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CHAPTER 1

 

Speeding

 

The important thing is not to stop questioning. Curiosity has its own 
reason for existing. One cannot help but be in awe when he [or she] 
contemplates the mysteries of eternity, of life, of the marvelous structure 
of reality. It is enough if one tries merely to comprehend a little of this 
mystery every day. Never lose a holy curiosity.

 

                                                                     —Albert Einstein

 

1  Special Relativity

 

Key idea: Concepts useful in exploring the very fast help us to examine spacetime 
near very massive objects.

 

Special relativity: fast objects 
General relativity: spacetime 
near massive objects

 

We use relativity to explore the boundaries of Nature. 

 

Special relativity

 

 
describes the very fast. 

 

General relativity

 

—the 

 

Theory of Gravitation

 

—
describes matter and motion near massive objects: stars, galaxies, black 
holes. General relativity also describes the Universe as a whole. This chap-
ter discusses a few key concepts of special relativity useful in exploring 
general relativity. The treatment here is not designed to be an introduction 
to special relativity; for introductory treatments see Section 11, Readings 
in Special Relativity, and detailed references to our own introductory 
treatment at the end of each section.

 

2  Wristwatch Time

 

Everyone agrees on the wristwatch time between two events.

 

Begin relativity with 
wristwatch time between 
two ticks.

 

What is the root of relativity? Is there a single, simple idea that launches us 
along the road to understanding? Alice's adventures in wonderland begin 
when a rabbit rushes past her carrying a pocket watch. Our adventure in 
relativity begins when a small stone flies past us wearing a wristwatch.

The wristwatch ticks once at #1 and once at #2 (Figure 1). Wristwatch ticks 
may be one second apart—or one microsecond. Measure the distance 

 

s

 

 
and time 

 

t

 

 between these ticks in a particular 

 

free-float

 

 or 

 

inertial

 

 refer-
ence frame. (The free-float frame is described in Section 8. Briefly, it is one 
in which Newton’s first law holds: a free particle at rest remains at rest and 
one in motion continues that motion at constant speed in a straight line.) 
Special relativity warns us that a different observer passing us in uniform 
relative motion typically records a different value of spatial separation 

 

s

 

 
and a different value of time lapse 

 

t

 

 between these two ticks. That is the 
bad news. The good news is a central finding of special relativity:
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All inertial observers, whatever their state of relative motion and what-
ever values they measure for 

 

s

 

 and

 

 t

 

, agree on the value of the time 

 

τ

 

 
between ticks as recorded on the wristwatch carried by the stone. The for-
mula is simple:

[1]

 

Define wristwatch time.

 

We use the Greek letter 

 

τ

 

 (tau) for the

 

 

 

wristwatch time

 

 between these two 
watch ticks. The wristwatch time is often called the 

 

proper time 

 

or, more 
formally, the 

 

timelike spacetime interval 

 

(“timelike” because the time 
separation 

 

t

 

 is greater than the space separation 

 

s

 

). All observers agree on 
the value of the wristwatch time between two events. In contrast, the 
value of 

 

t

 

 and the value of 

 

s

 

 between these events will typically differ from 
frame to frame. Call 

 

t

 

 the 

 

frame time

 

 and 

 

s

 

 the 

 

frame distance 

 

between 
this pair of events. Wristwatch time 

 

τ

 

 can be used to describe the separa-
tion between 

 

any

 

 pair of events for which 

 

t

 

 is greater than 

 

s

 

. It tells the 
observer in any frame what the time lapse will be on a wristwatch that 
moves uniformly from one event to the other.

 

Measure space and time 
in the same units.

 

For simplicity, the units of space and time are the same, such as light-years 
and years, or meters of distance and meters of light-travel time. In both 
cases the speed of light 

 

c

 

 is the conversion factor between measures of 
space and time. For example, the relation between seconds and meters of 
light-travel time is

[2]

 

The metric: Key to all relativity

 

Equation [1], which connects the wristwatch time between two adjacent 
ticks to their space and time separations in a given frame, is called the 

 

metric

 

. The metric (with a minus sign between squared quantities) tells us 
the 

 

separation

 

 between events in spacetime, just as the Pythagorean Theo-
rem (with a plus sign between squared quantities) tells us the 

 

distance

 

 
between points in a space described by Euclidean geometry. The metric is 

Figure 1  Straight-line uniform-speed trajectory of a stone through 
space. The stone wears a wristwatch that ticks and emits a flash at 
#1 and then ticks again and emits a second flash at #2. These two 
ticks are a distance s apart and have a time separation t as 
measured in the frame of reference for which this diagram is 
drawn.
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central in both special and general relativity. In describing physical sys-
tems for which it can be derived, the metric provides the answer to every 
possible question about (nonquantum) features of spacetime. And with a 
simple extension it also predicts the trajectories of particles and light.

 

Wristwatch time is an 
INVARIANT.

 

The fact that all free-float observers agree on the wristwatch time 

 

τ

 

 earns it 
the label 

 

invariant

 

. 

 

Invariant

 

 means that all observers calculate the same 
value, independent of reference frame. In relativity every invariant quan-
tity is a diamond, to be treasured.

 

Velocity 

 

v 

 

is a fraction of the 
speed of light.

 

How fast does the stone travel between ticks? The stone’s speed depends 
on the reference frame. For the frame of Figure 1, the speed (assumed to be 
constant) is

 

 v = s/t

 

. Measure distance 

 

s

 

 and time lapse 

 

t

 

 in the same unit. 
For example, a spaceship travels half a light-year of distance during one 
year of time; its speed is then 0.5 year/year and the units cancel. As 
another example, if an elementary particle moves 0.7 meter in one meter 
of light-travel time its speed is 0.7. Hence the speed 

 

v

 

 has no units. In this 
book the symbol 

 

v

 

 represents the speed of an object as a fraction of the 
speed of light.

 

Fuller Explanations:

 

 

 

Spacetime Physics

 

, Chapter 1, Spacetime: Overview; 
Chapter 3, Same Laws for All; Chapter 6, Regions of Spacetime.

 

3  Proper Distance

 

Everyone agrees on the proper distance between two events.

 

Two firecrackers explode 1

 

 meter apart

 

 and 

 

at the same time

 

, as measured in 
a particular free-float frame. In this frame these explosions are 

 

simultaneous

 

. No stone can travel fast enough to be present at both of 
these explosions without moving at an infinite velocity, which is impossi-
ble. Therefore equation [1] is useless to define a wristwatch time 

 

τ

 

 between 
these two events.

SAMPLE PROBLEM 1  Wristwatch Times

PROBLEM 1A. An unpowered spaceship moving at constant 
speed travels 3 light-years in 5 years, this time and distance 
measured in the rest frame of our Sun. What is the time lapse 
for this trip as recorded on a clock carried with the spaceship?

SOLUTION 1A. The two events that start and end the space-
ship's journey are separated in the Sun frame by s = 3 light-
years and t = 5 years. Equation [1] gives the resulting wrist-
watch time:

[3]

which is less than the time lapse as measured in the Sun 
frame.

PROBLEM 1B. An elementary particle is created in the target 
of a particle accelerator and arrives at a detector 4 meters 
away and 5 meters of light-travel time later, as measured in 
the laboratory. The wristwatch of the elementary particle 
records what time between creation and detection?

SOLUTION 1B. The events of creation and detection are sep-
arated in the laboratory frame by s = 4 meters and t = 5 
meters of light-travel time. Equation [1] tells us that

[4]

Again, the wristwatch time for the particle is less than the 
time recorded in the laboratory frame.

τ2
t
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Use simultaneous explosions 
to measure length of a rod.

 

Simultaneous explosions are thus useless for measuring time. But they are 
perfect for measuring length. 

 

Question:

 

 How do you measure the length of 
a rod, whether it is moving or at rest in your frame? 

 

Answer:

 

 Set off two 
firecrackers at the two ends and 

 

at the same time

 

 (

 

t

 

 = 0) in your frame. Then 

 

define

 

 the rod’s length in your frame as the 

 

distance

 

 

 

s

 

 between this pair of 
explosions.

Special relativity warns us that a different observer passing us in uniform 
relative motion typically will 

 

not

 

 agree that the two firecrackers exploded 
at the same time. That is the bad news (and the idea most difficult to 
understand in all of special relativity). But there is good news: All inertial 
observers, whatever their state of relative motion, can calculate the dis-
tance 

 

σ

 

 between explosions as recorded in the frame in which they do 
occur simultaneously. The new metric is a variation of the old metric [1]:

[8]

 

Proper distance is an 
INVARIANT.

 

The Greek letter 

 

σ

 

 (sigma) labels what we call the 

 

proper distance

 

 
between such events or, more formally, the 

 

spacelike spacetime interval 

 

(“spacelike” because the space separation 

 

s

 

 is greater than the time separa-
tion 

 

t

 

). All free-float observers agree on the value of the proper distance—
the proper distance is an 

 

invariant

 

. In contrast, the value of t and the value 
of s between these events typically differ, respectively, as measured in dif-
ferent frames. Proper distance σ can be used to describe the separation 

SAMPLE PROBLEM 2  Speeding to Andromeda

At approximately what constant speed v must a spaceship 
travel so that the occupants age only 1 year during a trip from 
Earth to the Andromeda galaxy? Andromeda lies 2 million 
light-years distant from Earth.

SOLUTION

The word approximately in the statement of the problem tells 
us that we can make some assumptions. We assume that a 
single free-float frame can stretch all the way from Sun to 
Andromeda, so special relativity applies. We also predict that 
the speed v of the spaceship measured in the Sun frame is 
very close to unity, the speed of light. That allows us to set 
(1 + v) ≈ 2 in the last of the following steps:

[5]

Equate the first and last expressions to obtain

[6]

Now, we assumed that v is very close to the speed of light. It 
follows that the time t for the trip in the Sun frame is very 
close to the time that light takes to make the trip: 2 million 
years. Substitute this value and also demand that the wrist-
watch time on the spaceship (the aging of the occupants 
during their trip) be τ = 1 year. The result is

[7]

Equation [7] expresses the result in sensible scientific nota-
tion. However, your friends may be more impressed if you 
report the speed as a fraction of the speed of light: 
v = 0.999999999999875. This result justifies the assumptions 
we made about the value of v and the time for the trip as 
measured in the Sun frame. Additional question: What dis-
tance does the spaceship rider measure between Earth and 
Andromeda?
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between any pair of events for which s is greater than t. It tells the observer 
in any frame what the distance σ is between the events as measured in a 
frame in which they occur at the same time.

We attach special significance to the length of a rod measured in the frame 
in which it is at rest. Let a firecracker explode at each end of a rod at the 
same time in its rest frame. We call the distance between these explosions 
the proper length of the rod. Any other inertial observer, whatever her 
state of relative motion, can calculate the proper length of the rod from 
equation [8] using the time t and distance s that she measures between 
these particular explosions in her own reference frame.

As in equation [1], the units of space and time in equation [8] are the same, 
such as light-years and years—or meters of distance and meters of light-
travel time.

The name spacetime interval is the collective name for the timelike space-
time interval (equation[1]) and the spacelike spacetime interval (equation 
[8]). 

Fuller Explanations: What happens to equations [1] and [8] when s and t 
have the same magnitude? Find the answer in Spacetime Physics, Chapter 6, 
Regions of Spacetime.

4  The Principle of Extremal Aging
The Twin Paradox leads to a definition of natural motion.

To get ready for curved spacetime (whatever that may mean), look further 
at the motion of a free particle in flat spacetime, the arena of the free-float 
frame (Section 8) in which special relativity correctly describes motion.

How does a free particle move in flat spacetime? We say: “What a ridicu-
lous question! Everyone knows that a free particle moves with constant 
speed in a straight line—at least as observed in a free-float frame.” Ah yes, 
but why does a free particle move straight with constant speed? What lies 
behind this motion? Our answer for flat spacetime will be a trial run for 
the description of motion in curved spacetime, the arena of general 
relativity.

Twin Paradox predicts the 
motion of a free particle.

A deep description of motion arises from the famous Twin Paradox. 
Recall that one identical twin relaxes on Earth while her twin sister franti-
cally travels to a distant star and returns. When the two meet again, the 
stay-at-home twin has aged more than her traveling sister. (This outcome 
can be predicted by extending Sample Problems 1 and 2 to include return 
of the traveler to the point of origin.) Upon being reunited, the “identical 
twins” are no longer identical. Very strange! But (almost) no one who has 
studied relativity doubts the difference in age, and experiments with fast-
moving particles verify it.

Being at rest is one natural 
motion.

Which twin has the motion we can call natural? Isaac Newton has a defini-
tion of natural motion. He would say, “A twin at rest tends to remain at
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rest.” So it is the stay-at-home twin who moves in the natural way. In con-
trast, the out-and-back twin suffers the forces required to change her state 
of motion—from outgoing motion to incoming motion—so that the two 
sisters can meet again in person. The motion of the traveling twin is 
forced, not natural.

Moving uniformly is another 
natural motion.

Viewed from a second relatively moving free-float frame, the stay-at-home 
twin moves with constant speed in a straight line. Hers is also natural 
motion. Newton would say, “A twin in motion tends to continue this 
motion at constant speed in a straight line.” So the motion of the stay-on-

SAMPLE PROBLEM 3  How Slow Is “Speeding”?

A. Answer “yes” or “no” to questions (a) through (e):

Is the stay-at home twin older when they get together 
again if the traveling twin

(a)  streaks to the Andromeda galaxy (2 million light-years 
distant) and back?

(b)  soars to Alpha Centauri (4 light-years distant) and 
back?

(c)  flies to the planet Pluto and back?

(d)  hurries to Earth's Moon and back?

(e)  strolls next door to the neighbor's house and back?

B. In case (e) of part A, what is the approximate difference in 
aging between the twins if the traveling twin strolls at 
1 meter per second and the next door neighbor's house is 
100 meters away?

SOLUTION

A. In principle, one should reply “yes”—the stay-at-home 
twin will be older—for all cases in part A. Part B examines 
the actual value of the aging difference for small relative 
velocity.

B. Solve equation [1] for s2 and apply it to the outward trip 
from the twins’ house to the neighbor's house. The word 
approximately in the statement of the problem gives us 
permission to make assumptions. 

Usually we do not notice results of the Twin Paradox in our 
everyday lives, so it seems reasonable to assume that the 
frame time t is very nearly the same as the wristwatch time τ 
for the stroll next door. This allows us to set (t + τ) ≈ 2t in the 
following steps. We also set t = s/v in one of the steps.

[9]

Equate the first and the last of the expressions in the last line 
of [9] and multiply through by v/(2s) to obtain

[10]

We need to express the velocity v as a fraction of the speed of 
light. A speed of 1 meter per second is equal to

[11]

Substitute this value of v into equation [10] to yield the time 
difference for one leg of the round trip:

[12]

The round trip difference will be twice this value, or 
3.3 × 10–7 meters of light-travel time. Divide the result by the 
speed of light to obtain the time difference in seconds:

 [13]

(This result justifies our assumption that the two times t and τ 
are very nearly equal.) So after her stroll next door and back, 
the traveling twin will be approximately 10–15 seconds 
younger than her stay-at-home sister. To measure this tiny 
time difference exceeds the sensitivity of even the most accu-
rate atomic clock. That is why we do not notice relativistic 
effects in our everyday lives! Nevertheless, Nature witnesses 
the difference by selecting the stay at home twin as the one 
whose motion (or whose lack of motion in this frame) is 
natural.
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Earth twin is also natural from the viewpoint of a second frame in uniform 
relative motion—or from any frame moving uniformly with respect to the 
original frame. In any such frame, the time lapse on the wristwatch of the 
stay-at-home twin can be calculated from the metric (equation [1]).

Natural motion in general: 
Extremal wristwatch time

The lesson of the Twin Paradox is that the natural motion of a free object 
between two events in flat spacetime is the one for which the wristwatch 
worn by the object has a maximum time reading between those two 
events. Purists insist that we say not maximum reading but rather extremal 
reading: either maximum or minimum. This book contains only examples 
of maximum wristwatch time for natural motion. Still, let’s try to keep the 
purists happy! Replace the two words maximum and minimum with the 
single word extremal. The result is the Principle of Extremal Aging.

Principle of Extremal Aging: The path a free object takes between two events 
in spacetime is the path for which the time lapse between these events, recorded 
on the object’s wristwatch, is an extremum.

Principle of Extremal Aging: 
works for general relativity 
too.

It turns out that the Principle of Extremal Aging describes motion even 
when spacetime is not flat. The Principle of Extremal Aging accompanies 
us into curved spacetime, into the realm of general relativity. But for now 
we stay in flat spacetime and use the Principle of Extremal Aging to derive 
relativistic expressions for energy and momentum.

5  Energy in Special Relativity
The Principle of Extremal Aging tells us the energy of a free particle.

Derive energy from the metric 
plus the Principle of Extremal 
Aging.

Combining the metric (Section 2) with the Principle of Extremal Aging 
(Section 4) leads to the relativistic expression for energy in flat space-
time—the formula for energy used in special relativity. Here is the plan in 
outline: A free stone following its natural path carries a wristwatch that 
emits three flashes. We consider all three flashes to be fixed in space and 
the emission times for the first and last flashes also to be fixed. We then 
adjust the time of the middle flash so that the wristwatch time from the first 
flash to the last flash is an extremum. The outcome is the expression for a 
quantity that is the same along every segment of the path—this quantity is 
conserved. We identify the conserved quantity as the energy. Now fill in 
some details.

Three flashes: When will the 
middle flash occur?

Think of a free stone flying along a straight line in space as observed in an 
inertial frame (Figures 2 and 3). The stone emits three flashes #1, #2, and 
#3 bracketing two adjacent segments of its trajectory, segments labeled A 
and B in the figures. These two segments need not be the same length. Fix 
the positions of all three flash emissions in space, fix also the times for flash 
emissions #1 and #3, then ask: At what time t will the free stone pass loca-
tion #2 and emit the second flash? Find this intermediate time t by 
demanding that the total wristwatch time from #1 to #3 be an extremum. 
In other words, use the Principle of Extremal Aging to find the time for the 
middle flash. The result leads to a conserved quantity, the energy of the 
stone.
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Now for the full step-by-step derivation.

1. Let t be the frame time between flash #1 and flash #2 and let s be the 
frame distance between these two flashes. Then the metric [1] tells us 
that the wristwatch time τA along segment A is

[14]

To prepare for the derivative that leads to extremal aging, differentiate 
this expression with respect to the intermediate time t:

[15]

2. Next, let T be the fixed time between flashes #1 and #3 and S be the 
fixed distance between them. Then the frame time between flash #2 and 
flash #3 is (T – t) and the frame distance between them is (S – s). There-
fore the wristwatch time τB along segment B is

τA t
2

s
2

–( )
1 2⁄

=

Figure 2  Three alternative cases of a stone moving along a straight line in space 
as it emits three flashes, #1, #2, and #3. The space locations of emissions are the 
same in all three cases, as are the times of first and last emissions #1 and #3. But 
emission time for the middle flash #2 is different for the three cases. We ask: At 
what time will a free stone following a natural path pass the intermediate point 
and emit flash #2? We answer this question by demanding that the total 
wristwatch time τ from first to last flash emissions be an extremum. From this 
requirement comes an expression for the energy of the stone as a constant of the 
motion.

τAd

td
--------- t

t
2

s
2

–( )
1 2⁄

---------------------------- t
τA
------= =
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[16]

Again, to prepare for the derivative that leads to extremal aging, differ-
entiate this expression with respect to the intermediate time t:

[17]

3. The total wristwatch time τ from event #1 to event #3 is the sum of the 
wristwatch time τA between events #1 and #2 plus the wristwatch time 
τB between events #2 and #3:

[18]

Use Principle of Extremal 
Aging to find the time for the 
middle flash.

4. Now ask: When—at what frame time t—will the a stone, following its 
natural path, pass the intermediate point and emit the second flash #2? 
Answer with the Principle of Extremal Aging: Time t will be such that 
the aging (τ in equation [18]) is an extremum. To find this extremum set 
the derivative of τ with respect to t equal to zero. Take the derivative of 
both sides of [18] and substitute from equations [15] and [17]:

 [19]

τB T t–( )2
S s–( )2

–[ ]
1 2⁄

=

Figure 3  Three alternative cases of a stone moving along a straight line in space as it emits 
three flashes, #1, #2, and #3. These are the same three cases shown in Figure 2, but here we 
plot the stone’s path in space and time. Such a spacetime plot is called a worldline. On each 
of three alternative worldlines, flash emissions #1 and #3 are fixed in space and time. Flash 
emission #2 is fixed in space (horizontal direction in figure) but its time is varied (up and down in 
the figure) to find an extremum of the total wristwatch time τ = τA + τB from #1 to #3. The 
result is an expression for a quantity that is a constant of the motion: the energy of the stone.
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5. The last equality in equation [19] leads to the equation

[20]

Quantity whose value is the 
same for adjacent segments

6. In expression [20] the frame time t is the time for the particle to traverse 
segment A. Call this time tA. The time (T – t) is the frame time for the 
particle to traverse segment B. Call this time tB. Then equation [20] can 
be rewritten in the simple form

[21]

. 7. The locations of segments A and B were chosen arbitrarily along the 
straight path in space of the particle moving in a region of flat space-
time. Equation [21] holds for all pairs of adjacent segments placed any-
where along the path. We did not specify where segment A was to begin. 
Nothing stops us from beginning the analysis with the second segment 
B and adding to it a third segment C with which to compare it (which 
may have a different length than either of the first two segments). Then 
equation [21] applies to the second and third segments. But if the value 
of the expression is the same for the first and second segments and also 
the same for the second and third segments, then it must be the same 
for the first and third segments. Continuing in this way, envision a 
whole series of adjacent segments, labeled A, B, C, D, . . . , for each of 
which equation [21] applies, leading to the set of equations 

[22]

In brief, here is a quantity that is a constant of the motion for the free parti-
cle—a quantity that has the same value along any segment of the natural 
path of a free particle moving in flat spacetime. Then equation [22] tells us 
that

[23]

E/m = t/τ is a constant of the 
motion.

What is this quantity? It is related to the relativistic expression for the total 
energy of the particle. If we have already studied special relativity, we 
know that

[24]

where m is the mass of the particle. Equation [24] gives the energy per unit 
mass of a particle that moves with constant speed. 

OBJECTION: Baloney! Everyone knows that a free particle moves with constant speed 
along a straight path in space as observed in a free-float frame. So as this motion pro-
ceeds, every possible expression that depends only on v = s/t is also a constant of the 
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motion, for example the expression v12, which is certainly not the correct expression 
for energy! Your derivation proves nothing!

RESPONSE: You are almost right. Any function of velocity v = s/t is indeed constant for 
the special case of a free particle in flat spacetime. And if v is constant, so is 
t/τ, as witnessed by Equation [24]. But notice the priorities used in the derivation: The 
Principle of Extremal Aging has highest priority; the expression for energy comes out 
of this principle. Of all the quantities that remain constant because v is constant, the 
Principle of Extremal Aging picks out t/τ = E/m as primary. (The following section 
shows that a similar analysis picks out the relativistic expression for momentum as a 
constant of the motion.) Chapter 3 contains a new and more general expression for 
energy in curved spacetime. In that case the velocity is not constant—yet that more 
general expression for energy is correct and a constant of the motion nevertheless. 
Our derivation of the expression for E/m in flat spacetime is thus a trial run for the 
derivation of the energy of a particle in the curved spacetime around a center of grav-
itational attraction.

If the particle changes speed, then it changes energy. In that case it makes 
sense to talk about instantaneous speed and to use calculus notation. Let the 
pair of flash emissions in Figure 1 be separated by the incremental frame 
coordinates dt, ds, and incremental wristwatch time dτ. The equation for 
E/m then becomes

Particle energy in special 
relativity[25]

.Ordinarily we use the ratio E/m in equations, instead of E alone. Why? 
Because it emphasizes two important principles: (1) Only spacetime rela-
tions between events appear on one side of equations such as [24] and 
[25], reminding us that it is spacetime geometry that leads to these expres-
sions, not some weird property of matter. (2) The ratio E/m has no units. 
Therefore, whoever uses these equations has total freedom in choosing the 
unit of E and m, as long as it is the same unit. The same unit in the numera-
tor and denominator of [25] may be kilograms or the mass of the proton or 
million electron-volts or the mass of Sun. If you insist on using conven-
tional units, such as joules for energy E and kilograms for mass m, then a 
conversion factor c2 intrudes into our simple equation:

[26]

Rest energy: famous formulaNow view the particle from a reference frame in which the particle is at 
rest. In this rest frame there is zero distance s between sequential flash 
emissions. Equation [1] says that for s = 0 the frame time t and wristwatch 
time τ have exactly the same value. For a particle at rest, then, equation 
[26] reduces to the most famous equation in all of physics:

[27]

Note that equation [27] describes the rest energy of a particle. For a particle 
in motion, the energy is given by equation [26].

E
m
---- dt

dτ
-----=

Ejoules

mkgc
2

--------------- dt
dτ
-----=

Ejoules rest mkgc
2

=
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In equation [27], c has the defined value 2.99792458 × 108 meters/second. 
An equation of the same form is correct if E is measured in ergs, m in 
grams, and c in centimeters/second.

Fuller Explanations: Energy in flat spacetime: Spacetime Physics, 
Chapter 7, Momenergy.

6  Momentum in Special Relativity
The metric plus the Principle of Extremal Aging give us an expression for momentum.

The relativistic expression for momentum is derived by a procedure anal-
ogous to the one used to derive the relativistic expression for energy. The 
figures look similar to Figures 2 and 3, but in this case the time t for the 
intermediate flash emission is fixed, while the position s for this event is var-
ied right and left to yield an extremum for the total wristwatch time from 
the first flash to the third flash. (You carry out the derivation of momen-
tum in the exercises at the end of this chapter.) The result is a second 
constant of the motion for a free particle:

[28]

Equation [28] gives the momentum per unit mass for a particle moving 
with constant speed. If the particle changes speed, then once again we use 
calculus notation:

Particle momentum in special 
relativity [29]

Equation [29] has the same form as in Newton’s nonrelativistic mechanics, 
except here the incremental wristwatch time dτ replaces the Newtonian 
lapse dt of “universal time.”

Fuller Explanations: Momentum in flat spacetime: Spacetime Physics, 
Chapter 7, Momenergy.

7  Mass in Relativity
Everyone agrees on the value of the mass m of the stone.

Find mass from energy and 
momentum.

An important relation among mass, energy, and momentum follows from 
the metric and our new expressions for energy and momentum. Suppose a 
moving stone emits two flashes very close together in space ds and in time 
dt. Then equation [1] gives the increase of wristwatch time dτ:

[30]

Divide through by dτ2 and multiply through by m2 to obtain

[31]

s
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or, substituting expressions [25] and [29] for energy and momentum,

Energy (also momentum) 
may be different for 
different observers . . .

[32]

In equation [32], mass, energy, and momentum are all expressed in the 
same units, such as kilograms or electron-volts. In conventional units, the 
equation has a more complicated form:

[33]

where the subscript “conv” means “conventional units.”

. . . but mass is an invariant, 
the same for every observer.

Equations [32] and [33] are central expressions in special relativity. The 
particle energy E will typically have a different value when measured in 
different frames that are in uniform relative motion. Also the particle 
momentum p will typically have a different value when measured in dif-
ferent frames that are in uniform relative motion. However, the values of 
these two quantities in any given free-float frame can be used to determine 
the value of the particle mass m, which is independent of the reference 
frame. Particle mass m is an invariant, independent of reference frame, just 
as the time dτ recorded on the wristwatch between ticks in equation [1] is 
an invariant, independent of the reference frame.

The mass m of key, car, or coffee cup defined in equation [32] is the one we 
use throughout our study of both special and general relativity. Such a test 
particle responds to the structure of spacetime in its vicinity but has small 
enough mass not to affect this spacetime structure. (In contrast, the large 
mass M of a planet, star, or black hole does affect spacetime in its vicinity.) 
Wherever we are, we can always climb onto a local free-float frame (Sec-
tion 8) and apply special-relativity expression [32] or some other standard 
method to measure the mass m of our test particle.

Fuller Explanations: Mass and momentum-energy in flat spacetime: 
Spacetime Physics, Chapter 7, Momenergy.

m
2

E
2

p
2

–=

mc
2( )

2
Econv

2
pconv

2
c

2
–=

No Mass Change with Velocity!

The fact that no object moves faster than the speed of light is 
sometimes “explained” by saying that “the mass of a particle 
increases with speed.” This interpretation can be applied 
consistently, but what could it mean in practice? Someone 
riding along with a faster-moving stone detects no change in 
the number of atoms in the stone, nor any change whatever 
in the individual atoms, nor in the binding energy between 

atoms. Our viewpoint in this book is that mass is an invariant, 
the same for all free-float observers when they use equations 
[32] or [33] to reckon the mass. In relativity, invariants are 
diamonds. Do not throw away diamonds! For more on this 
subject, see Spacetime Physics, Dialog: Use and Abuse of 
the Concept of Mass, pages 246–251.
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8  The Free-Float Frame Is Local
In practice there are limits on the space and time extent of the free-float (inertial) 
frame.

The free-float (inertial) frame is the arena in which special relativity 
describes Nature. The power of special relativity applies strictly only in a 
frame—or in each one of a collection of overlapping frames in uniform rel-
ative motion—in which a free particle released from rest stays at rest and a 
particle launched with a given velocity maintains the magnitude and 
direction of that velocity.

Limits of local free-float 
frames imply the need for 
general relativity.

If it were possible to embrace the Universe with a single free-float (inertial) 
frame, then special relativity would describe that universe and general rel-
ativity would not be needed. But general relativity is needed precisely 
because typically inertial frames are inertial in only a limited region of 
space and time. Inertial frames are local. The free-float frame can be real-
ized, for example, inside various “containers,” such as (1) an unpowered 
spaceship in orbit around Earth or Sun or (2) an elevator whose cables 
have been cut or (3) an unpowered spaceship in interstellar space. Riding 
in these free-float frames for a short time, we find no evidence of gravity.

Free-float frame cannot be 
too large.

Well, almost no evidence. The enclosure in which we ride cannot be too 
large or fall for too long a time without some unavoidable changes in rela-
tive motion being detected between particles in the enclosure. Why? 
Because widely separated test particles within a large enclosed space are 
differently affected by the nonuniform gravitational field of Earth—to use 
the Newtonian way of speaking. For example, two particles released side 
by side are both attracted toward the center of Earth, so they move closer 
together as measured inside a falling long narrow horizontal railway 
coach (Figure 4, left). Moving toward one another has nothing to do with 
gravitational attraction between these test particles, which is entirely neg-
ligible.

As another example, think of two test particles released far apart vertically 
but one directly above the another in a long narrow vertical falling railway 
coach (Figure 4, right). For vertical separation, their gravitational accelera-
tions toward Earth are in the same direction, according to the Newtonian 
analysis. However, the particle nearer Earth is more strongly attracted to 
Earth and gradually leaves the other behind: the two particles move far-

Elevator Safety

Could the cables snap and send an elevator plummeting down the shaft?

This is every rider's worst fear, but experts say there's no need to worry. You're being sup-
ported by four to eight cables, each of which could support the weight of the car by itself. In 
fact, the only time an elevator has been known to go into freefall—with all of its cables 
cut—was during World War II, when an American bomber accidentally hit the Empire State 
Building [in New York City]. The plane's crew died, but the lone elevator passenger survived.

                                          —Good Housekeeping Magazine, February 1998, page 142.
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ther apart as observed inside the falling coach. Conclusion: The large 
enclosure is not a free-float frame.

A rider in either railway car shown in Figure 4 sees the pair of test parti-
cles accelerate toward one another or away from one another. These rela-
tive motions earn the name tidal accelerations, because they arise from 
the same kind of nonuniform gravitational field—this time the field of 
Moon—that account for ocean tides on Earth.

Now, we want the laws of motion to look simple in our free-float frame. 
Therefore we want to eliminate all relative accelerations produced by 
external causes. “Eliminate” means to reduce them below the limit of 
detection so that they do not affect measurements of, say, the velocity of a 
particle in an experiment. We eliminate the problem by choosing a room 
that is sufficiently small. Smaller room? Smaller relative motions of objects 
at different points in the room!

Reduce space or time 
extension to preserve free-
float frame.

Let someone have instruments for detection of relative motion with any 
given degree of sensitivity. No matter how fine that sensitivity, the room 
can always be made so small that these perturbing relative motions are too 
small to be detectable in the time required for the experiment. Or, instead 
of making the room smaller, shorten the time duration of the experiment 
to make the perturbing motions undetectable. For example, very fast par-
ticles emitted by a high-energy accelerator on Earth traverse the few-meter 
span of a typical experiment in so short a time that their deflection in 

Figure 4  Einstein’s old-fashioned railway coach in free fall. Left: horizontal orientation. Right: vertical 
orientation.
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Earth's gravitational field is negligible. The result: The frame of the labora-
tory at rest on Earth's surface is effectively free-float for purposes of ana-
lyzing these experiments.

Both space and time enter into the specification of the limiting dimensions 
of a free-float frame. Therefore—for a given sensitivity of the measuring 
devices—a reference frame is free-float only within a limited region of 
spacetime.

Test for free-float property 
within the frame itself.

An observer tests for a free-float frame by releasing particles from rest 
throughout the space and noting whether they remain effectively at rest 
during the time set aside for our particular experiment. Wonder of won-
ders! Testing for free float can be carried out entirely within the frame 
itself. The observer need not look out of the room or refer to any measure-
ments made external to the room. A free-float frame is “local” in the sense 
that it is limited in space and time—and also “local” in the sense that its 
free-float character can be determined from within, locally.

. One way to get rid of “gravitational force” is to jump from a high place 
toward a trampoline below. That is to say, a locally free-float frame is 
always available to us. But no contortion or gyration whatsoever will 
eliminate the relative accelerations of test particles that indicate the limits 
of the free-float frame. These relative accelerations are the central indica-
tors of the curvature of spacetime. They stand as warning signs that we are 
reaching the limits of special relativity.

General relativity requires 
more than one free-float 
frame.

How can we analyze a pair of events widely separated near Earth, near 
Sun, or near a neutron star, events too far apart to be enclosed in a single 
free-float frame? For example, how do we describe the motion of an aster-
oid whose orbit completely encircles Sun, with an orbital period of many 
years? The asteroid passes through many free-float frames but cannot be 
tracked using a single free-float frame. Special relativity has reached its 
limit! To describe accurately motion that oversteps a single free-float 
frame, we must turn to general relativity—the Theory of Gravitation—as 
we do in Chapter 2.

Fuller explanations: Spacetime Physics, Chapter 2, Floating Free, and 
Chapter 9, Gravity: Curved Spacetime in Action.

9  The Observer
Ten thousand local witnesses

Detect each event locally, 
using a latticework of clocks.

How, in principle, do we record events in space and time? Nature puts an 
unbreakable speed limit on signals—the speed of light. This speed limit 
causes problems with the recording of widely separated events, because 
we do not see a remote event until long after it has occurred. To avoid the 
light-velocity delay, adopt the strategy of detecting each event using 
equipment located right next to that event. Spread event-detecting equip-
ment over space as follows. Think of assembling metersticks and clocks 
into a cubical latticework similar to a playground jungle gym (Figure 5). 
At every intersection of the latticework fix a clock. These clocks are identi-
cal and measure time in meters of light-travel time. 
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Synchronize clocks in the 
lattice.

These clocks should read the same time. That is, the clocks need to be syn-
chronized in this frame. There are many valid ways to synchronize clocks. 
Here is one: Pick one clock as the standard, the reference clock. At mid-
night the reference clock sends out a synchronizing flash of light in all 
directions. Prior to emission of the synchronizing flash, every other clock 
in the lattice has been stopped and set to a time (in meters) later than mid-
night equal to the straight-line distance (in meters) of that clock from the 
reference clock. Each clock is then started when it receives the reference 
flash. The clocks in the latticework are then said to be synchronized.

Measuring the space and 
time location of an event

Use the latticework of synchronized clocks to determine the location and 
time at which any given event occurs. The spatial position of the event is 
taken to be the location of the clock nearest the event and the time of the 
event is the time recorded on that clock. The location of this nearest clock 
is measured along three directions, northward, eastward, and upward 
from the reference clock. The spacetime location of an event then consists 
of four numbers, three numbers that specify the space position of the clock 
nearest the event and one number that specifies the time the event occurs 
as recorded by that clock.

Figure 5  Latticework of metersticks and clocks



1-18 CHAPTER 1  Speeding

Specify the location of an event as the location of the clock nearest to it. 
With a latticework made of metersticks, the location of the event will be 
uncertain to some substantial fraction of a meter. For events that must be 
located with greater accuracy, a lattice spacing of 1 centimeter or 1 milli-
meter would be more appropriate. To track an Earth satellite, lattice spac-
ing of 100 meters might be adequate.

The lattice clocks, when installed by a foresighted experimenter, will be 
recording clocks. Each clock is able to detect the occurrence of an event 
(collision, passage of light flash or particle). Each reads into its memory 
the nature of the event, the time of the event, and the location of the clock. 
The memory of all clocks can then be read out and analyzed later at some 
command center.

The “observer” is all the 
recording clocks in one 
frame.

In relativity we often speak about the observer. Where is this observer? At 
one place or all over the place? Answer: The word observer is a shorthand 
way of speaking about the whole collection of recording clocks associated 
with one free-float frame. This is the sophisticated sense in which we here-
after use the phrase “the observer measures such-and such.”

What happens to our latticework of clocks in the vicinity of Earth or Sun 
or neutron star or black hole? Suppose one of these centers of attraction is 
isolated in space and we stay far away from it. Then there is no problem in 
setting up an extensive latticework that starts far from the center and 
stretches even farther away in all directions. Such an extensive far-away 
lattice can represent a single valid free-float frame. And in studying gen-
eral relativity we often speak of a far-away observer.

The far-away lattice is not 
free float when extended to 
near Earth or black hole.

But there are problems in extending the far-away latticework of clocks 
down toward the surface of any of these structures. A free particle 
released from rest near that center does not remain at rest with respect to 
the far-away lattice. A single free-float frame no longer provides a simple 
description of motion.

Many local frames are 
required near Earth or black 
hole.

To describe motion near a center of gravitational attraction we must give 
up the idea of a single global free-float frame, one that covers all space and 
time around Earth or black hole. Replace it with many local frames, each 
of which provides only a small part of the global description. A world 
atlas binds together many overlapping maps of Earth. Individual maps in 
the atlas can depict portions of Earth’s surface small enough to be essen-
tially flat. Taken together, the collection of maps bound together in the 
world atlas correctly describes the entire spherical surface of Earth, a task 
impossible using a single large flat map for the entire Earth. For spacetime 
near nonrotating Earth or black hole, the task of binding together individ-
ual localized free-float frames is carried out by the Schwarzschild metric, 
introduced in Chapter 2. The Schwarzschild metric frees us from limita-
tion to a single free-float frame and introduces us to curved spacetime.

Fuller Explanations: Spacetime Physics, Chapter 2, Section 2.7, Observer.
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10  Summary

The wristwatch time τ between two events, the time recorded on a watch 
that moves uniformly from one event to the other, is related to the separa-
tion s between the events and the time difference t between them as mea-
sured in a given frame. For space and time measured in the same units, 
this relation is given by the equation

[1]

The wristwatch time τ is an invariant, the same calculated by all observers, 
even though t and s may have different values, respectively, as measured 
in different reference frames. Equation [1] is an example of the metric.

Of all possible paths between an initial event and a final event, a free parti-
cle takes the path that makes the wristwatch time along the path an extre-
mum. This is called the Principle of Extremal Aging. 

From the metric and the Principle of Extremal Aging one can derive two 
quantities that are constants of the motion for a free particle. One constant 
of the motion is the energy per unit mass E/m:

[25]

The second constant of the motion is the momentum per unit mass p/m:

[29]

The spacetime arena for special relativity is the free-float (inertial) frame, one 
in which a free test particle at rest remains at rest and a free test particle in 
motion continues that motion unchanged. We call a region of spacetime 
flat if a free-float frame can be set up in it.

In principle one can set up a latticework of synchronized clocks in a free-
float frame. The position and time of any event is then taken to be the loca-
tion of the nearest lattice clock and the time of the event recorded on that 
clock. The observer is the collection of all such recording clocks in a given 
reference frame.

Most regions of spacetime are flat over only a limited range of space and 
time. Evidence that a frame is not inertial (so that its region of spacetime is 
not flat) is the relative acceleration (“tidal acceleration”) of a pair of free 
test particles with respect to one another. If tidal accelerations affect an 
experiment in a region of space and time, then we say that spacetime 
region is curved, and special relativity cannot validly be used to describe 
this experiment. In that case we must use general relativity, the theory of 
gravitation, which correctly describes the relations among events spread 
over regions of space and time too large for special relativity.
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Note on terminology: In this book we use the convention recommended by 
the International Astrophysical Union that names for objects in the solar 
system be capitalized and used without the article. For example, we say 
“orbits around Sun” or “the mass of Moon.” This provides a consistent 
convention; one would not say “orbits around the Mars.” We also capital-
ize the words Nature and Universe out of respect for our cosmic home.
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