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SPAariME:
O ur imagination is stretched to the utmost, not, as 

in fiction, to imagine things which are not really there, 
hut just to comprehend those things which are there.

Richard P. Feynman

1.1 PARABLE OF THE SURVEYORS
disagree on northward and eastward 
separations; agree on distance

Once upon a time there was a Daytime surveyor who measured off the king’s lands. 
He took his directions of north and east from a magnetic compass needle. Eastward 
separations from the center of the town square he measured in meters. The northward 
direction was sacred. He measured northward separations from the town square in a 
different unit, in miles. His records were complete and accurate and were often 
consulted by other Daytimers.

A second group, the Nighttimers, used the services of another surveyor. Her north 
and east directions were based on a different standard of north: the direction of the 
North Star. She too measured separations eastward from the center of the town square 
in meters and sacred separations northward in miles. The records of the Nighttime 
surveyor were complete and accurate. Marked by a steel stake, every corner of a plot 
appeared in her book, along with its eastward and northward separations from the 
town square.

Daytimers and Nighttimers did not mix but lived mostly in peace with one another. 
However, the two groups often disputed the location of property boundaries. Why? 
Because a given corner of the typical plot of land showed up with different numbers in 
the two record books for its eastward separation from the town center, measured in 
meters (Figure 1 -1). Northward measurements in miles also did not agree between the 
two record books. The differences were small, but the most careful surveying did not 
succeed in eliminating them. No one knew what to do about this single source of 
friction between Daytimers and Nighttimers.

One fall a student of surveying turned up with novel open-mindedness. Unlike all 
previous students at the rival schools, he attended both. At Day School he learned

Daytime surveyor uses 
magnetic north

Nighttime surveyor uses 
North-Star north
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NIGHTTIME: NORTH-STAR NORTH
FIGURE 1 -1. The town as plotted by Daytime and Nighttime surveyors. Notice that the line of 
Daytime magnetic north just grazes the left side of the north gate, while the line of Nighttime North-Star 
north just grazes the right side of the same gate. Steel stakes A, B, C, D driven into the ground mark the 
comers of a disputed plot of land. Ar shown, the eastward separation of stake A from the north-south line 
measured by the Daytime surveyor is different from that measured by the Nighttime surveyor.

Student converts miles to meters

from one expert his method of recording locations of gates of the town and corners of 
plots of land based on magnetic north. At Night School he learned the other method, 
based on North-Star north.

As days and nights passed, the student puzzled more and more in an attempt to find 
some harmonious relationship between rival ways of recording location. His attention 
was attracted to a particular plot of land, the subject of dispute between Daytimers and 
Nighttimers, and to the steel stakes driven into the ground to mark corners of this 
disputed plot. He carefully compared records of the two surveyors (Figure 1-1, Table
1- 1).

In defiance of tradition, the student took the daring and heretical step of converting 
northward measurements, previously expressed always in miles, into meters by multi­
plying with a constant conversion factor k. He found the value of this conversion factor 
to be ^ =  1609.344 meters/mile. So, for example, a northward separation of 3 miles 
could be converted to ^ X  3 miles =  1609.344 meters/mile X 3 miles =  4828.032 
meters. "At last we are treating both directions the same!” he exclaimed.

Next the student compared Daytime and Nighttime measurements by trying 
various combinations of eastward and northward separation between a given stake 
and the center of the town square. Somewhere rhe student heard of the Pythagorean 
Theorem, that the sum of squares of the lengths of two perpendicular legs of a right 
triangle equals the square of the length of the hypotenuse. Applying this theorem, he 
discovered that the expression

Daytim e Daytim e
/  northward \ 2 eastward

k X 1 separation I + separation
\  (miles) /  _ (meters)

( 1- 1)
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TWO DIFFERENT SETS OF RECORDS; SAME PLOT OF LAND
Daytime surveyor’s axes Nighttime surveyor's axes

oriented to magnetic north oriented to North-Star north
Eastward Northward Eastward Northward
(meters) (miles) (meters) (miles)

Town square 
Corner stakes:

0 0 0 0

Stake A 4010.1 1.8330 3950.0 1.8827
Stake B 5010.0 1.8268 4950.0 1,8890
Stake C 4000.0 1.2117 3960.0 1.2614
Stake D 5000.0 1.2054 4960.0 1.2676

based on Dayrime measurements of the position of steel stake C had exaaly the 
same numerical value as the quantity

N ighttim e N ighttim e
/  northward \ 2 eastward

k X  1 separation 1 + separation
V (miles) /  _ (meters)

( 1- 2)

computed from the readings of the Nighttime surveyor for stake C (Table 1-2). He

- C j ^ B L E

“ INVARIANT DISTANCE” FROM CENTER OF TOWN SQUARE TO STAKE C
(Data from  Table 1 - 1 )

Daytime measurements Nighttime measurements

Northward separation 
1.2117 miles

Northward separation 
1.2614 miles

Multiply by
k =  1609.344 meters/mile

Multiply by
k =  1609.344 meters/mile

to convert to meters: to convert to meters:
1950.0 meters 2030.0 meters
Square the value 3,802,500 (meters)^ Square the value 4,120,900 (meters)^
Eastward separation 
4000.0 meters

Eastward separation 
3960.0 meters

Square the value and add -b 16,000,000 (meters)^ Square the value and add +  15,681,600 (meters)^
Sum of squares =  19,802,500 (meters)^ Sum of squares =  19,802,500 (meters)^
Expressed as a 
number squared =  (4450 meters)^

Expressed as a 
number squared =  (4450 meters)^

This is the square 
of what measurement? 4450 meters

This is the square 
of what measurement? 4450 meters

i i
SAME

DISTANCE
from center of Town Square
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magnetic north

town square

DAYTIME: MAGNETIC NORTH

North-Star north

N IGH H IM E; NORTH-STAR NORTH

FIGURE 1 -2. The distance between stake A 
and the center of the town square has the same 
value for Daytime and Nighttime surveyors, 
even though the northward and eastward sepa­
rations, respectively, are not the same for the two 
surveyors.

Discovery: Invariance of distance

cried the same comparison on recorded positions of stakes A, B, and D and found 
agreement here too. The student’s excitement grew as he checked his scheme of 
comparison for all stakes at the corners of disputed plots —  and found everywhere 
agreement.

Flushed with success, the student methodically converted all northward measure­
ments to units of meters. Then the student realized that the quantity he had calculated, 
the numerical value of the above expressions, was not only the same for Daytime and 
Nighttime measurements. It was also the square of a length: (meters)^. He decided to 
give this length a name. He called it the d istance from the center of town.

( 1-3)

He said he had discovered the p rincip le  o f invariance o f distance; he reckoned 
exactly the same value for distance from Daytime measurements as from Nighttime 
measurements, despite the fact that the two sets of surveyors’ numbers differed 
significantly (Figure 1-2).

After some initial confusion and resistance, Day timers and Nighttimers welcomed 
rhe srudent’s new idea. The invariance of distance, along with further results, made it 
possible to harmonize Daytime and Nighttime surveys, so everyone could agree on the 
location of each plot of land. In this way the last source of friction between Day timers 
and Nightrimers was removed.

northward 2 eastward
(distance)^ — separarion

(meters)
+ separarion

(meters)
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1.2 SURVEYING SPACETIME
disagree on separations in space and time; 
agree on spacetime interval

The Parable of the Surveyors illustrates the naive state of physics before the discovery 
of special relativity  by Einstein of Bern, Lorentz of Leiden, and Poincare of Paris. 
Naive in what way? Three central points compare physics at the turn of the twentieth 
century with surveying before the student arrived to help Daytimers and Nighttimers.

First, surveyors in the mythical kingdom measured northward separations in a 
sacred unit, the mile, different from the unit used in measuring eastward separations. 
Similarly, people smdying physics measured time in a sacred unit, called the second, 
different from the unit used to measure space. No one suspected the powerful results 
of using the same unit for both, or of squaring and combining space and time 
separations when both were measured in meters. Time in meters is just the time it takes 
a light flash to go that number of meters. The conversion factor between seconds and 
meters is the speed of light, c =  299,792,458 meters/second. The velocity of light c 
(in meters/second) multiplied by time t (in seconds) yields ct (in meters).

The speed of light is the only natural constant that has the necessary units to convert 
a time to a length. Historically the value of the speed of light was regarded as a sacred 
number. It was not recognized as a mere conversion factor, like the factor of conversion 
between miles and meters —  a factor that arose out of historical accident in human­
kind’s choice of units for space and time, with no deeper physical significance.

Second, in the parable northward readings as recorded by two surveyors did not 
differ much because the two directions of north were inclined to one another by only 
the small angle of 1.15 degrees. At first our mythical student thought that small 
differences between Daytime and Nighttime northward measurements were due to 
surveying error alone. Analogously, we used to think of the separation in time between 
two electric sparks as the same, regardless of the motion of the observer. Only with the 
publication of Einstein’s relativity paper in 1905 did we learn that the separation in 
time between two sparks really has different values for observers in different states of 
motion —  in different frames.

Think of John standing quietly in the front doorway of his laboratory building. 
Suddenly a rocket carrying Mary flashes through rhe front door past John, zooms 
down the middle of the long corridot, and shoots out the back door. An antenna 
projects from the side of Mary’s rocket. As the rocket passes John, a spark jumps across 
rhe 1-millimeter gap between the antenna and a pen in John’s shirt pocket. The rocket 
continues down the corridor. A second spark jumps 1 millimeter between the antenna 
and the fire extinguisher mounted on the wall 2 meters farther down the corridor. Still 
latet other metal objects nearer the rear receive additional sparks from the passing 
rocket before it finally exits through the rear door.

John and Mary each measure the lapse of time between “pen spark” and “fire- 
extinguisher spark.” They use accurate and fast electronic clocks. John measures 
this time lapse as 33.6900 thousand-millionths of a second (0.0000000336900 
second =  33.6900 X 10“  ̂ second). This equals 33.6900 nanoseconds in the 
terminology of high-speed electronic circuitry. (One nanosecond =  10~^ second.) 
Mary measures a slightly different value for the time lapse between the two sparks, 
33.0228 nanoseconds. For John the fire-extinguisher spark is separated in space by 
2.0000 meters from the pen spark. For Mary in the rocket the pen spark and 
fire-extinguisher spark occur at the same place, namely at the end of her antenna. Thus 
fot her their space separation equals zero.

Later, laboratory and rocket observers compare their space and time measurements 
between the various sparks (Table 1-3). Space locations and time lapses in both frames 
are measured from the pen spark.

The second: A sacred unit

Speed of light converts seconds 
to meters

Time between events: Different 
for different frames

O ne observer uses laboratory 
frame

Another observer uses rocket 
frame



6  CHAPTER 1 SPACETIME: OVERVIEW

-------------------- C [ ^ B L E l - 3 ^ > --------------------

SPACE AND TIME LOCATIONS OF THE SAME 
SPARKS AS SEEN BY TWO OBSERVERS

Distance and time between sparks as measured by observer who is
standing in laboratory (John) moving by in rocket (Mary)

Distance
(meters)

Time
(nanoseconds)

Distance
(meters)

Time
(nanoseconds)

Reference spark 
(pen spark)

0 0 0 0

Spark A
(fire-extinguisher
spark)

2.0000 33.6900 0 33.0228

Spark B 3.0000 50.5350 0 49.5343
Spark C 5.0000 84.2250 0 82.5572
Spark D 8.0000 134.7600 0 132.0915

Discovery: Invariance of 
spacetime interval

The third point of comparison between the Parable of the Surveyors and the state of 
physics before special relativity is this: The mythical student’s discovery of the concept 
of distance is matched by the Einstein -  Poincare discovery in 1905 of the invariant 
spacetim e in terval (formal name Lorentz in terval, but we often say just in te r­
val), a central theme of this book. Let each time measurement in seconds be converted 
to meters by multiplying it by the “conversion factor c "  the speed of light:

c =  299,792,458 meters/second =  2.99792458 X 10* meters/second 
=  0.299792458 X 10^ meters/second =  0.299792458 meters/nanosecond

Then the square of the spacetime interval is calculated from the laboratory observer’s 
measurements by subtracting the square of the space separation from the square of the 
time separation. Note the minus sign in equation (1-4).

Laboratory Laboratory
/  time \ 2 space

(interval)^ = c X 1 separation 1 — separation
V (seconds) /  _ (meters)

( 1-41

The rocket calculation gives exactly the same value of the interval as the laboratory 
calculation.

R ocket R ocket
/  time \ 2 space

(interval)^ = c X 1 separation 1 
V (seconds) /  _

separation
(meters)

(1-5)

even though the respective space and time separations are not the same. Two observers 
find different space and time separations, respectively, between pen spark and fire- 
extinguisher spark, but when they calculate the spacetime interval between these 
sparks their results agree (Table 1-4).

The student surveyor found that invariance of distance was most simply written 
with both northward and eastward separations expressed in the same unit, the meter. 
Likewise, invariance of the spacetime interval is most simply written with space and
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- C ^ A B L E

“ INVARIANT SPACETIME INTERVAL” FROM REFERENCE SPARK TO SPARK A
(Data from Table 1-3]

Laboratory measurements Rocket measurements

Time lapse
33.6900 X 10-« seconds 
=  33.6900 nanoseconds 
Multiply by 
r =  0.299792458 
meters per nanosecond 
to convert to meters: 
10.1000 meters 
Square the value 102.010 (meters)^

Time lapse
33.0228 X 10-9 seconds 
=  33.0228 nanoseconds 
Multiply by 
f =  0.299792458 
meters per nanosecond 
to convert to meters: 
9.9000 meters 
Square the value 98.010 (meters)^

Spatial separation 
2.000 meters
Square the value and subtract — 4.000 (meters)^

Spatial separation 
zero
Square the value and subtraa -  0

Result of subtaction =  98.010 (meters)^ Result of subtaction =  98.010 (meters)^
expressed as a 
number squared =  (9.900 meters)^

expressed as a 
number squared =  (9.900 meters)^

This is the square 
of what measurement? 9.900 meters

This is the square 
of what measurement? 9.900 meters

i i
SAME SPACETIME
INTERVAL

from the reference event

time separations expressed in the same unit. Time is converted to meters: t (meters) = 
£• X t (seconds). Then the interval appears in simplified form:

time 2 space
(interval)^ — separation — separation

(meters) (meters)
( 1- 6 )

The invariance o f the spacetim e in terval —  its independence of the state of 
motion of the observer —  forces us to recognize that time cannot be separated from 
space. Space and time are part of a single entity, spacetim e. Space has three 
dimensions: northward, eastward, and upward. Time has one dimension: onward! 
The interval combines all four dimensions in a single expression. The geometry of 
spacetime is truly four-dimensional.

To recognize the unity of spacetime we follow the procedure that makes a landscape 
take on depth— we look at it from several angles. That is why we compare space and 
rime separations between events A  and B as recorded by two different observers in 
relative motion.

Space and time are 
part of spacetime

Why the minus sign in the equation for the interval? Pythagoras tells us to AD D  the 
squares of northward and eastward separations to get the square of the distance. Who 
tells us to SUBTRACT the square of the space separation between events from the square 
of their time separation in order to get the square of the spacetime interval?
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Shocked? Then you’re well on the way to understanding the new world of very fast 
motion! This world goes beyond the three-dimensional textbook geometry of Euclid, 
in which distance is reckoned from a sum of squares. In this book we use another 
kind of geometry, called Lorentz geometry, more real, more powerful than Euclid 
for the world of the very fast. In Lorentz geometry the squared space separation is 
combined with the squared time separation in a new way— by subtraction. The 
result is the square of a new unity called the spacetime intervalhtvf/ttn events. The 
numerical value of this interval is invariant, the same for all observers, no matter 
how fast they are moving past one another. Proof? Every minute of every day an 
experiment somewhere in the world demonstrates it. In Chapter 3 we derive the 
invariance of the spacetime interval— with its minus sign— from experiments. 
They show the finding that no experiment conducted in a closed room will reveal 
whether that room is “at rest’’ or “in motion” (Einstein’s Principle of Relativity). 
We won’t wait until then to cash in on the idea of interval. We can begin to enjoy the 
payoff right now.

S A M P L E  P R O B L E M  l - i ;
SP ARKIN G  AT A FASTER RATE

Another, even faster rocket follows the first, enter­
ing the ftont door, zipping down the long corridor, 
and exiting through the back doorway. Each time 
the rocket clock ticks it emits a spark. As before, 
the first spark jumps the 1 millimeter from the 
passing rocket antenna to the pen in the pocket of

John, the laboratory observer. The second flash 
jumps when the rocket antenna reaches a door­
knob 4.00000000 meters farther along the hall as 
measured by the laboratory observer, who records 
the time between these two sparks as 16.6782048 
nanoseconds.

a. What is the time between sparks, measured in meters by John, the laboratory 
observer?

b. What is the value of the spacetime interval between the two events, calculated 
from John’s laboratory measurements?

c. Predict: What is the value of the interval calculated from measurements in the 
new racket frame?

d. What is the distance between sparks as measured in this rocket frame?

e. What is the time (in meters) between sparks as measured in this rocket frame? 
Com pare w ith the tim e between the same sparks as measured by John  in the 
laboratory frame.

f. What is the speed of this rocket as measured by John in the laboratory?

SOLUTION
a. Time in meters equals time in nanoseconds multiplied by the conversion factor, 

the speed of light in meters per nanosecond. For John, the laboratory observer,

16.6782048 nanoseconds X 0.299792458 meters/nanosecond
== 5.00000000 meters

b. The square of the interval between two flashes is reckoned by subtracting the 
square of the space separation from the square of the time separation. Using 
laboratory figures:

(interval)^ =  (laboratory time)^ — (laboratory distance)^ 
=  (5 meters)^ — (4 meters)^ =  25 (meters)^ - 
=  9 (meters)^ ~  (3 meters)^

16 (meters)^
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Therefore the interval between the two sparks has the value 3 meters (to nine 
significant figures).

c. We strongly assert in this chapter that the spacetim e in terval is invarian t — 
has the same value by whomever calculated. Accordingly, the interval between 
the two sparks calculated from rocket observations has the same value as the 
interval (3 meters) calculated from laboratory measurements.

d. From the rocket rider’s viewpoint, both sparks jump from the same place, namely 
the end of her antenna, and so distance between the sparks equals zero for the 
rocket rider.

e. We know the value of the spacetime interval between two sparks as computed in 
the rocket frame (c). And we know that the interval is computed by subtracting 
the square of the space separation from the square of the time separation in the 
rocket frame. Finally we know that the space separation in the rocket frame 
equals zero (d). Therefore the rocket time lapse between the two sparks equals the 
interval between them;

(interval)^ =  (rocket time)^ — (rocket distance)^
(3 meters)^ =  (rocket time)^ — (zero)^

from which 3 meters equals the rocket time between sparks. Compare this with 5 
meters of light-travel time between sparks as measured in the laboratory frame.

f. Measured in the laboratory frame, the rocket moves 4 meters of distance (state­
ment of the problem) in 5 merers of light-travel time (a). Therefore its speed in 
the laboratory is 4 /5  light speed. Why? Well, light moves 4 meters of distance in 
4 meters of time. The rocket takes longer to cover this distance: 5 meters of time. 
Suppose that instead of 5 meters of time, the rocket had taken 8 meters of time, 
twice as long as light, to cover rhe 4 meters of disrance. In that case it would be 
moving at 4 /8  —  or half— the speed of light. In the present case the rocket 
travels the 4 meters of distance in 5 meters of time, so it moves at 4 /5  light speed. 
Therefore its speed equals

(4/5) X 2.99792458 X 10® meters/second
2.3983397 X 10® meters/second

1.3 EVENTS AND INTERVALS ALONE!
tools enough to chart matter and motion 
without any reference frame

In surveying, rhe fundamental concept is place. The surveyor drives a steel stake to 
mark the corner of a plot of land —  to mark a place. A second stake marks another 
corner of the same plot —  another place. Every surveyor —  no matter what his or her 
standard of north —  can agree on the value of the distance between the two stakes, 
between the two places.

Every stake has its own reality. Likewise the distance between every pair of srakes 
also has its own teality, which we can experience direcrly by pacing off the straight line 
from one stake to the other stake. The reading on our pedometer— the distance

Surveying locates a place
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Physics locates an event

Wristwatch measures 
interval directly

between stakes— is independent of all surveyors’ systems, with their arbitrary choice 
of north.

More: Suppose we have a table of distances between every pair of stakes. That is all 
we need! From this table and the laws of Euclidean geometry, we can constmct the 
map of every surveyor (see the exercises for this chapter). Distances between stakes: 
That is all we need to locate every stake, every place on the map.

In physics, the fundamental concept is event. The collision between one particle 
and another is an event, with its own location in spacetime. Another event is the 
emission of a flash of light from an atom. A third is the impact of the pebble that chips 
the windshield of a speeding car. A fourth event, likewise fixing in and by itself a 
location in spacetime, is the strike of a lightning bolt on the rudder of an airplane. An 
event matks a location in spacetime; it is like a steel stake driven into spacetime.

Every laboratory and rocket observer— no matter what his or her relative velocity 
— can agree on the spacetime interval between any pair of events.

Every event has its own reality. Likewise the interval between every pair of events 
also has its own reality, which we can experience directly. We carry our wristwatch at 
constant velocity from one event to the other one. It is not enough just to pass through 
the two physical locations— we must pass through the actual events', we must be at 
each event precisely when it occurs. Then the space separation between the two events 
is zero for us —  they both occur at our location. As a result, our wristwatch reads 
directly the spacetime interval between the pait of events:

(interval)^ —
time

separation
(meters)

time
separation
(meters)

space
separation
(meters)

— [zero]^
time

separation
(meters)

[wristwatch time}

‘Do science” with intervals alone

The time read on a wristwatch carried between two events —  the interval between 
those events —  is independent of all laboratory and rocket reference frames.

More: To chart all happenings, we need no more than a table of spacetime intervals 
between every pair of events. That is all we need! From this table and the laws of 
Lorentz geometry, it turns out, we can construct the space and time locations of events 
as observed by every laboratory and rocket observet. Intervals between events: That is 
all we need to specify the location of every event in spacetime.

In brief, we can completely describe and locate events entirely without a reference 
frame. We can analyze the physical world— we can “do science” —  simply by 
cataloging every event and listing the interval between it and every other event. The 
unity of spacetime is reflected in the simplicity of entries in our table: intervals only.

O f course, if we want to use a reference frame, we can do so. We then list in our table 
the individual northward, eastward, upward, and time separations between pairs of 
events. However, these laboratory-frame listings for a given pair of events will be 
different from the corresponding listings that our rocket-frame colleague puts in her 
table. Nevertheless, we can come to agreement if we use the individual separations to 
reckon the interval between each pair of events:

(interval)^ — (time separation)^ — (space separation)^

That returns us to a universal, frame-independent description of the physical world.

When two events both occur at the position of a certain clock, that special clock 
measures directly the interval between these two events. The interval is called the 
p ro p e r  tim e (or sometimes the local tim e). The special clock that records the 
proper time directly has the name p ro p e r  clock  for this pair of events. In this book
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we often call the proper time the w ristw atch  tim e and the proper clock the 
w ristw atch  to emphasize that the proper clock is carried so that it is “present” at 
each of the two events as the events occur.

In Einstein’s German, the word for proper time is Eigenzeil, or “own-time,” 
implying “one’s very own time.” The German word provides a more accurate 
description than the English. In English, the word “proper” has come to mean 
“ following conventional mles.” Proper time certainly does not do that!

Hey! I just thought of something: Suppose two events occur at the same time in my frame 
but very fa r  apart, for example two handclaps, one in New York City and one in San 
Francisco. Since they are simultaneous in my frame, the time separation between 
handclaps is zero. But the space separation is not zero— they are separated by the width 
of a continent. Therefore the square of the interval is a negative number:

{interval^ =  (time separation^ — (space separation)^
=  (zero)^ — (space separation)^ =  — (space separation)^

How can the square of the spacetime interval be negative?

In most of the situations described in the present chapter, there exists a reference 
frame in which two events occur at the same place. In these cases time separation 
predominates in all frames, and the interval squared will always be positive. We call 
these intervals tim elike  in tervals.

Euclidean geometry adds squares in reckoning distance. Hence the result of the 
calculation, distance squared, is always positive, regardless of the relative magni­
tudes of north and east separations. Lorentz geometry, however, is richer. For your 
simultaneous handclaps in New York City and San Francisco, space separation 
between handclaps predominates. In such cases, the interval is called a spacelike 
in te rval and its form is altered to

(interval)^ =  (space separation)^ — (time separation)^ [when spacelike]

This way, the squared interval is never negative.
The timelike interval is measured directly using a wristwatch carried from one 

event to the other in a special frame in which they occur at the same place. In contrast, 
a spacelike interval is measured directly using a rod laid between the events in a 
special frame in which they occur at the same time. This is the frame you describe in 
your example.

Spacelike interval or timelike interval: In either case rhe interval is invariant— has 
the same value when reckoned using rocket measurements as when reckoned using 
laboratory measurements. You may want to skim through Chapter 6 where timelike 
and spacelike intervals are described more fully.

1.4 SAME UNIT FOR SPACE AND TIME: 
METER, SECOND, MINUTE, OR YEAR

meter for particle accelerators; minute for 
planets; year for the cosmos

The parable of the surveyors cautions us to use the same unit to measure both space 
and time. So we use meter for both. Time can be measured in meters. Let a flash of 
light bounce back and forth between parallel mirrors separated by 0.5 meter of

M easure time in meters
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0.5 meter

FIGURE 1 -3. This two-mirror “clock" sends to 
the eye flash after flash, each separated from the 
next by 1 meter of light-travel time. A light 
flash (represented by an asterisk) bounces back 
and forth between parallel mirrors separated 
from one another by 0.5 meter of distance. The 
silver coating of the right-hand mirror does not 
reflect perfectly: It lets 1 percent of the light pass 
through to the eye each time the light pulse hits 
it. Hence the eye receives a pulse of light every 
meter of light-travel time.

Meter officially defined 
using light speed

M easure distance in light-years

distance (Figure 1-3). Such a device is a “clock” that “ticks” each time the light flash 
arrives back at a given mirror. Between ticks the light flash has traveled a round-trip 
distance of 1 meter. Therefore we call the stretch of time between ticks 1 m eter o f 
light-travel tim e or more simply 1 m ete r o f  tim e.

One meter of light-travel time is quite small compared to typical time lapses in 
our everyday experience. Light travels nearly 300 million meters per second 
(300,000,000 meters/second =  3 X 10® meters/second, four fifths of the way to 
Moon in one second). Therefore one second equals 300 million meters of lighr-travel 
time. So 1 meter of light-travel time has the small value of one three-hundred-mil- 
lionth of a second. [How come? Because (1) light goes 300 million meters in one 
second, and (2) one three-hundred-millionth of that distance (one meter!) is covered in 
one three-hundred-millionrh of that time.] Nevertheless this unit of time is very useful 
when dealing with light and with high-speed particles. A proton early in its travel 
through a particle accelerator may be jogging along at “only” one half the speed of 
light. Then it travels 0.5 meter of distance in 1 meter of light-travel time.

We, our cars, even our jet planes, creep along at the pace of a snail compared with 
light. We call a deed quick when we’ve done it in a second. But a second for light 
means a distance covered of 300 million meters, seven trips around Earth. As we dance 
around the room to the fastest music, oh, how slow we look to light! Not zooming. 
Not dancing. Not creeping. Oozing! That long slow ooze racks up an enormous 
number of meters of light-travel time. That number is so huge that, by the end of one 
step of our frantic dance, the light that carries the image of the step’s beginning is well 
on its way to Moon.

In 1983 the General Conference on Weights and Measures officially redefined the 
meter in terms of the speed of light. T he m eter is now  defined as the  d istance 
th a t light travels in a vacuum  in the  fraction  1/299,792,458 o f a second. 
(For the definition of the second, see Box 3-2.) Since 1983 the speed of light is, by 
definition, equal to c =  299,792,458 meters/second. This makes official the central 
position of the speed of light as a conversion factor between time and space.

This official action defines distance (meter) in terms of time (second). Every day we 
use time to measure distance. “My home is only ten minutes (by car) from work.” 
“The business district is a five-minute walk.” Each statement implies a speed —  the 
speed of driving or walking— that converts distance to time. But these speeds can 
vary— for example, when we get caught in traffic or walk on cmtches. In contrast, the 
speed of light in a vacuum does not vary. It always has the same value when measured 
over time and the same value as measured by every observer.

We often describe distances to stars and galaxies using a unit of time. These 
distances we measure in light-years. One light-year equals the distance that light 
travels in one year. Along with the light-year of space goes the year of time. Here again, 
space and time are measured in the same units— years. Here again the speed of light is 
the conversion factor between measures of time and space. From our everyday per­
spective one light-year of space is quite large, almost 10,000 million million meters: 1 
light-year =  9,460,000,000,000,000 meters =  0.946 X 10*® meters. Nevertheless 
it is a convenient unit for measuring distance between stars. For example, the nearest 
star to our Sun, Proxima Centauri, lies 4.28 light-years away.

Any common unit of space or time may be used as the same unit for both space and 
time. For example. Table 1-5 gives us another convenient measure of time, seconds, 
compared with time in meters. We can also measure space in the same units, 
light-seconds. Our Sun is 499 light-seconds —  or, more simply, 499 seconds —  of 
distance from Earth. Seconds are convenient for describing distances and times among 
events that span the solar system. Alternatively we could use minutes of time and 
light-minutes of distance: Our Sun is 8.32 light-minutes from Earth. We can also use 
hours of time and light-hours of distance. In all cases, the speed of light is the 
conversion factor between units of space and time.
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-------- d ^ B L E  --------

SOME LIGHT-TRAVEL TIMES
Time in seconds 

of light-travel time Time in meters

Telephone call one way:
New York City to San Francisco 
via surface microwave link

0.0138 4.139,000

Telephone call one way:
New York City to San Ftancisco 
via Earth satellite

0.197 59,000,000

Telephone call one way:
New York City to San Francisco 
bounced off Moon

2.51 752,000,000

Flash of light: 
Emitted by Sun, 
received on Earth

499.0 149,600,000.000

Expressing time and space in the same unit m ete r is convenient for describing 
motion of high-speed particles in the confines of the laboratory. Time and space in the 
same unit second (or m inu te  or hour) is convenient for describing relations among 
events in our solar system. Time and space in the same unit year is convenient for 
describing relations among stars and among galaxies. In all three arenas spacetime is 
the stage and special relativity is the spotlight that illuminates the inner workings of 
Nature.

Use convenient units, 
the same for space and time

We are not accustomed to measuring time in meters. So as a reminder to ourselves 
we add a descriptor: meters of light-travel time. But the unit of time is still the meter. 
Similarly, the added words “seconds of distance" and ‘‘light-years’’ help to remind 
us that distance is measured in seconds or years, units we usually associate with time. 
But this unit of distance is really just second or year. The modifying descriptors are 
for our convenience only. In Nature, space and time form a unity: spacetime!

The words sound OK. The mathematics appears straightforward. The Sample Problems 
seem logical. But the ideas are so strange! Why should I believe them? How can 
invariance of the interval be proved?

No wonder these ideas seem strange. Particles zooming by at nearly the speed of 
light —  how far this is from our everyday experience! Even the soaring jet plane 
crawls along at less than one-millionth light speed. Is it so surprising that the world 
appears different at speeds a million times faster than those at which we ordinarily 
move with respect to Earth?

The notion of spacetime interval distills a wealth of real experience. We begin with 
interval because it endures: It illuminates observations that range from rhe core of a 
nucleus to the center of a black hole. Understand the spacetime interval and you 
vault, in a single bound, to the heart of spacetime.

Chapter 3 presents a logical proof of the invariance of the interval. Chapter 4 
reports a knock-down argument about it. Chapters that follow describe many 
experiments whose outcomes are rorally incomprehensible unless the interval is 
invariant. Real verification comes daily and hourly in the on-going enterprise of 
experimental physics.
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S A MP L E  P R O B L E M  1-2
PRO TON,  ROCK,  AND STARSHIP

a. A proton moving at 3 /4  light speed (with respect to the laboratory) passes 
through two detectors 2 meters apart. Events 1 and 2 are the transits through the 
two detectors. What are the laboratory space and time separations between the 
two events, in meters? What are the space and time separations between the 
events in the proton frame?

b. A speeding rock from space streaks through Earth’s outer atmosphere, creating a 
short fiery rrail (Event 1) and continues on its way to crash into Sun (Event 2) 10 
minutes later as observed in the Earth frame. Take Sun to be 1.4960 X 10“  
meters from Earth. In the Earth frame, what are space and time separations 
between Event 1 and Event 2 in minutes? What are space and time separations 
between the events in the frame of the rock?

c. In the twenty-third century a starship leaves Earth (Event 1) and travels at 95 
percent light speed, later arriving at Proxima Centauri (Event 2), which lies 4.3 
light-years from Earth. What are space and time separations between Event 1 and 
Event 2 as measured in the Earth frame, in years? What are space and time 
separations between these events in the frame of the starship?

SOLUTION
a. The space separation measured in the laboratory equals 2 meters, as given in the 

problem. A flash of light would take 2 meters of light-travel time to travel 
between the two detectors. Something moving at 1 /4  light speed would take four 
times as long: 2 meters/( 1 /4 ) =  8 meters of light-travel time to travel from one 
detector to the other. The proton, moving at 3 /4  light speed, takes 2 meters/ 
(3/4) =  8 /3  meters =  2.66667 meters of light-travel time between events as 
measured in the laboratory.

Event 1 and Event 2 both occur at the position of the proton. Therefore the 
space separation between the two events equals zero in the proton frame. This 
means that the spacetime interval —  the proper time— equals the time between 
events in the proton frame.

(proton time)^ — (proton distance)^ =  (interval)^ =  (lab time)^ — (lab distance)^ 
(proton time)^ — (zero)^ =  (2.66667 meters)^ ~  (2 meters)^

=  (7.1111— 4) (meters)^
(proton time)^ =  3.1111 (meters)^

So time between events in the proton frame equals the square root of this, or 
1.764 meters of time.

b. Light travels 60 times as far in one minute as it does in one second. Its speed in 
meters per minute is therefore:

2.99792458 X 10® meters/second X 60 seconds/minute
=  1.798754748 X 10̂ ® meters/minute

So the distance from Earth to Sun is

1.4960 X 10“  meters
1.798754748 X 10̂ ® meters/minute

— 8.3169 light-minutes



This is the distance between the two events in the Earth frame, measured in 
light-minutes. The Earth-frame time between the two events is 10 minutes, as 
stated in the problem.

In the frame traveling with the rock, the two events occur at the same place; the 
time between the two events in this frame equals the spacetime interval —  the 
proper time— between these events:

(interval)^ =  (10 minutes)^ — (8.3169 minutes)^
=  (100 -  69.1708) (minutes)^
=  30.8292 (minutes)^

The time between events in the rest frame of the rock equals the square root of 
this, or 5.5524 minutes.

c. The distance between departure from Earth and arrival at Proxima Centauri is 
4.3 light-years, as given in the problem. The starship moves at 95 percent light 
speed, or 0.95 light-years/year. Therefore it takes a time 4.3 light-years/(0.95 
light-years/year) =  4.53 years to arrive at Proxima Centauri, as measured in the 
Earth frame.

Starship time between departure from Earth and arrival at Proxima Centauri 
equals the interval:

(interval)^ =  (4.53 years)^ ~  (4.3 years)^
=  (20.52 -  18.49) (years)2 
=  2.03 (years)^

The time between events in the rest frame of the starship equals the square root of 
this, or 1.42 years. Compare with the value 4.53 years as measured in the Earth 
frame. This example illustrates the famous idea that astronaut wristwatch time 
—  proper time — between two events is less than the time between these events 
measured by any other observer in relative motion. Travel to stay young! This 
result comes simply and naturally from the invariance of the interval.
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1.5 UNITY OF SPACETIME
time and space: equal footing but distinct nature

When time and space are measured in the same unit— whether meter or second or 
year— the expression for the square of the spacetime interval between two events 
takes on a particularly simple form:

(interval)^ =  (time separation)^ — (space separation)^
=  ,2 _  „2 [same units for time and space]

This formula shows forth the unity of space and time. Impressed by this unity, 
Einstein’s teacher Hermann Minkowski (1864-1909) wrote his famous words, 
“Henceforth space by itself, and time by itself, are doomed to fade away into mere 
shadows, and only a union of the two will preserve an independent reality. ’ ’ Today this 
union of space and time is called spacetime. Spacetime provides the tme theater for

Spacetime is a unity
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PAYOFF OF THE PARABLE
from distance in space to interval in spacetime

DISCUSSION
Location marker

General name for such a location 
marker
Can its location be staked out for all 
to see, independent of any scheme 
of measurement, and independent 
of all numbers?
Simple descriptor of separation 
between two location markers
Are there ways directly to measure 
this separation?
With enough markers already 
staked out, how can we tell some­
one where we want the next one?
Instead of boldly staking out the 
new marker, or instead of position­
ing it relative to existing markers, 
how else can we place the new 
marker?
Nature of this reference frame?

How do two such reference frames 
differ from o n e  a n o th e r?

What are names of two such possi­
ble reference frames?

What common unit simplifies analy­
sis of the results?
What is the conversion factor from 
conventional units to meters?

SURVEYING TOWNSHIP
Steel stake driven in ground

Point or place

Yes

Distance

Yes

ANALYZING NATURE
Collision between two particles 
Emission of flash from atom 
Spark jumping from antenna to pen
Event

Yes

Spacetime interval

Yes

Specify distances from other Specify spacetime intervals from
points. other events.

By locating point relative to a refer- By locating event relative to a ref­
ence frame erence frame

Surveyor’s grid yields northward 
and eastward readings of point 
(Chapter 1).

Is such a reference frame unique? No
Tilt of one surveyor’s grid relative 
to the other
Daytime grid: oriented to magnetic 
north
Nighttime grid: oriented to North- 
Star north
The unit meter for both northward 
and eastward readings
Converting miles to meters: 
k =  1609.344 meters/mile

Lattice frame of rods and clocks 
yields space and time readings of 
event (Chapter 2).
No
Uniform velocity of one frame rela­
tive to the other
Laboratory frame 
Rocket frame

The unit meter for both space and 
time readings
Converting seconds to meters using 
the speed of light: 
c = 299,792,458 meters/second
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DISCUSSION

For convenience, all measurements 
are referred to what location?
How do readings for a single 
marker differ between two refer­
ence frames?

When we change from one marker 
to two, how do we specify the offset 
between them in reference-frame 
language?
How to figure from offset readings 
a measure of separation that has 
the same value whatever the choice 
of reference frame?
Figure how?

Result of this reckoning?

Phrase to summarize this identity of 
separation as figured in two refer­
ence frames?
Conclusions from this analysis?

SURVEYING TOWNSHIP 

A common origin (center of town)

Individual northward and eastward 
readings for one point —  for one 
steel stake —  do not have the same 
values respectively for two survey­
ors’ grids that are tilted relative to 
one another.
Subtract: Figure the difference be­
tween eastward readings of the 
two points; also the difference in 
northward readings.
Figure the distance between the 
two points.

(distance)^ =
/ difference in V  
\northward readings/

_l_ / difference in V  
\eastw ard readings/

Distance between points as figured 
from readings using one surveyor’s 
grid is the same as figured from 
readings using a second surveyor’s 
grid tilted with respect to first grid.

Invariance of the distance between 
points

(1) Northward and eastward di­
mensions are part of a single entity: 
space.
(2) Distance is the simple measure 
of separation between two points, 
natural because invariant: the same 
for different surveyor grids.

ANALYZING NATURE 

A common event (reference spark)

Individual space and time readings 
for one event —  for one spark —  
do not have the same values re­
spectively for two frames that are in 
motion relative to one another.

Subtract: Figure the difference be­
tween space readings of the two 
events; also the difference in time 
readings.
Figure the spacetime interval be­
tween the two events.

(interval)^ =
/ difference in V  
\time readings/

_  / difference in 
\space readings/

Interval between events as figured 
from readings using one lattice- 
work frame is the same as figured 
from readings using a second 
frame in steady straight-line motion 
relative to first frame.
Invariance of the spacetime inter­
val between events.

(1) Space and time dimensions are 
part of a single entity: spacetime.

(2) Spacetime interval is the simple 
measure of separation between 
two events, natural because invar­
iant: the same for different refer­
ence frames.
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Difference between 
time and space

every event in the lives of stars, atoms, and people. Space is different for different 
observers. Time is different for different observers. Spacetime is the same for everyone.

Minkowski’s insight is central to the understanding of the physical world. It focuses 
attention on those quantities, such as spacetime interval, electrical charge, and particle 
mass, that are the same for all observers in relative motion. It brings out the merely 
relative character of quantities such as velocity, momentum, energy, separation in 
time, and separation in space that depend on relative motion of observers.

Today we have learned not to overstate Minkowski’s argument. It is right to say 
that time and space are inseparable parts of a larger unity. It is wrong to say that time is 
identical in quality with space.

Why is it wrong? Is not time measured in meters, just as space is? In relating the 
positions of two steel stakes driven into the ground, does not the surveyor measure 
northward and eastward separations, quantities of identical physical character? By 
analogy, in locating two events is not the observer measuring quantities of the same 
nature: space and time separations? How else could it be legitimate to treat these 
quantities on an equal footing, as in the formula for the interval?

Equal footing, yes; same nature, no. There is a minus sign in the formula for the 
interval squared =  (time separation)^ — (space separation)^ that no sleight of hand 
can ever conjure away. This minus sign distinguishes between space and time. No 
twisting or turning can ever give the same sign to real space and time separations in 
the expression for the interval.

The invariarxe of the spacetime interval evidences the unity of space and time while 
also preserving —  in the formula’s minus sign —  the distinction between the two.

The principles of special relativity are remarkably simple— simpler than the 
axioms of Euclidean geometry or the principles of operating an automobile. Yet both 
Euclid and the automobile have been mastered— perhaps with insufficient surprise 
—  by generations of ordinary people. Some of the best minds of the twentieth century 
stmggled with the concepts of relativity, not because nature is obscure, but because (1) 
people find it difficult to outgrow established ways of looking at namre, and (2) the 
world of the very fast described by relativity is so far from common experience that 
everyday happenings are of limited help in developing an intuition for its descriptions.

By now we have won the battle to put relativity in understandable form. The 
concepts of relativity can now be expressed simply enough to make it easy to think 
correctly —  “to make the bad difficult and the good easy. ’’ This leaves only the second 
difficulty, that of developing intuition —  a practiced way of seeing. We understand 
distance intuitively from everyday experience. Box 1.1 applies our intuition for 
d istance in  space to help our intuition for in terval in spacetim e.

To put so much into so little, to subsume all of Einstein’s teaching on light and 
motion in the single word spacetime, is to cram a wealth of ideas into a small picnic 
basket that we shall be unpacking throughout the remainder of this book.

REFERENCES
Introductory quote: Richard P. Feynman, The Character of Physical Law (MIT 
Press, Cambridge, Mass., 1967), page 127.

Quote from Minkowski in Section 1.5: H. A. Minkowski, “Space and Time,” in 
H. A. Lorentz et al., The Principle of Relativity (Dover Publications, New York, 
1952), page 75.
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INTRODUCTION TO THE EXERCISES

Important areas of current research can be analyzed 
very simply using the theory of relativity. This analy­
sis depends heavily on a physical intuition, which 
develops with experience. Wide experience is not easy 
to obtain in the laboratory— simple experiments in 
relativity are difficult and expensive because the speed 
of light is so great. As alternatives to experiments, the

exercises and problems in this text evoke a wide range 
of physical consequences of the properties of space- 
time. These properties of spacetime recur here over 
and over again in different contexts:

• paradoxes

• puzzles
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• derivations

• technical applications

• experimental results

• estimates

• precise calculations

• philosophical difficulties

The text presents all formal tools necessary to solve 
these exercises and problems, but intuition —  a prac­
ticed way of seeing — is best developed without 
hurry. For this reason we suggest continuing to do 
more and more of these exercises in relativity after you 
have moved on to material outside this book. The 
mathematical manipulations in the exercises and 
problems are very brief: only a few answers take more

than five lines to write down. On the other hand, the 
exercises require some “ruminarion time.”

In some chapters, exercises are divided inro rwo 
categories. Practice and Problems. The Practice exer­
cises help you to get used to ideas in the text. The 
Problems apply these ideas to physical systems, 
thought experiments, and paradoxes.

wheeler’s first moral principle: Never make 
a calculation until you know the answer. Make an 
estimate before every calculation, try a simple physical 
argument (symmetry! invariance! conservation!) be­
fore every derivation, guess the answer to every para­
dox and puzzle. Courage: No one else needs to know 
what the guess is. Therefore make ir quickly, by 
instinct. A right guess reinforces this instinct. A wrong 
guess brings the refreshment of surprise. In eirher case 
life as a spacetime expert, however long, is more fun!

CHAPTE3R 1 EXERCISES

PRACTICE
1-1 comparing speeds
Compare the speeds of an automobile, a jet plane, an 
Earth satellite. Earth in its orbit around Sun, and a 
pulse of light. Do this by comparing the relative 
distance each travels in a fixed time. Arbitrarily 
choose the fixed time to give convenient distances. A 
car driving at the USA speed limit of 65 miles/hour 
(105 kilometers/hour) covers 1 meter of distance in 
about 35 milliseconds =  35 X 10“  ̂ second.

a How far does a commercial jetliner go in 35 
milliseconds? (speed: 650 miles/hour =  1046 
kilometers/hour)

b How far does an Earth satellite go in 3 5 milli­
seconds? (speed: 17,000 miles/hour ~  27,350 
kilometers/hour)

C How far does Earth travel in its orbit around 
Sun in 35 milliseconds? (speed: 30 kilometers/se- 
cond)

d How far does a light pulse go in a vacuum in 
35 milliseconds? (speed: 3 X 10® meters /second). 
This distance is roughly how many times the distance 
from Boston to San Erancisco (5000 kilometers)?

1 -2 images from Neptune
At 9:00 P.M. Pacific Daylight Time on August 24, 
1989, the planetary probe Voyager 11 passed by the 
planet Neptune. Images of the planet were coded and 
rransmitted to Earth by microwave relay.

It took 4 hours and 6 minutes for this microwave 
signal to travel from Neptune to Earth. Microwaves 
(electromagneric radiation, like light, but of fre­
quency lower than that of visible light), when propa­
gating through interplanetary space, move at the 
‘ ‘standard ’ ’ light speed of one meter of distance in one 
meter of light-travel time, or 299,792,458 meters/ 
second. In the following, neglect any relative motion 
among Earth, Neptune, and Voyager 11.

a  Calculate the distance between Earth and 
Neptune at fly-by in units of minutes, seconds, years, 
meters, and kilometers.

b Calculate the time the microwave signal takes 
to reach Earth. Use the same units as in part a.

1 -3 units of spacetime
Light moves at a speed of 3.0 X 10® meters/second. 
One mile is approximately equal to 1600 meters. 
One furlong is approximately equal to 200 meters.
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a  How many meters of time in one day? 
b How many seconds of distance in one mile? 
c How many hours of distance in one furlong? 
d How many weeks of distance in one light-year? 
e How many furlongs of time in one hour?

1 >4 time stretching and the 
spacetime interval

A rocket clock emits two flashes of light and the 
rocket observer records the time lapse (in seconds) 
between these two flashes. The laboratory observer 
records the time separation (in seconds) and space 
separation (in light-seconds) between the same pair of 
flashes. The results for both laboratory and rocket 
observers are recorded in the first line of the table.

Now a clock in a different rocket, moving at a 
different speed with respect to the laboratory, emits a 
different pair of flashes. The set of laboratory and 
rocket space and time separations are recorded on the

■<̂ [̂ [e X E R C IS E

SPACE AND TIME SEPARATIONS
Rocket 

time lapse 
(seconds)

Laboratory 
time lapse 
(seconds)

Laboratory
distance

(light-seconds)

Example 20 29 21

a > 10.72 5.95
b 20 99
c 66.8 72.9 p

d ? 8.34 6.58
e 21 22 ?

second line of the table. And so on. Complete the 
table.

1 -5 where and when?
Two firecrackers explode at the same place in the 
laboratory and are separated by a time of 3 years as 
measured on a laboratory clock.

a  What is the spatial distance between these two 
events in a rocket in which the events are separated in 
time by 5 years as measured on rocket clocks?

b What is the relative speed of the rocket and 
laboratory frames?

1 -6 mapmaking in space
The table shows distances between cities. The units 
are kilometers. Assume all cities lie on the same flat 
plane.

a Use a ruler and a compass (the kind of compass 
that makes circles) to construct a map of these cities. 
Choose a convenient scale, such as one centimeter on 
the map corresponds to ten kilometers on Earth.

Discussion: How to start? With three arbitrary 
decisions! (1) Choose any city to be at the center of the 
map. (2) Choose any second city to be “due north” 
—  that is, along any arbitrary direction you select. (3) 
Even with these choices, there are two places you can 
locate the third city; choose either of these two places 
arbitrarily.

b If you rotate the completed map in its own 
plane —  for example, turning it while keeping it flat 
on the table— does the resulting map also satisfy the 
distance entries above?

C Hold up your map between you and a light, 
with the marks on the side of the paper facing rhe

C ^ ^ ^ X E R C I S E  -----

DISTANCES BETWEEN CITIES
Distance
to city A B C D E F G H

from city
A 0 20.0 28.3 28.3 28.3 20.0 28.3 44.7
B 0 20.0 20.0 44.7 40.0 44.7 40.0
C 0 40.0 40.0 44.7 56.6 60.0
D 0 56.6 44.7 40.0 20.0
E 0 20.0 40.0 72.1

F 0 20.0 56.6

G 0 44.7
H 0
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light. Does the map you see from the back also satisfy 
the table entries?

Discussion: In this exercise you use a table con­
sisting only of distances between pairs of cities to 
construct a map of these cities from the point of view 
of a surveyor using a given direction for north. In 
Exercise 5-3 you use a table consisting only of space- 
time intervals between pairs of events to draw a 
“spacetime map” of these events from the point of 
view of one free-float observer. Exercise 1-7 previews 
this kind of spacetime map.

1 -7 spacetime map
The laboratory space and time measurements of 
events 1 through 5 are plotted in the figure. Compute 
the value of the spacetime interval 

a between event 1 and event 2. 
b between event 1 and event 3. 
c between event 1 and event 4. 
d between event 1 and event 5. 
e A rocket moves with constant velocity from 

event 1 to event 2. That is, events 1 and 2 occur at the 
same place in this rocket frame. What time lapse is 
recotded on the rocket clock between these two 
events?

t
time

(meters)

event
2

event
4

event '3

event

event
1,

0 1 2 3 4 5 6
-----space (meters) — ►

EXERCISE 1 -7. Spacetime map of some events.

PROBLEMS
1 -8 size off a computer
In one second some desktop computers can carry out 
one million instructions in sequence: One instruction 
might be, for instance, multiplying two numbers to­
gether. In technical jargon, such a computer operates 
at “one megaflop.” Assume that carrying out one

instruction requires transmission of data from the 
memory (where data is stored) to the processor (where 
the computation is carried out) and transmission of 
the result back to the memory for storage.

a  What is the maximum average distance be­
tween memory and processor in a “one-megaflop” 
computer? Is this maximum distance increased or 
decreased if the signal travels through conductors at 
one half the speed of light in a vacuum?

b Computers are now becoming available that 
operate at “one gigaflop,” that is, they carry out 10  ̂
sequential instructions per second. What is the maxi­
mum average distance between memory and proces­
sor in a “one-gigaflop” machine?

c Estimate the overall maximum size of a “one- 
teraflop” machine, that is, a computer that can carry 
out 10*  ̂sequential instructions per second.

d Discussion question: In contrast with most 
current personal computers, a “parallel processing” 
computer contains several or many processors that 
work together on a computing task. One might think 
that a machine with 10,000 processors would com­
plete a given computation task in 1/10,000 the time. 
However, many computational problems cannot be 
divided up in this way, and in any case some fraction 
of the computing capacity must be devoted to coordi­
nating the team of processors. What limits on physi­
cal size does the speed of light impose on a parallel 
processing computer?

1 -9 trips to Andromeda by 
rocket

The Andromeda galaxy is approximately two million 
light-years distant from Earth as measured in the 
Earth-linked frame. Is it possible for you to travel 
from Earth to Andromeda in your lifetime? Sneak up 
on the answer to this question by considering a series 
of trips from Earth to Andromeda, each one faster 
than the one before. For simplicity, assume the Earth- 
Andromeda distance to be exactly two million light- 
years in the Earth frame, treat Earth and Andromeda 
as points, and neglect any relative motion between 
Earth and Andromeda.

a  TRIP 1. Your one-way trip takes a time 2 .01 X 
10^ years (measured in the Earth-linked frame) to 
cover the distance of 2.00 X 10^ light-years. How 
long does the trip last as measured in your rocket 
frame?

b What is your rocket speed on Trip 1 as mea­
sured in the Earth-linked frame? Express this speed as 
a decimal fraction of the speed of light. Call this 
fraction, p =  where is speed in conven­
tional units, such as meters/second. Discussion: If 
your rocket moves at half the speed of light, it takes
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4 X 10^ years to cover the distance 2 X 10^ light- 
years. In this case

2 X 10^ light-years 
4 X 10^ years

1

Therefore . . .
c TRIP 2. Your one-way Earth-Andromeda trip 

takes 2.001 X 10® years as measured in the Earth- 
linked frame. How long does the trip last as measured 
in your rocket frame? What is your rocket speed for 
Trip 2, expressed as a decimal fraction of the speed of 
light?

d TRIP 3. Now set the rocket time for the one­
way trip to 20 years, which is all the time you want to 
spend getting to Andromeda. In this case, what is 
your speed as a decimal fraction of the speed of light? 
Discussion: Solutions to many exercises in this text 
are simplified by using the following approximation, 
which is the first two terms in the binomial expansion

(1 -b z)” ~  1 + nz l «  1

Here n can be positive or negative, a fraction or an 
integer; z can be positive or negative, as long as its 
magnitude is very much smaller than unity. This 
approximation can be used twice in the solution to 
part d.

1-10 trip to Andromeda by 
Transporter

In the Star Trek series a so-called Transporter is used 
to “beam” people and their equipment from a star- 
ship to the surface of nearby planets and back. The 
Transporter mechanism is not explained, but it ap­
pears to work only locally. (If it could transport to 
remote locations, why bother with the starship at all?) 
Assume that one thousand years from now a Trans­
porter exists that reduces people and things to data 
(elementary bits of information) and transmits the 
data by light or radio signal to remote locations. There 
a Receiver uses the data to reassemble travelers and 
their equipment out of local raw materials.

One of your descendants, named Samantha, is the 
first “transporternaut” to be beamed from Earth to 
the planet Zircon orbiting a star in the Andromeda 
Nebula, two million light-years from Earth. Neglect 
any relative motion between Earth and Zircon, and 
assume: (1) transmission produces a Samantha iden­
tical to the original in every respect (except that she is 
2 million light-years from home!), and (2) the time 
required for disassembling Samantha on Earth and 
reassembling her on Zircon is negligible as measured

in the common rest frame of Transporter and Re­
ceiver.

a  How much does Samantha age during her 
outward trip to Zircon?

b Samantha collects samples and makes obser­
vations of the Zirconian civilization for one Earth- 
year, then beams back to Earth. How much has Sa­
mantha aged during her entire trip?

C How much older is Earth and its civilization 
when Samantha returns?

d Earth has been taken over by a tyrant, who 
wishes to invade Zircon. He sends one warrior and has 
him duplicated into attack battalions at the Receiver 
end. How long will the Earth tyrant have to wait to 
discover whether his ambition has been satisfied?

e A second transporternaut is beamed to a much 
more remote galaxy that is moving away from Earth 
at 87 percent of the speed of light. This time, too, the 
traveler stays in the remote galaxy for one year as 
measured by clocks moving with the galaxy before re­
turning to Earth by Transporter. How much has the 
transporternaut aged when she arrives back at Earth? 
(Careful!)

1-11 time stretching with 
muons

At heights of 10 to 60 kilometers above Earth, cosmic 
rays continually strike nuclei of oxygen and nitrogen 
atoms and produce muons (muons: elementary parti­
cles of mass equal to 207 electron masses produced in 
some nuclear reactions). Some of the muons move 
vertically downward with a speed nearly that of light. 
Follow one of the muons on its way down. In a given 
sample of muons, half of them decay to other ele­
mentary particles in 1.5 microseconds (1.5 X 10~® 
seconds), measured with respect to a reference frame 
in which they are at rest. Half of the remainder decay 
in the next 1.5 microseconds, and so on. Analyze the 
results of this decay as observed in two different 
frames. Idealize the rather complicated acmal experi­
ment to the following roughly equivalent situation: 
All the muons are produced at the same height (60 
kilometers); all have the same speed; all travel straight 
down; none are lost to collisions with air molecules on 
the way down.

a  Approximately how long a time will it take 
these muons to reach the surface of Earth, as mea­
sured in the Earth frame?

b If the decay time were the same for Earth 
observers as for an observer traveling with the muons, 
approximately how many half-lives would have 
passed? Therefore what fraction of those created at a 
height of 60 kilometers would remain when they
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reached sea level on Earth? You may express your 
answer as a power of the fraction 1/2.

c An experiment determines that the fraction 
1 /8  of the muons reaches sea level. Call the rest frame 
of the muons the rocket frame. In this rocket frame, 
how many half-lives have passed between creation of 
a given muon and its arrival as a survivor at sea level?

d In the rocket frame, what is the space separation 
between birth of a survivor muon and its arrival at the 
surface of Earth? (Careful!)

e From the rocket space and time separations, 
find the value of the spacetime interval between the 
birth event and the arrival event for a single surviving 
muon.
Reference: Nalini Easwar and Douglas A. Macintire, American Jour­
nal of Physics, Volume 59, pages 5 8 9 -5 9 2  (July 1991).

1-12 time stretching with 
TT̂ -mesons

Laboratory experiments on particle decay are much 
more conveniently done with TT^-mesons (pi-plus 
mesons) than with //-mesons, as is seen in the table.

In a given sample of TT^-mesons half will decay to 
other elementary particles in 18 nanoseconds (18 X 
10“^ seconds) measured in a reference frame in which 
the TT^-mesons are at rest. Half of the remainder will 
decay in the next 18 nanoseconds, and so on.

a In a particle accelerator TT^-mesons are pro­
duced when a proton beam strikes an aluminum

TIME STRETCHING WITH 7T+-MES0NS
"Characteristic distance”

Time for half to (speed of light
decay (measured multiplied by

Particle in rest frame) foregoing time)

muon 1.5 X 10"^ second 450 meters
(207 times 
electron mass) 
TT̂ -meson 
(273 times 
electron mass)

18 X 10“* second 5.4 meters

target inside the accelerator. Mesons leave this target 
with nearly the speed of light. If there were no time 
stretching and if no mesons were removed from the 
resulting beam by collisions, what would be the 
greatest distance from the target at which half of 
the mesons would remain undecayed?

b The TT^-mesons of interest in a particular ex­
periment have a speed 0.9978 that of light. By what 
factor is the predicted distance from the target for 
half-decay increased by time dilation over the 
previous prediction —  that is, by what factor does this 
dilation effect allow one to increase the separation 
between the detecting equipment and target?


