorem, Lagrangian, Poisson bracket, Poisson’s equations, Hi
integral, Legendre condition, Poincare invariants, Cartheodory’s meth
Bernoulli’s method, Clebsch condition, Clebsch relation, Clebsch trans
mation, Descartes–Snell rule, Noether’s theorem, Rayleigh’s dissipa
function, Routh’s procedure, Staeckel conditions, Weierstrass condi
Weierstrass–Erdmann corner condition.

15Kip S. Thorne, Black Holes and Time Warps: Einstein’s Outrageo
Legacy~Norton, New York, 1994!, pp. 256–257; John Archibald Wheele
with Kenneth Ford,Geons, Black Holes, and Quantum Foam: A Life
Physics~Norton, New York, 1998!, pp. 296–297.

16Landau and Lifschitz, Ref. 5, Chap. 1; Landau and Lifschitz rechriste
Hamilton’s principal functionas theaction in the first Russian edition in
1958, and in a 1940 textbook, a precursor of Ref. 5; See also Feynm
Ref. 7.
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