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CHAPTER 2

 

Curving

 

It is not my purpose in this discussion to represent the general theory of 
relativity as a system that is as simple and as logical as possible, and with 
the minimum number of axioms; but my main object here is to develop this 
theory in such a way that the reader will feel that the path we have entered 
upon is psychologically the natural one, and that the underlying 
assumptions will seem to have the highest possible degree of security. 

 

                                                            —Albert Einstein

 

1  “Distances” Determine Geometry

 

Describe an object with a table of distances between points. 
Describe spacetime with a table of intervals between events.

 

Nothing is more distressing on first contact with the idea of curved space-
time than the fear that every simple means of measurement has lost its 
power in this unfamiliar context. One thinks of oneself as confronted with 
the task of measuring the shape of a gigantic and fantastically sculptured 
iceberg as one stands with a meterstick in a tossing rowboat on the surface 
of a heaving ocean.

 

Reproduce a shape 
using nails and string.

 

Were it the rowboat itself whose shape were to be measured, the proce-
dure would be simple enough (Figure 1). Draw it up on shore, turn it 
upside down, and lightly drive in nails at strategic points here and there 
on the surface. The measurement of distances from nail to nail would 
record and reveal the shape of the surface. Using only the table of these 
distances between each nail and other nearby nails, someone else can 
reconstruct the shape of the rowboat. The precision of reproduction can be 
made arbitrarily great by making the number of nails arbitrarily large. 

It takes more daring to think of driving into the towering iceberg a large 
number of pitons, the spikes used for rope climbing on ice. Yet here too the 
geometry of the iceberg is described—and its shape made reproducible—
by measuring the distance between each piton and its neighbors.

 

The event is a nail driven 
into spacetime.

 

But with all the daring in the world, how is one to drive a nail into space-
time to mark a point? Happily, Nature provides its own way to localize a 
point in spacetime, as Einstein was the first to emphasize. Characterize the 
point by what happens there: firecracker, spark, or collision! Give a point 
in spacetime the name 

 

event

 

.
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Interval: Separation between 
events in spacetime

 

Events are the nails, the pitons, the steel surveying stakes of spacetime. 
How can events describe the geometry of spacetime? Measure the “dis-
tance” between each event and every one of its neighboring events. We 
already know that for spacetime the “distance” between each pair of 
events means the 

 

spacetime interval

 

 between them (Chapter 1). The table of 

Figure 1  Reproducing the shape of an overturned rowboat (top) by driving nails around 
its perimeter, then stretching strings between each nail and every nearby nail (middle). 
The shape of the rowboat can be reconstructed (bottom) using only the lengths of string 
segments—the distances between nails. To increase the precision of reproduction, 
increase the number of nails, the number of string segments, the table of distances.
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distances

 

 between points in space becomes a table of 

 

intervals

 

 between 
events in spacetime.

 

Events and intervals 
reproduce “shape”
of spacetime.

 

The table of distances between points allows us to describe and reproduce 
the spatial geometry of a surface—whether plane or curved. The table of 
spacetime intervals between events allows us to describe and reproduce 
the “shape,” the geometry of spacetime—whether the flat spacetime 
geometry described by special relativity or the curved spacetime geome-
try described by general relativity.

 

2  Reference Frames Are Secondary

 

Lab and rocket frames give different viewpoints on flat spacetime. 
Different reference frames give different viewpoints on curved spacetime.

 

Curvature exists with or 
without reference frames.

 

Events themselves are the nails on which science hangs. Spacetime inter-
vals between events evidence the geometry of spacetime, its curvature. 
This geometry, this curvature from point to point, exists whether one or 
another competing reference frame is used to describe it. Spacetime geom-
etry exists—and can be described—even when no frame of reference is 
used at all!

We may—and will—choose to use several different reference frames to 
describe the same events near a gravitating star or planet. One frame 
spans the interior of an unpowered spaceship orbiting a spherically sym-
metric center of attraction. Another occupies the inside of a second 
unpowered spaceship plunging radially toward that center. A third refer-
ence frame consists of the inside of a powered spaceship, rockets blasting, 
that stands at rest outside the same heavenly body. (Or save rocket power 
by constructing and standing on a stationary spherical shell concentric to 
the star or planet.) There are many other possible frames. A central idea of 
general relativity is that reference frames are not fundamental—all are 
equally valid. People who use general relativity as a tool change reference 
frames more often than they change clothes. Each different frame illumi-
nates some features of curved spacetime geometry, but rarely does any 
single reference frame reveal every important feature of that geometry.

 

Different frames offer 
different “vantage points” to 
study spacetime.

 

Special relativity uses laboratory and rocket frames as different vantage 
points to get an insight into flat spacetime that exists independent of any 
reference frame. In the same way we use alternative reference systems 
around a star to get insight into curved spacetime—a curved geometry 
that exists independent of any frame of reference. By using different 
frames for different purposes, we glimpse the spacetime geometry that 
lies behind all frames of reference.

 

You keep talking about “curvature” of spacetime. What is curvature?

 

The word 

 

curvature

 

 is an analogy, a visual way of extending ideas about three-
dimensional space to the four dimensions of spacetime. Travelers detect curvature—in 
both three and four dimensions—by the gradual increase or decrease of the “dis-
tance” between “straight lines” that are initially parallel. In three space dimensions, 
the actual paths in space converge or diverge. Think of two travelers who start near 
one another at the equator of Earth and march “straight north.” Neither traveler 
deviates to the right or to the left, yet as they continue northward they discover that 
the distance between them decreases, finally reaching zero as they arrive at the north 
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pole. They can use this deviation to describe the curved spherical surface on which 
they travel. Similarly, in four-dimensional spacetime, travelers detect the deviation 
from parallelism of nearby worldlines of free particles, each of which follows an ide-
ally straight spacetime path, often called a 

 

geodesic

 

. This curvature can be measured 
by the travelers and varies from place to place in spacetime.

Einstein: Coordinate systems 
are not fundamental.

 

We use frames of reference for our own convenience, for concreteness and 
economy of thought. But reference frames and their coordinates are not 
fundamental to Nature. Geometry is fundamental. It took Einstein seven 
years to achieve this basic insight. In a few sentences he summarizes the 
transition from special relativity to general relativity:

 

Now it came to me: . . . the independence of the gravitational acceleration from 
the nature of the falling substance, may be expressed as follows: In a gravita-
tional field (of small spatial extension) things behave as they do in a space free 
of gravitation. . . . This happened in 1908. Why were another seven years 
required for the construction of the general theory of relativity? The main rea-
son lies in the fact that it is not so easy to free oneself from the idea that coordi-
nates must have an immediate metrical meaning.

 

3  Free-Float Frame

 

Our old, comfy, free-float (inertial) frame carries us unharmed to the center of a 
black hole. Well, unharmed 

 

almost

 

 to the center!

 

No escape from inside the 
horizon of a black hole

 

We want to experience the spacetime geometry around a black hole, a star 
that has collapsed “all the way,” without limit. General relativity predicts 
this fate for any too-massive collection of matter. General relativity pre-
dicts further that nothing, not even light, can escape from a black hole if 
the emitting satellite gets closer to the black hole than what is called the 

 

horizon

 

 (the radius of no return, defined more carefully in Section 9). If 
light cannot escape from an object, this object appears black from the out-
side. Hence the name “black hole.”

 

“Capsule of flat spacetime”

 

No one can stop us from observing a black hole from an unpowered 
spaceship that drifts freely toward the black hole from a great distance, 
then plunges more and more rapidly toward the center. Over a short time 
the spaceship constitutes a “capsule of flat spacetime” hurtling through

Escape from a Black Hole? Hawking Radiation

Einstein’s equations predict that nothing escapes from the 
so-called “horizon” of a black hole. In 1973, Stephen 
Hawking demonstrated a contrary conclusion using quan-
tum mechanics. For years quantum mechanics had been 
known to predict that particle-antiparticle pairs, such as 
electrons and positrons, are continually being created and 
recombined in undisturbed space, despite the frigidity of the 
vacuum. These processes have, indirectly, important and 
well-tested observational consequences. Never in cold flat 
spacetime, however, do such events ever present themselves 
to direct observation. For this reason the pairs receive the 
name “virtual particles.” When such a particle-antiparticle 

pair is produced near the horizon of a black hole, Hawking 
showed, one member of the pair will occasionally be swal-
lowed by the black hole, leaving the other one to escape. 
Escaped particles form what is called Hawking radiation. 
The energy of the escaping particle comes from the black 
hole. Over time this loss of energy causes the black hole to 
“evaporate.” The final stage may be a super-H-bomb explo-
sion. For a black hole of several solar masses, however, the 
time required to achieve this explosive state exceeds the age 
of the Universe by a fantastic number of powers of ten. For 
this reason we ignore such emissions here. (See also the box 
on page 5-27.)
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curved spacetime. It is a free-float frame like any other. Special relativity 
makes extensive use of such frames, and special relativity continues to 
describe Nature correctly for an astronaut in a local free-float frame, even 
as she falls through curved spacetime, through the horizon, and into a 
black hole. Keys, coins, and coffee cups continue to move in straight lines 
with constant speed in such a local free-float frame. (Figure 2 illustrates, 
by analogy, that paths curved in three space dimensions appear straight 
when we view small enough portions of these paths.) Collisions, creations, 
and annihilations of particles continue to follow the special relativity law 
of conservation of momentum-energy. What could be simpler? 

 

Unavoidable relative 
accelerations near a star

 

However, as we approach the black hole the dimensions of our frame 
must be progressively constricted if we are to verify that it is free-float. In 
free fall near Earth, relative accelerations change the separation between 
two test particles, thus restricting the size of the spacetime region in which 
both are observed to be in free float (Chapter 1, Section 8). In imagination 
we can extend our near-Earth experience to regions exterior to more mas-

Figure 2  The curved spacetime geometry of general relativity symbolized by the two-
dimensional geometry of the surface of Newton’s apple. The locally straight 
(geodesic) tracks followed by ants crawling on the apple’s surface symbolize the 
tracks followed through spacetime by free particles. In any sufficiently localized region 
of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-
dimensional surface by the straight-line course of the tracks viewed in the magnifying 
glass. In a region of greater extension, the curvature (curved two-dimensional space in 
the case of the apple; four-dimensional spacetime in the case of the real physical 
world) makes itself felt. On a larger scale, two tracks originally diverging from a 
common point later approach, cross, and go off in very different directions. In 
Newtonian theory this effect is ascribed to gravitational force acting at a distance 
from a massive body, symbolized here by the stem of the apple. According to Einstein, 
a particle gets its moving orders locally, from the geometry of spacetime right where it 
is. Its instructions are simple: “Go straight! Follow the straightest possible worldline 
(geodesic).” Physics is as simple as it could be locally. Only because spacetime is curved 
in the large do the tracks diverge, converge, and cross (“tidal accelerations”). 
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sive spherically symmetric objects: our Sun, a similar star, a white dwarf, a 
neutron star, a black hole. As we get closer and closer to each of these more 
and more compact spherically symmetric bodies, greater and greater 
become the relative accelerations between test particles. Near the center of 
a black hole these relative accelerations become lethal.

Relative accelerations are called 

 

tidal accelerations

 

, because they are simi-
lar to the difference of our Moon’s gravitational attraction on opposite 
sides of Earth that lead to tides. (See Section 2.3 of 

 

Spacetime Physics

 

.)

 

Lethal effects of relative 
accelerations near black hole

 

Consider, for example, the plight of an experimental astrophysicist freely 
falling feet first toward a black hole. As the trip proceeds, various parts of 
the astrophysicist’s body experience different gravitational accelerations. 
His feet are accelerated toward the center more than his head, which is far-
ther away from the center. The difference between the two accelerations 
(the tidal acceleration) pulls his head and feet apart, growing ever more 
intense as he approaches the center of the black hole. The astrophysicist’s 
body, which cannot withstand such extreme tidal accelerations, suffers 
drastic stretching between head and foot as the radial distance drops to 
zero.

But that is not all. Simultaneous with this head-to-foot stretching, the 
radial attraction toward the center funnels the astrophysicist’s body into 
regions of space with ever-decreasing circumferential dimension. Tidal 
gravitational accelerations 

 

compress

 

 the astrophysicist on all sides as they 

 

stretch

 

 him from head to foot. The astrophysicist, as the distance from the 
center approaches zero, is crushed in width and radically extended in 
length. Both lethal effects are natural magnifications of the relative 
motions of test particles released from rest at opposite ends of free-float 
frames near Earth (Chapter 1, Section 8).

 

How small can a free-float 
frame be?

 

Confronted by tidal accelerations, how can we define a free-float frame 
falling into a black hole? At the center of the black hole we cannot; general 
relativity predicts infinite tidal accelerations there. However, short of the 
center, we employ the strategy used in free-float near Earth (Section 8 of 
Chapter 1): Limit the space and the time—the region of 

 

spacetime

 

!—in 
which experiments are conducted. Very near the center we restrict our-
selves to an ever smaller and more pinched local region of spacetime in 
which to define a free-float frame and in which to employ special relativ-
ity. How small can a free-float frame be? A single radioactive atomic 
nucleus can emit a detectable signal, for example a high-energy flash 
(“gamma ray”). In principle a reference frame can have space dimensions 
as tiny as that of the nucleus and time dimension equal to the emission 
time of the gamma ray. If gravitational tidal accelerations do not distort 
the nucleus “too much” within this spacetime region, the laws of special 
relativity accurately describe the nucleus in such a frame—the frame is 
effectively free-float for purposes of this experiment.

The constant, ever-present “force of gravity” that we experience on Earth 
is gone, eliminated as we step into a free-float frame. What remains of 
“gravity”? Only curvature of spacetime remains. What is this curvature? 
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Nothing but tidal acceleration. Curvature is tidal acceleration and tidal 
acceleration is curvature. Kip Thorne says it clearly: “Einstein and New-
ton, with their very different viewpoints on the nature of space and time, 
give very different names to the agent that causes test particles to acceler-
ate toward or away from one another in a frame that is not quite free-float. 
Einstein calls it spacetime curvature; Newton calls it tidal acceleration. But 
there is just one agent acting. Therefore, 

 

spacetime curvature and tidal accel-
erations must be precisely the same thing, expressed in different languages.”

 

 
(Quotation slightly edited; original in the references.)

 

Need global coordinates

 

One limitation of a free-float frame near a black hole is the tidal accelera-
tions experienced by test particles as the frame falls toward zero radius. 
Another limitation is the large-scale consequence of tidal acceleration: No 
single free-float frame is large enough to describe relations between two 
events that occur on opposite sides of the central mass. Two such events 
might be the emission of two flashes at different times by an object whose 
orbit girdles a black hole. To relate such widely separated events, we need 
a global rather than a local coordinate system. Karl Schwarzschild pro-
vided the basis for such a global coordinate system around a spherical, 
nonspinning center of attraction. Schwarzschild coordinates apply 
approximately to slowly spinning bodies such as Earth and Sun and to 
nonspinning or slowly spinning neutron stars and black holes. But these 
coordinates also have limitations. Points of view provided by free-float 
and Schwarzschild-related coordinate systems—and by still other coordi-
nate systems—probe deeply the geometry of empty spacetime around a 
star. We now begin the study of the coordinates used by Schwarzschild.

 

4  The 

 

r

 

-coordinate: Reduced Circumference

 

How to measure the radius while avoiding the trap in the center

 

Spherically symmetric centers 
of attraction

 

Matter has, by virtue of gravitation, a marvelous ability to agglomerate 
into spherical centers of attraction. Nicolaus Copernicus is credited with 
the insight that replaced Earth as the only assumed center of attraction 
with multiple centers of gravity. Standing as witness to the simplicity of 
the spherical shape are Earth, Moon, planets, Sun, and stars. Each of these 
structures is compressed—more dense—near its center and less dense 
near its surface. But this density changes with radius only, not with angle 
around the center. Such structures earn the label 

 

spherically symmetric

 

. 
(Strictly speaking, an astronomical object can be spherically symmetric 
only if it does not rotate on its axis. For our Sun and planets this rotation 
rate is small enough so that departures from spherical symmetry can be 
neglected in the interpretation of many observations.)

The closer the distribution of mass to exact spherical symmetry, the better 
the spacetime geometry around such a structure conforms to the wonder-
fully simple solution to the equations of general relativity discovered by 
Karl Schwarzschild in 1915. Schwarzschild’s solution describes spacetime 
external to 

 

any

 

 isolated spherically symmetric body in the Universe.
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Schwarzschild’s simple 
solution

 

What does this “Schwarzschild geometry” around Earth, star, or black 
hole look like? “What a nonsensical question!” we say at first. Whoever 
looks 

 

at

 

 space? We look 

 

through

 

 space. Or we thrust skeleton skyscrapers 
out into space, we push out into space the Buckminster Fuller framework 
of a great spherical building (Figure 3). Ha! Just such a Buckminster Fuller 
construction gives us at last a way to “see” what space looks like, as 
described in what follows.

Nicolaus Copernicus  Born Torun, Poland, February 19, 1473; died Frombork, Poland, May 24, 
1543. The flower is an old symbol for medicine, which Copernicus learned at Padua. His medical 
skill was always at the service of the poor.

The Dictionary of Scientific Biography says: Whereas the pre-Copernican cosmos had known only 
a single center of gravity or heaviness, the physical universe acquired multiple centers of gravity from 
Copernicus, who thus opened the road that led to universal gravitation . . . [H]e put forward a revised 
conception of gravity, according to which heavy objects everywhere tended toward their own center—
heavy terrestrial objects toward the center of the earth, heavy lunar objects toward the center of the 
Moon, and so on. [Copernicus wrote:]

“For my part, I think that gravity is nothing but a certain natural striving with 
which parts have been endowed . . . so that by assembling in the form of a sphere they 
may join together in their unity and wholeness. This tendency may be believed to be 
present also in the sun, the moon, and the other bright planets, so that it makes them 
keep that roundness which they display.’”



 

Section 4 The r-coordinate: Reduced Circumference

 

2-9

 

To be specific, take the center of attraction to be a black hole. Let it have 
the same mass as Sun. Build around it, in imagination, an open spherical 
shell of rods fitted together in a mesh of triangles (Figure 3) similar to 
hemispherical jungle gyms found on playgrounds. This spherical shell, 
this scaffolding, is an alternative to our latticework of rods and clocks in 
local free-float frames. Mount clocks on this shell. The rods and clocks of 
this shell provide one system of spacetime coordinates to locate events.

 

Spherical shell of rods and 
clocks

 

We say to build this shell “in imagination,” because neither steel nor tanta-
lum nor any modern wonder material has a ratio of strength to weight 
adequate to support such a structure against the inward pull of gravity. 
However, the surface of a planet, moon, or star has itself the character of a 
shell. We walk around on such a shell every day: Earth’s surface! In the 
absence of an actual spherical shell, we can use a spaceship that stands 
still above the surface by blasting its rockets inward. 

 

We cannot measure radius 
directly.

 

How shall we define the size of the sphere formed by this latticework 
shell? Shall we measure directly its distance from its center? That won’t 
do. Yes, in imagination we can stand on the shell. Yes, we can lower a 
plumb bob on a “string.” But for a black hole, any string, any tape mea-
sure, any steel wire—whatever its strength—is relentlessly torn apart by 
the unlimited pull the black hole exerts on any object that dips close 
enough to its center. Even for Earth or Sun, the surface keeps us from low-
ering our plumb bob directly to the center.

 

Derive radius from 
measurement of 
circumference.

 

Then try another way to define the size of the spherical shell. Instead of 
lowering a tape measure from the shell, run a tape measure around it. Call 
the distance so obtained the 

 

circumference

 

 of the sphere. Divide this cir-
cumference by 2

 

π

 

 = 6.283185 . . . to obtain a distance that would be the 
directly measured radius of the sphere if the space inside it were flat. But it 
isn’t flat. Yet this procedure yields the most useful known measure of the 
size of the spherical shell. 

The “radius” of a spherical object produced by this method of measuring 
has acquired a name, the 

 

coordinate radius

 

, despite its being no true 
radius. We call it also the 

 

reduced circumference

 

, to remind us that it is 
derived (“reduced”) from the circumference:

[1]

The phrases 

 

coordinate radius

 

 and 

 

reduced circumference

 

 are such mouthfuls 
that we usually call it simply the 

 

r

 

-coordinate

 

 and represent it by the sym-
bol 

 

r

 

. The 

 

r

 

-coordinate is the radius computed from the sphere’s 
circumference. This

 

 

 

value of 

 

r 

 

is stamped on every shell for all to see.

Having constructed—in imagination—one spherical shell around our 
black hole and found its coordinate radius, its reduced circumference 

 

r

 

, we 
construct inside it a second such framework of rods and likewise deter-
mine its radius. We find the reduced circumference 

 

r

 

 of the inner sphere to

coordinate radius r reduced circumference= =

(circumference)/2π=

r-coordinate=
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be 1 kilometer less than that of the first one—based on tape-measure 
determinations of distance around the two spheres.

 

Directly measured separation 
between nested shells is 

 

greater

 

 than the difference 
in r-value.

 

Now, finally, we lower a plumb bob from the outer sphere and for the first 
time measure directly the true radial distance perpendicularly from the 
outer sphere to the inner one. Will we find a 1-kilometer radial distance 
between the two spheres? We would if space were flat. But it is 

 

not

 

 flat. 
Schwarzschild geometry tells us that the directly measured radial distance 
between the two nested spheres is 

 

more

 

 than 1 kilometer. That increase 
over the expectations of Euclidean geometry provides the most striking 
evidence in principle one can easily cite for the curvature of space we call 
gravitation. To examine such discrepancies is to see what space looks like 
around a black hole.

 

Small effect near Sun

 

Built around our Sun, the inner sphere cannot lie inside Sun’s surface. Its 

 

r

 

-coordinate can be no less than that of Sun’s surface, which is approxi-

Figure 3  Geodesic globe named Spaceship Earth, the symbol of Disney Epcot Center in Orlando, 
Florida. Fifty meters in diameter, it contains a ride highlighting the history of communication 
from cave dwellers to the present. The spherical shells surrounding our black hole are openwork 
lattices, not a closed surface as shown here. © Disney Enterprises, Inc.
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mately 695 980 kilometers. Around this inner shell we erect a second 
one—again in imagination—of 

 

r

 

-coordinate 1 kilometer greater: 695 981 
kilometers. The directly measured distance between the two would be not 
1 kilometer, but 2 millimeters more than 1 kilometer.

How can we get closer to the center of a stellar object with mass equal to 
that of our Sun—but still be external to that object? A white dwarf and a 
neutron star each has roughly the same mass as our Sun, but each is much 
smaller. Therefore we can—in principle—conduct a more sensitive test of 
the nonflatness of space much closer to the centers of these objects while 
staying external to them. The effects of the curvature of space are much 
greater near the surface of a white dwarf or neutron star than near the sur-
face of our Sun.

 

Huge effect near a black hole

 

Turn attention now to a black hole of one solar mass. Close to it the depar-
ture from flatness is much larger than it is anywhere in or around a white 
dwarf or a neutron star. Construct an inner sphere having an 

 

r

 

-value, an

 

 r

 

-
coordinate, a reduced circumference of 4 kilometers. Let an outer sphere 
have an 

 

r

 

-coordinate of 5 kilometers. In contrast to these two distances, 
defined by measurements around the two spheres, the directly measured 
radial distance between the two spheres is 1.723 kilometers, compared to 
the Euclidean-geometry figure of 1 kilometer (Sample Problem 2, page 2-
28). At this location the curvature of space results in measurements quite 
different from anything that textbook Euclidean geometry would lead us 
to expect! 

 

WHY is the directly measured distance between spherical shells greater than the dif-
ference in r-coordinates between these shells? Is this discrepancy caused by 
gravitational stretching of the measuring rods?

 

No, the quoted result assumes infinitely rigid measuring equipment. In practice, of 
course, a measuring rod held by the upper end will be subject to gravitational stretch-
ing. So think of flinging the rod up from below so that it comes to rest temporarily 
with its two ends next to the two shells and thereby measures the separation directly 
while in free float. Even in this case there will still be tidal forces on the rod. Strain 
gauges affixed along the rod can permit us to “calculate away” this stretching. For 
smaller and smaller separation between the shells the stretching can be reduced 
below any specified limit.

 

Don’t avoid the issue! You have not answered the question: What CAUSES the dis-
crepancy, the fact that the directly measured distance between spherical shells is 
greater than the difference in r-coordinates between these shells? WHY this 
discrepancy?

 

A deep question! Fundamentally, this discrepancy is evidence of space curvature 
resulting from the mass contained in the center of attraction. External to this center, 
the fabric of spacetime does not tear but transmits the ever-diluted curvature outward 
to influence locally every spherical shell, every test particle, every satellite in the sur-
roundings. 
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5  Gravitational Red Shift

 

Rising light shows fatigue by increasing its period of oscillation. 
Light rising from the horizon has infinite period—so it does not exist!

 

Time also enters into the (space

 

time

 

) curvature around a black hole. In no 
way is “time curvature” more apparent than in the behavior of a signal 
emitted from a clock bolted to a spherical shell near a gravitating body. Let 
this clock tick by emitting light in a radially outward direction. The emit-
ted light increases its period of vibration as it climbs up out of the 
gravitational field.

 

The period of light increases 
as it climbs.

 

How does light increase its period of vibration? Every period (every back-
and-forth undulation in the wave) of the light can be considered a mea-
sure of time, a “tick of the clock.” Suppose that the light has a short period 
when emitted by the clock on the shell. The shell observer records that the 
emitting clock ticks rapidly; for him time is short from one tick to the next 
tick. When the light finally arrives at a remote observer, its period is 
longer. The received clock-tick signals are observed to be farther apart in 
time than the sent clock-tick signals. Light emitted from a shell clock still 
closer to the black hole suffers an even greater increase in its period—a 
greater “time between ticks”—when this light has climbed to infinity.

The period of the received light increases more and more as the emitter 
stands closer and closer to the black hole. Details of this increased period 
imply curvature not only of space but of time—curvature of 

 

spacetime! The 
increased period means also that the time dtshell between two events—
such as clock ticks—measured by an observer standing on a shell (or occu-
pying a spaceship at rest, rockets blasting inward) will be different from 
the “far-away time dt” between these events as transmitted to and 
recorded by a clock remote from the gravitating body.

Gravitational red shift Visible light with the longest period is red. The remote observer sees light 
emitted by the close-in clock to be “redder”—that is, of longer period—
than it was at the point of emission. This effect thus earns the name 
gravitational red shift.

“Blackness” of a black hole Why is a black hole black? Why cannot light escape from a black hole? 
After all, light cannot stop moving! Every local observer records the speed 
of light to be unity as it passes on its upward journey. The gravitational 
red shift result allows us to give a meaning to the phrase “cannot escape.” 
Light of any period emitted from near the horizon (the threshold radius of 
no return) suffers a gravitational red shift to a very long period. The closer 
the clock is to the horizon, the farther toward infinity the period grows as 
the light climbs out of the black hole to a great distance. But a light signal 
with infinite period is no light signal at all! It cannot be detected. In this 
case almost no light has escaped from near the horizon of the black hole. 
For a clock at the horizon, as a limiting case, no light escapes to even 1 cen-
timeter above the horizon (Chapter 5 exercises). Light is red shifted all the 
way to infinite period. This crisp result accounts for the blackness of a 
black hole (which is black except for Hawking radiation, a quantum phe-
nomenon described in the box on page 2-4).
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The gravitational red shift is 
different from the Doppler 
shift due to relative motion.

The gravitational red shift occurs between two clocks that are at different 
radii and both at rest with respect to the black hole or other center of grav-
itational attraction. Another and different red shift occurs due to the 
Doppler effect when two clocks move away from one another. An example 
is the red shift of light that we receive from nearby galaxies outside our 
own, thought to be due to the recession of these galaxies from us. (A gen-
eralization of the Doppler shift to curved expanding spacetime is the 
reddening of light from distant galaxies as the Universe expands—see 
Project G, The Friedmann Universe.) For observers on Earth this reces-
sional red shift is in principle partly canceled by the gravitational blue 
shift of the light as it drops into the gravitational well surrounding Earth. 
However, for many everyday purposes the gravitational blue shift for 
Earth is negligible. (See exercise at the end of this chapter.)

We have described two consequences of spacetime curvature: the aug-
mentation of distance between adjacent spherical shells and the increase 
in the period of light escaping outward from one of these shells. How 
these effects come about, and why they become so impressive at the hori-
zon of a black hole, shows on an examination of the expressions 
describing the Schwarzschild solution to Einstein’s great and still standard 
1915 equation for the bending of spacetime geometry. Before we can write 
down these expressions in simple form, we need to describe the mass of 
the central body, not in the unperceptive conventional units of kilograms, 
but rather in the same geometric units we use to measure distance: meters 
or kilometers.

6  Mass in Units of Length
Want to make everything geometry? Then measure mass in meters!

Measure mass in meters.Descriptions of spacetime near any gravitating body are simplest when 
the mass M of that body is expressed in units of distance—in meters or 
kilometers. This section is devoted to finding the conversion factor 
between, say, kilograms and meters.

Earlier when we wanted to measure space and time in the same units 
(Chapter 1, Section 2), we used the conversion factor c, the speed of light. 
The conversion from kilograms to meters is not so simple. Nevertheless, 
here too Nature provides a conversion factor, a combination of the speed 
of light and the universal gravitation constant G that characterizes the 
gravitational interaction between bodies. 

Newton’s theory of gravitation predicts that the gravitational force 
between two spherically symmetric masses M and m is proportional to the 
product of these masses and inversely proportional to the square of the 
distance r between their centers:

[2. Newton]

Numerical values of G and c: 
historical accident

Subscripts tell us that in this equation the masses Mkg and mkg are in units 
of kilograms. In this equation G is the “constant of proportionality.” The 
numerical value of this constant depends on the units with which mass 

F
GMkgmkg

r
2

-------------------------=
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and distance are measured. Historically the units of mass and the units of 
distance were developed independently, without appreciation of their 
relationship. The numerical value of G was not built into Nature by law 
but arose by accident of human history, as the numerical value of the 
speed of light c likewise arose from historical accident alone. When we 
measure mass in kilograms and distance in meters, then G has the experi-
mentally determined value

 [3]

Divide G by the square of the speed of light, c2, to find the conversion fac-
tor that translates the conventional unit of mass, the kilogram, into what 
we have already found to be the natural geometric unit, the meter:

 [4]

Now convert from mass Mkg measured in conventional units of kilograms 
to mass M in units of length—meters—by multiplication with this conver-
sion factor: 

[5]

Mass in units of meters 
unclutters equations.

Why make this conversion? First, it is an elegant way to proclaim that 
mass is fundamentally tied to geometry. Second, it allows us to get rid of 
the factors G and c2 that would otherwise clutter up the equations to 
follow.

Wait a minute! Stars and planets are not the same as space. No twisting or turning on 
your part can make mass and distance the same. Therefore mass cannot be measured 
in units of distance. How can you possibly propose to measure mass in units of 
meters?

True, mass is not the same as distance. Neither is time the same as space: Clock ticks 
are different from meterstick lengths! Nevertheless, we have learned to measure both 
time and space in the same units: light-years of distance and years of time, for exam-
ple, or meters of distance and meters of light-travel time. Using the same units for 
both space and time helps us to get rid of people-made complications and to recog-
nize the unity we call spacetime. The conversion factor between time in seconds and 
space in meters is the speed of light c. 

The same comments hold in the present case for measuring mass in units of length. 
Mass is not the same as length; no one claims it is. But we gain insight when we mea-
sure both in geometric units. When we express the mass of a star in meters, we can 
convert this figure to any other measure we want: grams, kilograms, or number of 
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solar masses. For the translation from kilograms to meters, the conversion factor is 
not a mere power of the speed of light but includes the gravitational constant G. The 
factor that converts kilograms to meters is G/c2. And the payoff of this conversion is 
similar to earlier payoffs: we see more simply how Nature works and we arrive more 
quickly at correct predictions. Mass, and therefore gravitation, is elevated (not 
reduced!) to geometry.

All right. Wonderful! Now go one step further and make the definition of the kilo-
gram in terms of the meter an official international standard. Since 1983 the official 
international standard for the meter is the distance light travels in 
1/299,792,458 second, thus tying the meter to a measurement of time. By defining 
(at some more enlightened future date) the kilogram in terms of the geometric unit 
meter, we link it also to a measurement of time. All other physical units—energy, 
momentum, electric charge—have long been defined in terms of time, length, and 
mass. By officially defining the kilogram in units of length, and therefore ultimately in 
units of time, we unify the world of measurement to a single quantity.

Your proposed unification is a good idea in principle but not yet satisfactory in prac-
tice. Measurement of mass is very precise. So is measurement of length and time. 
However, the conversion factor between mass and length, G/c2, is not known with 
corresponding precision. The fault lies with the gravitational constant G, which is dif-
ficult to measure—presently accurate to 5 digits at most. Compare that with the nine-
digit accuracy of the speed of light that allowed a redefinition of length in terms of 
time.

Why wait until G is known more accurately? Why not just define the kilogram in the 
unit of length using the conversion factor 7.424 × 10–28 meter/kilogram, this figure 
taken to be exact by definition?

There is no logical reason why G cannot be defined to have an exact value right now. 
However, convenience and accessibility are no less important criteria for standards 
than logical simplicity. The present standard of mass—a particular chunk of metal—
can be accurately duplicated, providing secondary standards for calibration of the 
scales used in science and commerce. This standard is unlikely to be replaced until a 
way is discovered to measure the gravitation constant G much more accurately, with 
apparatus available in any well-equipped laboratory 

Table 1 displays in both kilograms and meters the mass of Earth, the mass 
of Sun, and the mass of the huge spinning black hole believed to explain 
the activity observed at the center of our galaxy and a similar black hole in 
one other galaxy. (See the references.) Thus does the geometric language of 
relativity cut the stars down to size.

7  Satellite Motion in a Plane 
Once moving in a plane, always moving in that plane

Orbits stay in a plane.An isolated satellite zooms around a spherically symmetric massive body. 
Our very first look shows that this motion lies in a plane determined by 
the satellite's position, its direction of motion, and the center of the attract-
ing body. We know that forever afterward the motion will remain confined 
to that same plane. Why? The reason is simple: symmetry! No distinction 
between “up out of" and “down below” that plane, so the satellite cannot 
choose either. Such a rise would provide immediate evidence that there is 
some further force at work beyond any exerted by the spherically sym-
metric body—evidence, in other words, that the satellite’s environment is 
not spherically symmetric with respect to that center of attraction.
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Locate satellite using r and φ. The satellite moves in a plane, so we need two quantities, and only two, to 
specify its location at any instant. Adopt for one the r-coordinate, the 
reduced circumference of a circle cutting through the satellite. For the sec-
ond coordinate take the azimuthal angle φ of the satellite’s progression in 
the plane around the center of attraction (Figure 4).

Every astronaut, every satellite, every light pulse independently orbiting 
around a spherically symmetric body will remain in its own plane of 
motion, each position in the plane described by the reduced circumference 
r and the azimuthal angle φ in that particular plane. This limitation to a 
plane greatly simplifies the analysis of physical events described in the 
remainder of this book.

Table 1   Masses of some astronomical objects

         Object       Mass in kilograms Geometric measure
         of mass   Equatorial radius

Earth 5.9742 × 1024 kilograms 4.44 × 10–3 meters
or 0.444 centimeters

6.371 × 106 meters
or 6371 kilometers

Sun 1.989 × 1030 kilograms 1.477 × 103 meters
or 1.477 kilometers

6.960 × 108 meters
or 696 000 kilometers

Black hole at center of 
our galaxy

5.2 × 1036 kilograms
(2.6 × 106 Sun masses)

3.8 × 109 meters
(see references)

Black hole in center of 
Virgo cluster of galax-
ies

6 × 1039 kilograms
(3 × 109 Sun masses)

4 × 1012 meters

Figure 4  A satellite moves in an orbit with instantaneous velocity v around a spherically 
symmetric body. This orbit lies in a plane and remains in that plane for all time. Satellite position 
on the plane is specified uniquely by two coordinates: we choose the r-coordinate and the 
azimuthal angle φ with respect to some arbitrary initial direction in the plane (horizontal dashed 
line in the figure). The inner part of the r-line is also dashed, because in the case of a black hole 
the radius cannot be surveyed directly.
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8  Metrics for Flat Spacetime
Rectangular space coordinates or polar space coordinates: 
Either can appear in a metric of flat spacetime.

Events and intervals form a 
universal language.

What gives us security as we move from flat spacetime geometry to 
Schwarzschild geometry? On what can we depend? What can we trust? 
Answer: Events! Events are the nails of reality on which all of science 
hangs (Section 1). And between event and event we seek the basic relation, 
the basic separation, the four-dimensional “distance” between firecracker 
explosion and firecracker explosion. We seek the spacetime interval between 
any pair of events. 

When no large mass is in the vicinity we say that spacetime is flat. In flat 
geometry the expression for the wristwatch time τ between two events can 
be written in the usual rectangular coordinates described by Descartes 
(“Cartesian coordinates”). Let t, x, and y mark the separation between two 
events on a spatial plane when this separation is timelike (time separation 
greater than space separation). Then τ2, the square of the wristwatch time 
between them, is given by the expression

Timelike spacetime interval
[6. flat spacetime]

When, instead, the separation between the two events is spacelike, that is, 
when the space part of the separation predominates over the time part, we 
reverse the signs of the terms on the right of [6] to keep the combination 
positive. Give the resulting squared quantity the Greek letter σ (sigma):

Spacelike spacetime interval[7. flat spacetime]

The corresponding equations [1] and [8] of Chapter 1 for the spacetime 
interval earned the name metric; equations [6] and [7] are metrics too. A 
metric provides the method by which we meter or measure spacetime.

Polar coordinates are 
convenient when there is a 
center of attraction.

For describing the linear motion of one rocket with respect to another in 
flat spacetime, the Cartesian system of coordinates was perfect. Direction 
of relative motion: x. Direction transverse—perpendicular—to that rela-
tive motion: y. The Cartesian rectangular system is not so convenient as we 
prepare to describe spacetime around a spherically symmetric gravitating 
mass. Here the preeminent dimension is radial, toward and away from the 
center of attraction, with angle φ describing the location of an event on an 
imaginary circle of given radius r lying on a plane through that center. 
Rewrite the expression for the timelike interval (equation [6]) in polar 
coordinates. The resulting metric is

  [8. flat spacetime]

The box on page 2-18 presents a derivation of the space separation part of 
this expression, namely .

τ2
t
2

x
2

– y
2

–=

σ2 t2– x+ 2 y2+=
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Equation [8] is still true only for flat spacetime—the domain of special rel-
ativity. Why? Because the everyday world is still the everyday world, 
whether you view it while standing on your feet or standing on your 
head! Similarly, flat spacetime is flat whether the interval between events 
is expressed in Cartesian (rectangular) coordinates or in polar (spherical) 
coordinates. In brief, no massive body is yet positioned at the origin of this 
coordinate system

Now place the origin of the spherical coordinate system at the center of a 
nonspinning spherical object, approximated by Earth or Moon, Sun or 
white dwarf, neutron star or black hole. Examine the new spacetime 
geometry external to such a body. This new geometry is described by the 
Schwarzschild metric, introduced in Section 9.

Let the coordinate separations between two events near 
one another be dx and dy in the x and y directions, respec-
tively. Then the square of the spatial separation between 
two events is written

Look for a similar expression for two events numbered 1 and 
2 separated by the spherical polar coordinate increments dr 
and dφ. See Figure 5.

Draw little arcs through events 1 and 2 to form a tiny rectan-
gle, as shown in the magnified inset. The squared distance 
between events 1 and 2 is—approximately—the sum of the 
squares of two adjacent sides of the little rectangle. Each 
complete circle, if drawn here, would run through a total arc 
of 2π and possess a circumference of 2πr. It was this circum-
ference that was the starting point for our very definition of 
the reduced circumference r. The portion of each arc that is 

depicted in the figure extends only over the angle dφ. It 
comprises only the fraction dφ/2π of the whole circle. By 
proportion, its length is (dφ/2π) times 2πr, or rdφ. This arc is 
so short that its length closely approximates the length of 
the corresponding straight line. We spell out this part of the 
reasoning because it goes over unchanged to the curved 
space geometry around a spherically symmetric body. Not so 
for the distance dr! Consider two points that lie at the same 
azimuth but have r-coordinates r and r + dr. Only in flat 
space is the distance between them equal to dr. Therefore 
only for flat space are we entitled to figure the distance in 
space between event 1 and event 2 by the formula

This squared spatial separation is the space part of the 
squared interval for flat spacetime, equation [8]. Notice that 
this derivation depends on dφ being small, so the small seg-
ment of arc rdφ is indistinguishable from a straight line.

spatial separation( )2
dx( )2

dy( )2
+=

spatial separation( )2
dr( )2

rdφ( )2
+=

Spatial Separation in Flat Spacetime, Expressed in Polar Coordinates

Figure 5  Spatial separation between two points in polar coordinates.
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9  The Schwarzschild Metric for Curved Spacetime
Spherically symmetric massive center of attraction? 
Then the Schwarzschild metric describes curved spacetime around it.

The metric for the proper time between two timelike events in a plane in 
flat spacetime is given by equation [9]: 

    [9. flat spacetime]

r2dφ2 term is still OK to 
describe spacetime near 
Earth.

How is this metric altered for two nearby events on a plane that passes 
through the center of a spherically symmetric massive body? The last term 
on the right stays the same because of the way we chose the r-coordinate. 
The r-coordinate is defined so that 2πr is the measured distance around a 
circle centered on the attracting mass; hence its name, reduced circumfer-
ence. Measurement of the total circumference 2πr is the sum of measured 
distances (r dφ) along many small segments of the circle. As a result, the 
last term on the right, (r dφ)2, remains correct for the Schwarzschild metric.

Timelike form of 
Schwarzschild metric

What about the time term and the radial term? How will they change near 
a black hole—or near Earth? The answer is embodied in the 
Schwarzschild metric. For two events close to one another the Schwarz-
schild metric introduces us to curved empty spacetime on a spatial plane 
through the center of a spherically symmetric (nonspinning) center of 
gravitational attraction:

[10. timelike form]

The coordinates r, φ, and t appear in this equation. The angle φ has the 
same meaning in Schwarzschild geometry as it does in Euclidean geome-
try. We have defined r, the reduced circumference, so that rdφ is the 
incremental distance measured directly along the tangent to the shell. The 
time t is called far-away time and is measured on clocks far away from the 
center of attraction, as discussed in detail in Section 11.

The timelike Schwarzschild metric is so important that we write it for ref-
erence as equation [A] on the last page of this book.

 Equation [10] is the timelike form of the Schwarzschild metric, for events 
in which the time separation predominates. In contrast, the spacelike 
form, describing a pair of events in which the space separation predomi-
nates, equation [10] is replaced by the equation

Spacelike form of 
Schwarzschild metric[11. spacelike form]

Equation [11] is placed for reference on the last page of this book as equa-
tion [B].
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In late 1915, within a month of the publication of Einstein’s general theory 
of relativity and just before his own death from battle-induced illness, Karl 
Schwarzschild (1873 –1916) derived this metric from Einstein’s field equa-
tions. Einstein wrote to him, “I had not expected that the exact solution to 
the problem could be formulated. Your analytic treatment of the problem 
appears to me splendid.”

The Schwarzschild metric appears here out of thin air. Where does it come from?

The Schwarzschild metric derives from Einstein’s field equations for general relativity, 
equations that relate the “warping” of spacetime across a spacetime region to the 
mass and pressure in that region. Different distributions of mass lead to different met-
rics in the vicinity of the mass. Deriving a metric from the field equations is a major 
professional accomplishment. Einstein himself did not think it possible that anyone 
could carry out the task, even for a nonrotating, uncharged, spherically symmetric 
structure. The metric for a spinning black hole was not published until 1963, almost 
50 years later. (See Project F, The Spinning Black Hole.) 

Einstein's field equations themselves are not “derived,” any more than Newton’s laws 
of motion are derived. Indeed, a Newtonian prediction of the existence of a “hori-
zon,” the radius from which only light can escape, is given in the box on page 2-22. 
The field equations are, as Einstein was fond of saying, “the free invention of the 
human mind.” This invention rests on Einstein’s deep intuition for physical reality and 
symmetry—how Nature must behave. Of course the results must lead to correct pre-
dictions of experimental results, as they have repeatedly. In this book we start with 
the metric around each center of attraction. Each of these metrics is one step 
removed from the (underived) field equations. For a brief account of Einstein’s devel-
opment of the field equations and a description of their content, see Kip Thorne, 
Black Holes and Time Warps, pages 113–120.

The Schwarzschild description 
is complete.

Further investigation has shown that the Schwarzschild metric gives a 
complete description of spacetime external to a spherically symmetric, non-
spinning, uncharged massive body (and everywhere around a black hole 

Sloppy Use of Differentials in Relativity

In going from equation [8] to equation [9], we have begun 
using differentials dr, dφ to describe the space separation 
between events and dt for the separation in time. Where did 
these differentials come from, and why do we suddenly start 
to use them? The analysis in the box on page 2-18 makes 
the approximation that the sides dr and rdφ of the little rect-
angle are straight. But the inner and outer sides are not 
straight: each is a portion of a circular arc. The approxima-
tion is sensible only if the little arc “looks like” a straight line, 
only if the angular separation dφ is a very small fraction of 
2π, the angle for a complete circle. Our mathematician 
friends insist that the approximation is “correct” only in the 
limit of zero angle. Physicists tend to be a bit sloppy about 
applying mathematical differentials to nonzero (but still 
small) separations in real space and time.

But sloppy use of differentials by physicists goes farther than 
this. Equation [8] is usually written in the even more irre-
sponsible form of equation [9]:

 [9. flat spacetime]

Compare equation [9] with [8]. Equation [9] is squeezed into 
the compact algebraic notation that by now has become 
standard. Legalistically it is wrong. On the left should appear 
(dτ)2, as it does in equation [8]. If we were credulous enough 
to take it seriously, dτ2 would give us not the square of the 
change in proper time, but rather the crazy idea of the small 
change in the square of proper time. 

How did this sloppiness come about? Pure laziness. People 
got tired of writing down those extra parentheses, left them 
out, whispered a warning to their friends to write them back 
in—mentally at least—when putting the metric formula to 
use, and by now we’re all in on the little secret. The same 
with the terms on the right-hand side, which should read 
(dt)2, (dr)2, and (r dφ)2, respectively, as they do in equation 
[8].

dτ2
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2
dr
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but at its central crunch point). Every (nonquantum) feature of spacetime 
around this kind of black hole is described or implied by the Schwarz-
schild metric. This one expression tells it all! Moreover, the vast majority 
of experimental tests of general relativity have been tests of the Schwarz-
schild metric. All test results have been consistent with Einstein’s theory.

Different terms for “horizon”At the radius r = 2M something strange happens to the Schwarzschild 
metric. The time term goes to zero and the radial term increases without 
limit as r approaches the value 2M in both the timelike and spacelike ver-
sions, equations [10] and [11]. This value of r marks the location of the one-
way surface through which anything may pass inward but nothing passes 
outward. This special value of the radial coordinate is given various 
names: the Schwarzschild radius or the event-horizon radius. The “mem-
brane” at r = 2M is called the Schwarzschild surface or the Schwarzschild 
sphere, the Schwarzschild horizon, the event horizon, or simply the hori-
zon. (Caution: Some workers in the field refer to the geometric measure of 
mass M as the gravitational radius. Others reserve this name for 2M. That is 
why we avoid the term in this book.)

Ways the Schwarzschild 
metric makes sense:

For us the Schwarzschild metric—one step from the field equations—is 
not derived but given. However, we need not accept it uncritically. Here 
we check off the ways in which it makes sense.

1. Depends only on 
    r-coordinate.

First, the curvature factor (1 – 2M/r) that appears in both the dt term and 
the dr term depends only on the r-coordinate, not on the angle φ. How 
come? Because we are dealing with a spherically symmetric body, an 
object for which there is no way to tell one side from the other side or the 
top from the bottom. This impossibility is reflected in the absence of any 
direction-dependent curvature factor multiplying dt2 or dr2.

2. Goes to flat spacetime
    metric for large r.

Second, as the r-coordinate increases without limit, the curvature factor 
(1 – 2M/r) approaches the value unity, as it must. Why must it? Because an 
observer far from the center of attraction can carry out experiments in her 
vicinity without noticing the presence of the distant object at all. For her 
spacetime is locally flat. In other words, for large r the Schwarzschild met-
ric [10] must go smoothly into the metric for flat spacetime [9].

3. Goes to flat spacetime
    metric for zero M.

Third, as the mass M goes to zero, the curvature factor (1 – 2M/r) 
approaches the value unity, as it must. Why must it? Because a center of 
attraction with zero mass is the same as the absence of a massive body at 
that center, in which case equation [10] becomes equation [9], the expres-
sion for the interval in flat spacetime.

4. Confirms dr is less than the
    directly measured 
    distance between shells.

Fourth, consider the factor for dr2, namely 1/(1 – 2M/r). For r > 2M this 
factor has a value greater than one, which is consistent with our first 
“experiment in principle” around a black hole (Section 4). The directly 
measured separation dσ is larger than that calculated from the difference 
dr in r-values between two adjacent Buckminster Fuller shells. Think of a 
rod held vertical to the shell, spanning the radial separation between two 
nested spherical shells. Set off two firecrackers, one at each end of this rod, 
at the same time, dt = 0. Take these explosions to be the two events whose 
separation is described by the metric [11]. The two explosion events have
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zero separation in azimuth, so dφ = 0. Then the proper distance between the 
explosions is the distance that the shell observer measures directly; call it 
drshell = dσ. The spacelike equation [11] leads to

[12. radial rod at rest on shell]

Here dr is the difference in reduced circumference between two shells. 
Prior knowledge of the factor (1 – 2M/r)1/2 in the denominator was used 
in describing our first “experiment in principle” that drshell is greater than

dσ drshell
dr

1 2M
r

--------– 
  1 2⁄
-------------------------------= =

Newton Predicts the Horizon of a Black Hole?

A stone far from a black hole and initially at rest 
with respect to it begins to move toward the black 
hole. Gradually the stone picks up speed, finally 
plunging to the center. With what speed v does this 
stone pass a spherical shell at radius r? For low 
velocities and weak gravitational fields the speed is 
easily derived from Newtonian conservation of 
energy. In conventional units, the potential energy 
V(r) of a particle of mass mkg (measured in kilo-
grams) in the gravitational field of a spherical body 
of mass Mkg is given by the expression 

[13. Newton]

Here G is the gravitational constant, and the zero of 
potential energy is taken to be at infinite radial distance 
r. A particle that starts at that great distance with zero 
velocity and therefore zero kinetic energy has a total 
energy zero for all later times and positions r given by 
the expression

[14. Newton]

where vconv is velocity measured in the conventional 
units meters/second. From this equation,

[15. Newton]

The particle moves radially inward at this speed. Divide 
through by c to give speed dr/dt with distance and time 
in the same units:

[16. Newton]

But (G/c2) Mkg = M, the central attracting mass 
expressed in units of length (equation [5]). The resulting 
speed is

[17. Newton]

Surprisingly, equation [17] is correct in general relativity 
too, but only when the speed is interpreted as the 
speed of the in-falling object as measured by the shell 
observer (Chapter 3, Section 5).

Escape Velocity
Equation [17] provides a prediction for the “radius of a 
black hole.” Think of hurling a stone radially outward 
from radius r with the speed given by equation [17]. 
Then Newtonian mechanics, which runs equally well 
both forward and backward in time, predicts that this 
stone will coast to rest at a great distance from the cen-
ter of attraction. Thus equation [17] tells us the escape 
velocity—the minimum velocity needed to escape 
from the gravitational attraction—for a stone launched 
outward from radius r. What is the maximum possible 
escape velocity? Here we elbow Newton aside and give 
the relativistic answer: The maximum escape velocity is 
the speed of light, v = vconv/c = 1. Place this value in 
equation [17] to find the minimum radius from which 
an object can escape—the Newtonian prediction for 
the radius of the Schwarzschild horizon:

[18. Newton]

According to general relativity this is the correct 
value—provided r is the reduced circumference! The 
physical interpretation, however, is quite different in 
the two theories. Newton predicts that a stone 
launched from the horizon with a speed less than that 
of light will rise some radial distance, slow, stop before 
escaping, and fall back. In contrast, Einstein predicts 
that nothing, not even light, can be successfully 
launched outward from the horizon (exercise in Chap-
ter 5), and that light launched outward EXACTLY at the 
horizon will never increase its radial position by so 
much as a millimeter. (For historical details, see the box 
on page 3-3.)
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dr, as this equation affirms. The change of this factor from place to place 
implies space curvature.

Equation [12] is so useful that we place it for reference as equation [D] in 
Selected Formulas at the end of this book.

5. Confirms gravitational red
    shift.

Fifth, the curvature factor (1 – 2M/r) in the numerator of the dt2 term also 
has a value less than one, which is consistent with the gravitational red 
shift (Section 5). Think of a clock bolted to the shell at radius r. Choose two 
events to be two sequential ticks of this shell clock. Call dtshell this wrist-
watch time dτ between ticks of the shell clock. Between these two ticks the 
coordinate separations dr and dφ are both zero. The timelike equation [10] 
leads to

[19. clock at rest on shell]

Here dt is the corresponding lapse of far-away time. From our second 
“experiment in principle” we know that the time dtshell between pulses 
emitted by the clock is smaller at emission than their red-shifted value dt 
when received at a great distance. In brief, dtshell is less than dt. This result 
is consistent with the less-than-one value of the curvature factor 
(1 – 2M/r) in the time term of the Schwarzschild metric (equation [10]).

Equation [19] is placed for reference as equation [C] in Selected Formulas 
at the end of this book.

The Schwarzschild metric 
applies only outside the 
surface of an object.

The Schwarzschild metric, equation [10], governs the motion of a free test 
particle external to any spherically symmetric, nonspinning, uncharged 
massive body. It applies with high precision to slowly spinning objects 
such as Earth or an ordinary star like our Sun. For the motion of a particle 
outside such an object, it makes no difference what the coordinates are 
inside the attracting sphere because the particle never gets there; before it 
can it collides with the surface of the star—collides with the fluid mass in 
hydrostatic equilibrium. The more compact the configuration, however, 
the greater the region of spacetime the test particle can explore. Our Sun’s 
surface is 695 980 kilometers from its center. A white dwarf with the mass 
of our Sun has a radius of about 5000 kilometers, approximately that of 
Earth. The Schwarzschild metric describes spacetime geometry in the 
region external to that radius. A neutron star with the mass of our Sun has 
a radius of about 10 kilometers, so the test particle can come even closer 
and still be “outside,” that is in a region described correctly by the 
Schwarzschild metric if the neutron star is not spinning.

Black hole has no “surface.”The ideal limit is not a star in hydrostatic equilibrium. It is a star that has 
undergone complete gravitational collapse to a black hole. Then the 
Schwarzschild metric, equation [10], can be applied almost all the way 
down to zero radius, r = 0. The wonderful thing about a black hole is that 
it has no surface, no structure, and no matter with which one will collide. 
A test particle can explore all of spacetime around a black hole without 
bumping into the surface—since there is no surface at all.

dτ  dtshell= 1 2M
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How can a black hole have “no matter with which one will collide”? If it isn’t made of 
matter, what is it made of? What happened to the star or group of stars that col-
lapsed to form the black hole? Basically, how can something have mass without being 
made of matter?

The mass is all still there, inducing the curvature of adjacent spacetime. It is just 
crushed into a singularity at the center. How do we know? We don’t! It is a prediction 
from the Schwarzschild metric. Can you verify this prediction? Only if you drop inside 
the horizon, perform experiments, and make measurements as you approach the sin-
gularity—and then neither you nor your reporting signal can make it back out 
through the horizon. Startling? Crazy? Absurd? Welcome to general relativity!

What is this “singularity” business, anyway? I’ve heard the term before, but I don’t 
know what it means.

A singularity is a “nobody knows” phenomenon. Coulomb’s law of electrical force 
between point charges has a 1/r2 factor in it, which goes to infinity at r = 0. But it 
doesn’t really, because there is no such thing as a point charge in structures described 
by classical (non-quantum) physics. In the Schwarzschild metric the curvature factor 
(1 – 2M/r) goes to zero at r = 2M, leading one term in the metric to blow up. How-
ever, it was discovered after long study that this singularity in the metric is due to the 
choice of coordinates and is not “real.” Someone falling inward in free float feels no 
jolt as she passes r = 2M. (More on this smoothness at r = 2M in Chapter 3 and 
Project B, Inside the Black Hole.) On the other hand, the singularity at r = 0 appears to 
be “real.” That is, anything falling to the center of a black hole is crushed to zero vol-
ume—to a single point. That is the prediction of general relativity, which is a classical 
(non-quantum) theory. In contrast, quantum theory predicts that nothing—not even a 
single electron—can be confined to a point. So what’s the truth? The truth is, nobody 
has figured it out yet! No one has developed a theory of quantum gravity that 
combines quantum mechanics and general relativity. Anyway, Nature has hidden 
away the singularity inside a one-way surface at r = 2M, so we cannot find out while 
remaining outside. This situation is often described by saying that all real singularities 
are “clothed,” as if there is cosmic censorship. Are there any “naked” (uncensored) 
singularities not hidden by a one-way surface? None that we yet know about.

10  Picturing the Space Part of Schwarzschild Geometry
Freeze time; examine curved space.

How can one visualize the geometry around a black hole? In general rela-
tivity, every coordinate system is partial and limited, correctly 
representing one or another feature of curved spacetime and misrepre-
senting other features. Figures and diagrams that display these coordinate 
systems embody the same combination of clarity and distortion. 

One cannot predict the future

If there are non-trivial singularities which are naked, i.e., which 
can be seen from infinity, we may as well all give up. One cannot 
predict the future in the presence of a spacetime singularity since 
the Einstein equations and all the known laws of physics break 
down there. This does not matter so much if the singularities are 
all safely hidden inside black holes but if they are not we could be 
in for a shock every time a star in the galaxy collapsed. 

                                                  — Stephen Hawking



Section 10 Picturing the Space Part of Schwarzschild Geometry 2-25

Visualize the spatial part of 
the metric.

One partial visualization displays the spatial part of the Schwarzschild 
metric. Freeze time (set dt = 0) and limit ourselves to a spatial plane pass-
ing through the center of the black hole. Then the spacelike form of the 
Schwarzschild metric [11] becomes

[20. dt = 0]

Figures 6 and 7 represent this special case. The radius r of each circle is the 
r-coordinate, the reduced circumference, locating the intersection of a 
spherical shell with a spatial plane through the center of the black hole. 
The differential dr is the difference in reduced circumference between 
adjacent circles. We have added the vertical dimension in the diagram and 
scaled it so that the slanting distance upward and outward along the sur-
face represents dσ, the proper distance between adjacent circles measured 
directly with a plumb bob and tape measure. The “funnel” surface result-
ing from this scaling condition is called a paraboloid of revolution, and the 
heavy curved line in Figure 7 is a parabola—actually half a parabola.

Figure 7 embodies the fact that dσ is greater than dr, the demonstration in 
principle that evidenced the curvature of space around a black hole in the 
first place (Section 4). The figure further shows that the ratio dσ/dr 
increases without limit as the radial coordinate decreases toward the criti-
cal value r = 2M (vertical slope of the paraboloid at the throat of the 
funnel).

“Embedding diagrams” help 
visualize space curvature.

These figures embed curved-space geometry in the flat Euclidean three-
space geometry perspective shown on the printed page. Therefore these 
figures are called embedding diagrams. But flat Euclidean geometry is not 
curved space geometry. Therefore we expect embedding diagrams to mis-
represent curved space in some ways. They lie! For example, the vertical 
dimension in Figures 6 and 7 is an artificial construct. It is not an extra 
dimension of spacetime. We have added this Euclidean three-space 
dimension to help us visualize Schwarzschild geometry. In the diagram, 
only the paraboloidal surface represents curved-space geometry. Observ-
ers posted on this paraboloidal surface must stay on the surface, not 
because they are physically limited in any way, but because locations off 
the surface simply do not exist in spacetime.

Observers cannot measure dr 
directly.

Observers constrained to the paraboloidal surface cannot measure directly 
the radius of any circle shown in Figures 6 and 7. They must derive this 
radius—the reduced circumference—indirectly by measuring the distance 
around the circle and dividing this circumference by the quantity 2π. From 
the circumference of an adjacent circle they derive its different radius and 
calculate the difference dr in the reduced circumferences of the two circles. 
In contrast, they can directly measure dσ, the proper distance between 
these adjacent circles, and compare their result with the computed differ-
ence in reduced circumference dr. Result: dσ is greater than dr. The ratio 
dσ/dr becomes infinite at r = 2M (where parabola is vertical in diagram).
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Figure 6  Space geometry for a plane sliced through the center of a black hole, the result 
“embedded” in a three-dimensional Euclidean perspective. All of the curvature of empty space 
(space free of any mass–energy whatsoever) derives from the mass of the black hole. Circles are the 
intersections of the spherical shells with the slicing plane. WE add the vertical dimension to show 
that dσ is greater than dr in the spatial part of the Schwarzschild metric, as shown more clearly in 
Figure 7.

Figure 7  Projections of the embedding diagram of Figure 6, showing how the directly measured 
radial distance dσ between two adjacent spherical shells is greater than the difference dr in 
r-coordinates. Real observers exist only on the paraboloidal surface (shown edge-on as the heavy 
curved line). They can measure dσ directly but not r or dr. They derive the r-coordinate (the 
reduced circumference) of a given circle by measuring its circumference and dividing by 2π. 
Then dr is the computed difference between the reduced circumferences of adjacent circles.

d φ
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Curvature of spaceTIME is 
needed to describe orbits.

The embedding diagrams, Figures 6 and 7, represent one cut through the 
spatial part of the Schwarzschild geometry. Time does not enter, since 
dt = 0. There being no place on this surface for changing time, it depicts 
nothing moving. Therefore this representation has nothing to tell us 
directly about the motion of particles and light flashes through the space-
time of Schwarzschild geometry (in spite of all the steel balls you have 
seen rolling on such surfaces in science museums!). In Chapters 3 and 4 we 
describe trajectories near a black hole, including trajectories that plunge 
through the Schwarzschild surface at r = 2M “into” the black hole. But 
first, Section 11 describes the meaning of “far-away time” t in the Schwarz-
schild metric. 

11  Far-Away Time
Freeze space; examine curved spacetime.

It is not enough to know the geometry of space alone. To know the grip of 
spacetime that tells planets how to move requires knowing the geometry 
of spacetime. We have to know not merely the distance between two 
nearby points, P, Q, in space but the interval between two nearby events, A, 
B, in spacetime.

Far-away time t measured at 
large r.

The Schwarzschild metric uses what we call far-away time t. There can be 
many remote clocks recording far-away time t. These remote clocks form a 
latticework that extends in all directions from the isolated black hole. Far 
from the influence of the black hole, these clocks are in a region of flat 
spacetime, so they can be synchronized with one another using light  
flashes similar to the synchronization pulse for free-float frames described 
in Chapter 1 (Section 9). However, in the present case the synchronizing  

SAMPLE PROBLEM 1  Limits of Small Curvature

The curvature factor (1 – 2M/r) in the Schwarzschild metric 
marks the difference between flat and curved spacetime. 
How far from a center of attraction must we be before this 
curvature becomes extremely small? 

A. As a first example, find the value of the radius r from the 

center of our Sun (M ≈ 1.5 × 103 meters) such that the 
curvature factor differs from the value unity by one part 
in a million. Compare the value of this radius with the 

radius of Sun (rS ≈ 7 × 108 meters).

B. As a second example, find the radial distance from Sun 
such that the curvature factor differs from the value unity 
by one part in 100 million. Compare the value of this 
radius with the average radius of the orbit of Earth 

(r ≈ 1.5 ×1011 meters).

SOLUTION

A. We want , which yields

[21]

This radius is approximately four times the radius of Sun. 

B. This time we want , so

[22]

which is approximately twice the radius of Earth’s orbit.
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pulse or pulses must stay in the remote region, not travel through regions 
where the value of the curvature factor (1 – 2M/r) differs significantly from 
the value unity. We call the time far-away time as read on these clocks at 
rest with respect to the attracting body. The technical term is ephemeris 
time. Often we say t-coordinate and give it the symbol t. The increment dt 
of far-away time appears on the right side of the Schwarzschild metric.

By definition, the time lapse dt between two events is that recorded on a 
remote clock by an observer far from the attracting mass.

The relation between dtshell and dt can be read directly from the Schwarz-
schild metric. Think of an Earth clock mounted in a fixed position on the 
surface of Earth, which we consider to be nonrotating for purposes of this 
example. The spatial position of the Earth clock does not change between 

SAMPLE PROBLEM 2  Sample of “Radial Stretching”

Verify the statement at the end of Section 4 that for a black 
hole of one solar mass, the directly measured radial distance 
calculates as 1.723 kilometers between a shell at r = 4 kilo-
meters and a shell at r = 5 kilometers. In Euclidean geometry, 
this measured distance would be 1 kilometer. 

SOLUTION

The mass of Sun to four significant figures is M = 1.477 kilo-
meters. Express all masses and distances in kilometers. Use 
the increments of the Schwarzschild metric to obtain 

[23]

Which radius r do we use in the denominator of the right-
hand expression? If we use r = 4 kilometers, the result is

[24. r = 4 km]

On the other hand, if we use r = 5 kilometers, the result is

[25. r = 5 km]

The trouble here is that the term 2M/r changes significantly 
over the range r = 4 kilometers to r = 5 kilometers. The radial 
stretch factor differs from radius to radius. The results in 
equations [24] and [25] bracket the answer. An exact calcula-
tion requires that we sum all the increments of drshell from r1 
= 4 kilometers to r2 = 5 kilometers. This “summation” is an 
integration. The result of the integration will be ∆rshell 
between the values 1.563 kilometer and 1.956 kilometer:

[26]

This integral is not in a common table of integrals. So make 
the substitution r = z2, from which dr = 2zdz. Then the inte-
gral and its solution become

[27]

Here ln is the natural logarithm (to the base e) and | | stands 
for absolute value. Substitute the values (units omitted)

[28]

and recall that in general ln(B) – ln(A) = ln(B/A). The result is

[29]

This value, given at the end of Section 4, lies between the 
bracketing values in equations [24] and [25] for the fixed 
choices r1 and r2. 
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Relation between dtshell 
and dt

ticks. Hence dr and dφ are both equal to zero. Both ticks occur at the clock. 
Therefore the interval between the ticks on the same clock is the proper 
time dτ read on the clock: dtshell = dτ. Two events that occur at the same 
place evidently have a timelike relation, so choose the timelike version of 
the Schwarzschild metric. The result was displayed in equation [19]:

[19]

Equation [19] tells us that an observer remote from Earth records a time 
separation dt between the arrival of the two pulses that is different from 
the time recorded on the Earth surface clock that emits the two pulses. In 
the Schwarzschild metric the curvature factor for time is identical with the 
curvature factor for space except for one circumstance. In the case of 
space, divide by the curvature factor less than one and get outward dis-
tances greater than expected from radial coordinates. In the case of time, 
multiply by the same less-than-one curvature factor and get time lapses 
near a black hole less than expected from the readings on far-away clocks.

Hold it! How can the time dt between two events always be the time lapse as 
recorded “on a remote clock by an observer far from the center of attraction”? What 
about two events that occur close to the center of attraction? For example, suppose a 
clock at rest on Earth’s surface ticks twice and we on Earth read off the change in 
clock time. How is the time lapse between these ticks to be recorded by your remote 
observer?

There are two equivalent ways to determine far-away time lapse between two events 
occurring on Earth’s surface: (1) Compare the reading of a clock on Earth’s surface to 
the reading of a far-away clock by sending a light signal between them. The Earth-
surface clock sends a light signal outward with each tick. The two signals are sepa-
rated by time dtshell as recorded on the shell clock. An observer remote from Earth 
receives the two signals and times their separation dt using her clock. (Since time sep-

Your Own Personal Far-Away Clock

If he wishes, an observer at rest on a spherical shell deep in 
the gravitational pit of a black hole (but outside the horizon!) 
can have, in addition to his regular shell clock, a second clock 
that reads far-away time t directly. To this end he needs to 
carry out two tasks: (1) adjust the rate at which his personal 
far-away clock runs and (2) synchronize his personal far-away 
clock with a remote clock that really is far away.

1. Rate adjustment. By turning the fast-slow screw on 
his personal far-away-time clock, he adjusts it to run 
fast by the factor 1/(1 – 2M/r)1/2 compared with his 
regular proper clock, this factor reckoned using the 
known mass M of the black hole and his measured 
reduced circumference r. No such rate adjustment is 
required by the British resident of New York City who 
always carries a second wristwatch (far-away-time 
clock) set to Britain’s Greenwich time. 

2. Synchronization. He synchronizes his personal far-
away-time clock by some such procedure as the fol-
lowing: (a) Send radially outward to a remote clock an 
“inquiring” light pulse requesting the time. 
(b) Upon receiving the inquiry, the remote clock 
immediately sends a reply flash that encodes its time. 
(c) When he receives the reply flash, the inner 
observer assumes that the encoded time is halfway in 
time between the events of emission of the inquiry 
flash and reception of the reply flash—and sets his 
personal far-away-time clock accordingly. 

By placing personal far-away clocks on all shells, one can in 
effect extend the far-away latticework of rods and clocks 
down to the horizon of a black hole (or down to the surface 
of a nonrotating star, planet, white dwarf, or neutron star). 
The far-away time of any event is recorded by these clocks, 
and the value of the r-coordinate is stamped on every shell.

dtshell 1 2M
r
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aration is being measured, the flight time of the signals cancels out.) (2) Alternatively, 
have a far-away clock on the shell, as described in the box on page 2-29.

Gravitational red shift of 
“climbing light”

Instead of using two separate pulses to make the comparison of shell time 
with far-away time (equation [19]), use a light wave. Every period (every 
back-and-forth undulation of the wave) of the light emitted by the close-in 
clock can be considered as a measure of the time dtshell between its ticks. 
When this signal is received by a remote observer, the period dt is longer, 
as given in equation [19]. Visible light with a longer period is more red. As 
described in Section 5, the gravitational red shift is named after this 1915 
prediction—and 1960 finding —that the remote observer sees light emit-
ted by the close-in clock to be redder than it was at the point of emission. 

Gravitational blue shift of 
“falling light”

If the signal originates farther from the center of gravity and is sent 
inward toward the center, the received period decreases. The receiver 
detects a shorter period than the “proper period” of the sender. The light 
is shifted toward the blue. We call this the gravitational blue shift.

Near a black hole such effects are very much greater than they are near 
Earth. When the light originates at the black hole horizon (r = 2M) and is 
sent outward radially, the square root of the curvature factor, (1 – 2M/r)1/2, 
becomes zero. Far from the black hole the period dt of the received light 
measured by the far-away observer becomes infinite, no matter how short 
is the period dtshell of the emitted light measured by the emitting shell 
observer. But a light signal with an infinite period is no light signal at all! 
As described earlier, this is the sense in which no light can escape from the 
horizon of a black hole—and makes the name “black hole” so descriptive.

Come on! A clock is a clock. You say a lot about exchanging signals between clocks, 
but nothing about the real time recorded on a real clock. Which observer’s clock 
records the REAL time between a pair of events?

We learned in special relativity that there are measured and verified differences in the 
time between two events as recorded in different frames in uniform relative motion. 
Similarly, in general relativity there are measured and verified differences in the time 
between two events as recorded by different observers near a black hole, even when 
these observers are relatively at rest. In both special and general relativity you cannot 
tell by observation whether these differences are due to the method of exchanging 
signals or due to clock rates themselves. The phrase “real time” does not have a 
unique meaning independent of the means by which that time is measured.

Every schoolboy in the streets of Göttingen

Many not close to his work think of Einstein as a man who could 
only make headway by dint of pages of complicated mathematics. 
The truth is the direct opposite. As the great mathematician of 
the time, David Hilbert, put it, “Every schoolboy in the streets of 
Göttingen understands more about four-dimensional geometry 
than Einstein. Yet . . . Einstein did the work and not the mathe-
maticians.” The amateur grasped the simple central point that 
had eluded the expert.

                                                  —John Archibald Wheeler
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12  Three Coordinate Systems
(1) Free-float, (2) Spherical shell, (3) Schwarzschild bookkeeping.
Live locally in the first two; span spacetime with the third.

Many possible reference 
frames

Ride in an unpowered satellite as you fall toward a black hole. Or stand on 
the scaffolding of a spherical shell and observe this satellite up close as it 
streaks past. Or analyze the satellite motion using the reduced circumfer-
ence r, angle φ, and far-away time t. Each of these observations requires a 
different set of spacetime coordinates, a different point of view from 
which to examine and analyze the motion of the satellite and the structure 
of spacetime around the black hole. Can a person exist in each of these 
frames, and if so what is this existence like? How do we describe satellite 
motion in each one of these frames? And how is the description in one 
frame related to the description in another frame? We conclude this chap-
ter with brief answers to these questions.

Free-float frame 
Nowhere could life be simpler or more relaxed than in a free-float frame, 
such as an unpowered spaceship falling toward a black hole. The speed of 
this spaceship increases with time as observed by a sequence of shell 
observers past which it plunges. For those of us who ride inside, however, 
the spaceship serves as a special-relativity capsule in which we can be 
oblivious to the presence of the black hole. Up-down, right-left, back-
forth: every direction is the same. We observe that keys, coins, and

SAMPLE PROBLEM 3  Shining Upward

What happens when light emitted from one shell is absorbed 
at another shell? In particular, let light be emitted from the 
shell at r1 = 4M and absorbed at the shell r2 = 8M. By what 
fraction is the period of this light increased by the gravita-
tional red shift?

SOLUTION

Equation [19] relates the period dtshell of light measured by a 
shell observer at r to the period dt measured by a remote 
observer. But we want the period measured by a second shell 
observer at a different radius. One way to find the period at 
the second shell is to use equation [19] twice, once for each 
observer, and make the remote time lapse dt equal in both 
cases. Ask the remote observer to hold up a mirror that 
reflects the light from the inner shell back down to the sec-
ond shell. This procedure must give the same result as direct 
transmission between the two shells. Use equation [19] 
twice.

[30]

From which

[31]

Substitute r1 = 4M and r2 = 8M to yield

[32]

The period of the light is increased (redshifted) by the factor 
1.22 as it climbs from r = 4M to r = 8M. This factor would 
shift, for example, spectral yellow light to deep red.
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coffee cups remain at rest or if pushed move with constant speed in a 
straight line. In this free-float frame we use special relativity to compute 
the spacetime interval between nearby events and analyze collisions as if 
we were in interstellar space devoid of gravity.

Free-float frame is only local. However, the simplicity of our free-float frame is only local. We detect cur-
vature of spacetime by the tide-producing relative accelerations among 
two or more free test particles situated far enough apart or observed for a 
long enough time to reveal the nonflat nature of nonlocal spacetime. Tidal 
accelerations drive toward one another objects that lie separated along 
some directions in the free-float frame; tidal accelerations drive apart par-
ticles that lie separated along another direction (Figure 4 of Chapter 1). 
Detecting the presence of tidal accelerations identifies our reference frame 
as not free float. To make these tidal accelerations undetectable—by 
instruments of given sensitivity—we either narrow the spatial extent of 
our free-float frames or limit the time duration of any particular experi-
ment or both. These constraints are minor in free-float frames situated 
near Earth or far from any gravitating body. They become progressively 
and inexorably confining as we approach the center of a black hole. Near 
this center, general relativity predicts that tidal accelerations tear apart 
every physical object.

The free-float frame is familiar, simple, and universal. It is the only one of 
our three frames in which humans can exist near a black hole. Even a body 
made of steel would be crushed by the “gravitational force” while stand-
ing on a spherical shell near the horizon. In contrast, for a large enough 
black hole the tidal forces can be tolerated by the human body even inside 
the horizon, at least at a sufficiently great distance from the central singu-
larity. (See Project B, Inside the Black Hole.)

The spherical shell
Earth’s surface is a “spherical 
shell.”

We live on a (nearly) spherical shell: the surface of Earth. This shell is our 
home. We habitually construct latticeworks—called buildings—with 
mutually perpendicular axes on which we mount synchronized clocks. To 
sit or stand on our spherical shell—Earth’s surface—forces us away from 
the natural motion of a free particle. This departure from natural motion 
we experience as a “force of gravity” pointing toward the center of Earth. 
In everyday life we simply include this “force” with other forces in order 
to get on with the practical analysis of events around us. This approxima-
tion works admirably well for the small space and time regions of 
everyday experience. It works also for high-speed particle interactions in a 
laboratory, which are over so quickly that the “force of gravity” has little 
effect. For such experiments the Earth frame is effectively free-float, and 
analysis using special relativity gives good results even for observations 
from our shell frame. (See Chapter 1, Section 8.)

Shell observer uses special 
relativity.

Is special relativity sufficient for the shell observer? Yes, at least locally in 
space and time. This conclusion is supported by the form of the metric for 
a shell observer. Substitute into the Schwarzschild metric (equation [10]) 
the expression for drshell

2 from equation [12] and the expression for dtshell
2 

from equation [19]. The result is 
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[33]

Shell frame is also local.The right side of equation [33] contains only coordinate increments mea-
sured directly by the shell observer. (Recall that radius r is defined so that 
rdφ is the directly measured distance along the surface of the shell—Sec-
tion 4 and the box on page 2-18.) The metric [33] looks like that of flat 
spacetime. But spacetime is not flat on a shell near a black hole, and this 
limits the usefulness of equation [33] to local measurements. After all, 
dtshell and drshell, along with rdφ, are all functions of the radius r. Still, 
equation [33] has its uses. For example, it implies that the shell observer 
measures light (dτ = 0) to have the speed unity—most easily seen by sub-
stituting the incremental distance squared dsshell

2 (with a minus sign) for 
the last two terms in on the right of [33]. Of course every experiment that 
takes place on the shell is influenced by the apparent “gravitational force” 
due to the fact that the shell is not a free-float frame.

The Metric as Micrometer

What is the metric? What is it good for? Think of a 
micrometer caliper (Figure 8), a device used by metalwork-
ers and other practical workers to measure small distances. 
The worker owns the caliper and chooses which distance to 
measure.

The metric is a “four-dimensional micrometer” for measur-
ing the small spacetime separation between a chosen pair of 
events. You own the metric. You choose the events whose 
separation you wish to measure with the metric. The “metric 
micrometer” translates bookkeeper coordinate increments 
dr, dφ, and dt into proper time dτ or proper distance dσ 
between the pair of events you choose.

I. One possible choice for two events: Two sequential 
ticks of a clock bolted to a spherical shell. Then dr = dφ 
= 0 and the proper time lapse dτ is that read directly 
on the shell clock, dtshell. The result is equation [19], 
page 2-23, for the relation between shell time and far-
away time.

II. A second possible choice of two events: Events at the 
two ends of a stick held at rest radially between two 
adjacent shells. Choose dt = dφ = 0, then the proper 
distance is the directly measured length of the stick 
drshell. The result is equation [12], page 2-22, for the 
relation between directly measured distance between 
shells and their radial separation dr in the Schwarz-
schild coordinate.

III. A third possible choice: Two ticks on the wristwatch 
of a particle in free fall inward along a radius. Then 
dφ = 0 and the proper time is read directly on this 
wristwatch, which leads to several important results 
in Chapter 3.

And so on. There is an infinite set of event pairs near one 
another that you can choose for measurement using your 
four-dimensional micrometer—the metric.

What advice will the “old spacetime machinist” give to her 
younger colleague about the practical use of the metric 
micrometer? She might say the following:

1. Think events and separations between pairs of events, 
not fuzzy concepts like “length” or “location.”

2. Do not confuse results from one pair of events with 
results from another pair of events.

3. Whenever possible, choose the pair of events so that 
the differential of one or more coordinates is zero.

4. Whenever possible, identify the proper time or proper 
distance with someone’s direct measurement.

5. When a light flash can move directly from one event 
to another event in the time between them, then the 
proper time between the events is zero: dτ = 0.

Figure 8  A micrometer caliper, used to measure small 
distances, such as the thickness of metal sheet. 
A calibrated screw on the right meters the gap between 
cylinders at the left.

dτ2
dtshell

2
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Free-float and shell observers 
use special relativity to 
exchange data.

 Except for this gravitational force, the local shell frame implied by equa-
tion [33] is similar to the local free-float frame of a passing plunging 
observer. In both frames the local speed of light is unity and special rela-
tivity correctly describes brief, local experiments. Moreover, the shell 
observer and a passing free-float observer can use the Lorentz transforma-
tion of special relativity to exchange data on local events that are close 
together in spacetime. We shall use this ability to exchange data many 
times in the chapters and projects that follow.

In two important ways the local free-float frame is more general than the 
local shell frame: (1) Special relativity can be made to work well for a 
longer time in a free-float frame by making the spatial extent smaller, 
whereas on the shell direct effects of the gravitational force cannot be 
reduced by any such ruse. (2) The free-float observer can cross the horizon 
and continue her experiments without interruption, at least until tidal 
forces overwhelm her. In contrast, inside the horizon neither shells nor 
shell observers can exist, and equation [33] is useless there.

Different rates for clocks 
separated vertically

Less familiar than “gravitational” effects to most Earth inhabitants is the 
difference in rates between clocks separated vertically in the gravitational 
field, an effect that is a daily experience for anyone designing or predict-
ing the performance of the Global Positioning System, which uses atomic 
clocks in satellites (see Project A, Global Positioning System).

Vertical separations are 
affected by curvature.

Least familiar of all effects of general relativity for the shell observer is the 
difference between the radius of Earth, directly measurable in principle, 
and the reduced circumference obtained by dividing the circumference by 
2π. For two concentric spherical shells near a black hole, the directly mea-
sured radial distance between them is greater than the difference in r-
values of their reduced circumferences.

These effects in clock rates and vertical separations limit the region of 
spacetime—space and time—in which to analyze experiments using spe-
cial relativity expressed in shell coordinates. Now we move to a set of 
coordinates that are global in extent but farther removed from the reality 
of most experiments carried out near Earth, Sun, or black hole.

Bookkeeper coordinates r, φ, and t
Schwarzschild coordinates 
span full region of spacetime.

A free-float observer makes observations that span only a little patch of 
spacetime. A local shell observer has similar limitations. In contrast, the 
coordinates r, φ, and t, called Schwarzschild coordinates, satisfy the need 
for a global description of events, a description that encompasses, for 
example, two events located so far apart in space that they lie on opposite 
sides of the black hole. The reduced circumference r, the azimuthal angle 
φ, and the far-away time t span all of spacetime surrounding a black hole. 
They report measurements made in a distant frame at rest with respect to 
the center of gravitational attraction. Latin was the international language 
of medieval Europe; the coordinates r, φ, and t form the international lan-
guage for describing events that take place near a black hole.

Schwarzschild observer is a 
bookkeeper.

The Schwarzschild observer is a bookkeeper, an archivist, a top-level 
accountant who rarely measures anything herself. Instead she spends her 
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time examining reports from local shell and free-float observers and com-
bining them to describe events that span spacetime around a black hole. 
Before accepting a report, this perfectionist demands that coordinate sepa-
rations between events described in the report be translated into her 
language: increments in reduced circumference r, azimuthal angle φ, and 
far-away time t. Therefore we call her the Schwarzschild bookkeeper.

An orbiting satellite rapidly emits two sequential flashes as it streaks past 
two shells concentric to a black hole. The local shell observer measures 
directly the small separations between the emissions of these flashes: time 
separation dtshell measured by nearby clocks bolted to the shell and verti-
cal separation drshell measured with a tape measure. The shell observer 
also measures the change in azimuthal angle dφ in the plane of the orbit 
and verifies by direct meterstick measurement that this increment of angle 
corresponds to the tangential separation rdφ, where r is the reduced cir-
cumference stamped on every shell by the original builders. The shell 
observer converts dtshell to dt using equation [19] and drshell to dr using 
equation [12]—both special cases of the Schwarzschild metric. The shell 
observer then reports the resulting separations dt, dr, and dφ to the 
Schwarzschild bookkeeper.

Schwarzschild bookkeeper 
traces out orbit.

Now the Schwarzschild bookkeeper swings into action. She knows the 
space and time coordinates r, φ, and t at the beginning of this increment of 
time. To these coordinates she adds increments dr and dφ for each lapse of 
far-away time dt reported by a local shell observer. The result is a table, a 
diagram, or what we call a Schwarzschild map that traces the satellite 
through spacetime as expressed in her coordinates r, φ, and t. Such a map 
is shown in Figure 9.

Schwarzschild map is a 
bookkeeping device.

Notice that the Schwarzschild map of Figure 9 is a summary, an artifact, a 
bookkeeping device. It indicates events each of which is recorded locally. 

Figure 9  Schematic Schwarzschild map of the trajectory of an object that plunges 
into a black hole. Only every hundredth flash is numbered and shown; adjacent 
flashes are very close together in space and time so they can be observed directly 
by one or another free-float observer or shell observer. NO ONE observes directly 
the trajectory shown on this map. Question: Why are numbered event dots closer 
together near both ends of the trajectory than in the middle of the trajectory? 
(Answer in Chapter 3.)
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Nobody observes this entire trajectory directly. The price paid for the uni-
versal language of r-coordinate and t-coordinate is the loss of direct 
experience. No one lives in or on a road map, but we use road maps to 
describe the territory and plan our trips. Similarly, coordinates r, φ, and t 
are calibrations on a Schwarzschild map of spacetime. These coordinates 
simply and precisely locate events in the entire spacetime region outside 
the surface of any spherically symmetric gravitating body. The Schwarz-
child map guides our navigation near a black hole.

What if an astronaut riding in the satellite wants to transmit to the 
Schwarzschild bookkeeper data about separation between events she 
observes inside her unpowered spaceship? She begins by using special rel-
ativity to transform her coordinate separations to values on the passing 
shell. Then the shell observer can transmit the results to the far-away 
bookkeeper, as before.

r, φ, t are bookkeeping 
coordinates.

In summary, the full range of coordinates r, φ, and t are primarily for book-
keeping. A computer can replace the bookkeeper. Then nobody lives in the 
coordinates r, φ, and t, nobody works there, nobody takes data directly 
using the wide span of these three coordinates. They form an accounting 
system, a bookkeeping device, a data bank, a spreadsheet, a tabulating 
mechanism, an international language, the basis for a spacetime map that 
describes events and motions in the entire spacetime region surrounding 
Earth, Moon, Sun, or black hole. For this reason, we often call r, φ, and t 
bookkeeper coordinates. The strength of bookkeeper coordinates is uni-
versality; their weakness is isolation of most data entries from direct 
experience.

People can live on a shell and 
in a free-float frame.

In contrast, people can, in principle, live and work in free-float frames and 
on spherical shells, taking and analyzing data as if they were in flat space-
time, but unfortunately they can do so only for limited patches of 
spacetime.

Don’t tell me I cannot experience directly the entire trajectory shown in Figure 9! Sta-
tion me a great distance from a black hole. Then I can view the satellite directly with 
my eyes as it orbits the black hole or plunges toward it.

True, you see the entire orbit—at least until the satellite reaches the horizon of the 
black hole. But what you see by eye are not the coordinates r, φ, and t of this trajec-
tory. First of all, there is a time delay between emission of a flash by the satellite and 
the instant at which you see this flash with your eye. The relative delay increases as 
the satellite moves farther from you or deeper into the gravitational pit. 

Second, there is an effect we have not yet mentioned (see Figure 10): Light is 
deflected in a gravitational field. In 1919 Arthur Eddington verified Einstein’s predic-
tion for starlight passing Sun, making Einstein an instant worldwide celebrity. The tiny 
deflection near Sun becomes dramatic near a black hole (Chapter 5 and Project D, 
Einstein Rings). As a result, you typically do not see the satellite where it was but in 
some other direction.
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Visual appearance is 
distorted.

Visual appearance can be misleading near a black hole. This misinforma-
tion of visual appearance is not new in principle. When we set up the 
original latticework of rods and clocks that formed the reference frame of 
special relativity, we limited the observer to collecting data from the 
recording clocks (Chapter 1, Section 9). We expressly warned the observer 
about reporting events that he views by eye. Why warn him? Because the 
speed of light is finite. Light from a distant event can arrive at the 
observer’s eye long after light from a nearer event that actually occurred 
later as recorded on the latticework of clocks. It is not easy to analyze 
events when their order is scrambled in the process of observation and 
recording.

Similar light-delay problems occur in viewing by eye objects in orbit 
around a black hole. Added to light delay is the visual misinformation 
about direction due to the deflection of light that results from the curva-
ture of spacetime (Figure 10).

With knowledge of how light moves in the neighborhood of a black hole 
(Chapter 5), you may be able to reconstruct the Schwarzschild map from 
your visual observations. But such a reconstruction is quite different from 
seeing the Schwarzschild map directly.

Schwarzschild metric provides 
a universal language to fix 
the location of events.

In the following chapters we use bookkeeper coordinates r, φ, and t to 
describe and predict orbits of satellites and the trajectories of light flashes 
near a black hole. We use these coordinates to draw Schwarzschild maps 
of the trajectories. Behind the Schwarzschild map of any orbit stand obser-
vations made by free-float observers or shell observers, or predictions of 
their observations. The Schwarzschild metric is central in the translation 
of coordinates back and forth between direct observers (shell observers 
and free-float observers) and between each of these observers and the 
Schwarzschild bookkeeper.

Figure 10  Schwarzschild map of trajectory of light flash (solid curve) emitted at 
far-away time t = 7 from the plunging object (solid dot) whose trajectory is shown in 
Figure 9. The light is deflected as it moves outward, leading a remote observer to see 
the flash emission at a different location (dashed line and open dot).
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Schwarzschild lattice
Using what we have learned about spacetime near a nonrotating, 
spherically symmetric massive body, we can in principle set up a 
Schwarzschild lattice, at rest with respect to the center of gravitational 
attraction, from which one can read directly the Schwarzschild coordi-
nates r, φ, t of an event right down to the horizon. The value of the reduced 
circumference r is stamped on every spherical shell. Scatter over each shell 
a set of clocks that read far-away time (box, page 2-29). For a given plane 
in which a particle orbits, mark the angle φ on the shell, with zero angle in 
some chosen direction. The shell observer and the free-float observer near 
an event can then read the Schwarzschild coordinates r and φ of this event 
directly from the place on the shell at which the event occurs and the time 
t on the far-away clock mounted on the shell next to that event.

Construct Schwarzschild 
lattice from horizon outward 
to infinity.

This Schwarzschild lattice can stretch from near the horizon outward 
indefinitely in every direction (from an isolated body). Then the remote 
Schwarzschild bookkeeper receives, records, and manipulates Schwarz-
schild coordinates without the need for translation from shell or free-float 
coordinates. Everyone involved understands the Schwarzschild metric 
and its predictions, leading to a tidy, agreed-upon system that describes 
the location of all events. This collection of shells and clocks can then be 
called the “Schwarzschild observer.”

I understand the idea of the three different coordinate systems described in this sec-
tion, but I don’t understand why we can’t just use the Schwarzschild lattice alone. It 
provides time and space measures that each experimenter can agree to by looking at 
a nearby Schwarzschild clock, measuring tangential distances directly, and reckoning 
radial separations by subtracting the r-values stamped on each shell. Then we need 
no translating measurements from one coordinate system to another. The Schwarz-
schild lattice works fine all by itself. Get rid of all other coordinate systems!

Good point. No one can stop us from using Schwarzschild coordinates alone to 
design our experiments and predict results. And these predictions will describe what 
we observe. Then everything is totally consistent and convenient for experimenters 
scattered throughout the entire region outside the horizon of a black hole. There is a 
price for this convenience, however; are you willing to pay the following price? Our 
standard of time is based on the properties of particular atoms. Near a black hole (and 
near Earth!) an atomic clock “runs slow” when measured using the far-away 
Schwarzschild time coordinate. And the directly measured radial distance between 
shells is greater than the difference in r-values between these shells (while directly 
measured tangential distances are indeed correctly predicted by change in Schwarz-
schild coordinates). Does curved spacetime cause measuring rods to seem “rubbery,” 
having different apparent lengths when oriented tangentially than when oriented 
radially? Does curved spacetime force “atomic time” to run at a different rate near a 
center of attraction than far from this center? Typically, such questions about “reality” 
are of no interest to people in the field. Whatever point of view leads to correct pre-
dictions is fine with them! And using the Schwarzschild lattice, with its seemingly rub-
bery measuring rods and time-changed atoms, leads to correct predictions. On the 
other hand, we may be more comfortable assuming that an atomic clock runs at its 
regular rate when observed at rest near a black hole. In this case we naturally adopt 
the shell frame for local observations, with its local measuring rods and atom-defined 
clock times. Each alternative reference frame has its own advantages and brings dif-
ferent perspectives to the structure of spacetime. In our opinion, life as a general rela-
tivist, however long, is more fun when you learn to jump mentally from frame to 
frame! For more, see Kip Thorne’s Black Holes and Time Warps, Chapter 11, What Is 
Reality? 
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13  Summary

The Schwarzschild metric
In general, the metric provides a complete description of spacetime: the 
curvature of spacetime and the results of measurements carried out with 
rods and clocks. The metric for flat spacetime is the one that dominated 
our study of special relativity. However, special relativity cannot describe 
spacetime globally in the vicinity of a massive object. General relativity 
can do so, earning the name Theory of Gravitation.

The Schwarzschild metric describes spacetime exterior to the surface of 
any nonrotating, uncharged, spherically symmetric massive object. It 
describes spacetime everywhere around a nonrotating, uncharged black 
hole.

Several conventions make the Schwarzschild metric easy to understand 
and use:

1. Satellite motion in a plane. A light flash or test particle that moves 
through Schwarzschild geometry stays in a single spatial plane that passes 
through the center of the black hole. Describing motion on this plane 
requires only two space dimensions plus the time.

2. Polar coordinates. Motion with respect to a center is simply described 
using polar coordinates r and φ. For example, the metric for flat spacetime 
with two spatial dimensions goes from the Cartesian form

 [34. flat spacetime]

to the polar form

[9. flat spacetime]

3. Mass in units of meters. We measure the mass M of a planet, star, or 
black hole in units of meters. Equation [5] makes the conversion from 
mass Mkg in kilograms to mass M in meters, using G, the gravitational 
constant of Newtonian mechanics and c, the speed of light:

 [5]

In length units, the mass of Sun is 1.477 kilometers and the mass of Earth 
is 0.444 centimeters.

4. Radius as reduced circumference. The presence of the black hole ren-
ders impossible the direct measurement of the radial coordinate r of an 
object or satellite. Instead, define the radius as r = (circumference)/2π, 
where the circumference is measured around the great circle of a station-
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ary spherical shell concentric to the black hole or center of attraction. As a 
reminder of this process, we often call r the reduced circumference.

5. Time t measured on far-away clocks. To avoid the effects of curvature 
on clocks, calculate the time, called bookkeeper time or far-away time, that 
would be measured on clocks located in flat spacetime far from the attract-
ing body. Give far-away time the symbol t. Light flashes are used for 
comparison of clock rates and also for communication between a far-away 
clock and a clock in curved regions of spacetime.

Predictions from the Schwarzschild metric
With these simplifying conventions the Schwarzschild metric in its time-
like form can be written

[10]

This metric “measures” the separation of a pair of events that have a time-
like relation and that occur near one another in spacetime. Various choices 
of these two events lead to predictions verified by experiment:

Prediction 1. Gravitational red shift. Let the two events be sequential 
ticks of a clock at rest on a spherical shell near a black hole. At rest means 
that the space separation between events is zero: dr = dφ = 0. The proper 
time dτ (defined as the time between the events in a frame in which they 
occur at the same place) is just the time dtshell read on the shell clock. Then 
the Schwarzschild metric tells us the relation between shell-time lapse and 
the lapse of far-away time:

[19]

Instead of describing ticks on a clock, this equation can measure the 
period of a steady light wave emitted outward from a spherical shell at 
radius r. The equation predicts that the period dt measured by a remote 
observer is greater than the period dtshell measured by the observer at the 
emitting clock. For visible light, longer period means redder light, so the 
general name for this effect is the gravitational red shift.

Prediction 2. Curvature of space. Let the two events occur at the ends of a 
measuring rod radially oriented with ends at two concentric spherical 
shells. And let these two events occur at the same far-away time. To ana-
lyze these two spacelike events, use the spacelike form of the 
Schwarzschild metric:

[11]
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For this example, dt = dφ = 0, and the proper distance dσ between them 
(defined as the separation between two events in a frame in which they 
occur at the same time) is just the radial separation measured by a shell 
observer:

[12]

The shell observer measures the distance drshell between shells to be 
greater than the difference dr between the reduced circumferences of the 
two shells.

Reference frames
General relativity allows use of any coordinate system whatsoever. We 
choose three coordinate systems convenient for our purposes: local free-
float frames, local frames on spherical shells, and the global frame that 
employs Schwarzschild coordinates r, φ, t. Observers can take measure-
ments directly in free-float frames and on spherical shells, but these 
measurements are local. In contrast, Schwarzschild coordinates describe 
events that can span all of spacetime near a massive body, but no one 
observer can make these measurements directly. Instead we speak of the 
Schwarzschild bookkeeper who records and analyzes events measured by 
others.

Shell observers and passing free-float observers compare their local mea-
surements using special relativity, including the Lorentz transformation. 
Shell observers and the Schwarzschild bookkeeper compare their mea-
surements using equations [12] and [19]. The tangential distance rdφ is the 
same in both systems.

One can construct in imagination a Schwarzschild lattice of spherical shells, 
each stamped with the reduced circumference r, angle φ, and covered with 
clocks reading far-away time t. The Schwarzschild lattice can in principle 
start near the horizon and extend outward indefinitely (from an isolated 
body). The Schwarzschild coordinates of any event outside the horizon 
can then be read directly using this lattice. This collection of shells and 
clocks can collectively be called the “Schwarzschild observer.”
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