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LORENTZ TRANSFORMATION

L I  LORENTZ TRANSFORMATION: 
USEFUL OR NOT?

related events or lonely events?
Events, and the intervals between events, define the layout of the physical world. No 
latticework of clocks there! Only events and the relation between event and event as 
expressed in the interval. That’s spacetime physics, lean and spare, as it offers itself to 
us to meet the needs of industry, science, and understanding.

There’s another way to express the same information and use it for the same 
purposes: Set up a free-float latticework of recording clocks, or the essential rudiments 
of such a latticework. The space and time coordinates of that Lorentz frame map each 
event as a lonesome individual, with no mention of any connection, any spacetime 
interval, to any other event.

This lattice-based method for doing spacetime physics has the advantage that it can 
be mechanized and applied to event after event, wholesale. These regimented space 
and time coordinates then acquire full usefulness only when we can translate them 
from the clock-lattice frame used by one analyst to the clock-lattice frame used by 
another.

This scheme of translation has acquired the name “Lorentz transformation.” Its 
usefulness depends on the user. Some never need it because they deal always with 
intervals. Others use it frequently because it regiments records and standardizes 
analysis. For their needs we insert this Special Topic on the Lorentz transformation. 
The reader may wish to read it now, or skip it altogether, or defer it until after Chapter 
4, 5, or 6. The later the better, in our opinion.

Events and intervals only: 
Spacetime lean and spare

O r isolated events described  
using latticework

Lorentz transformation: 
Translate event description 
from lattice to lattice

95
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L.2 FASTER THAN LIGHT?
a reason to examine the Lorentx transformation

No object travels faster than light.

So YOU say, but watch ME: I travel in a rocket that you observe to move at 4/5 light speed. Out 
the front of my rocket I fire a bullet that I observe to fly forward at 4/5 light speed. Then you 
measure this bullet to streak forward at 4 /5 '\ '4 /5  — 8/5 — 1.6 light speed, which is greater 
than the speed of light. There!

'  No!

Velocities do not odd

Events define velocities

Why not? Is it not true that 4/5 +  4/5 — 1-6?

As a mathematical abstraction: always true. As a description of the world: only 
sometimes true! Example 1: Add 4 /5  liter of alcohol to 4 /5  liter of water. The result? 
Less than 8 /5  = 1 .6  liter of liquid! Why? Molecules of water interpenetrate molecules 
of alcohol to yield a combined volume less that the sum of the separate volumes. 
Example 2: Add the speed you measure for the bullet (4/5) to the speed I measure for 
your rocket (4/5). The result? The speed I measure for the bullet is 40/41 =  0.9756. 
This remains less than the speed of light.

Why? And where did you get that number 40/4l for the bullet speed you measure?

I got the number from the Lorentz transformation, the subject of this Special Topic. 
The Lorentz transformation embodies a central feature of relativity: Space and time 
separations typically do not have the same values as observed in different frames.

Space an d  time separations between w hat?

Between events.

W hat events are we talking about here?

Event 1: You fire the bullet out the front of your rocket. Event 2: The bullet strikes a 
target ahead of you.

W hat do these events have to do with speed? We are arguing about speed!

Let the bullet hit the target four meters in front of you, as measured in your rocket. 
Then the space separation between event 1 and event 2 is 4 meters. Suppose the time 
of flight is 5 meters as measured by your clocks, the time separation between the two 
events. Then your bullet speed measurement is (4 meters of distance)/! 5 meters of 
time) =  4 /5 , as you said.

And w hat do YOU measure for the space and time separations in your laboratory fram e?

For that we need the Lorentz coord inate  transform ation  equations.
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Phooey! I know how to reckon spacetime separations in different frames. We have been doing it  for 

several chapters! From measurements in one fram e we figure the spacetime interval, which has the 
same value in a ll  frames. End of story.

No, not the end of the story, but at least its beginning. True, the invariant interval has 
the same value as derived from measurements in every frame. That allows you to 
predict the time between firing and impact as measured by the passenger riding on the 
bullet — and measured directly by the bullet passenger alone.

Interval: Only a start in 
reckoning spacetime separations 
in different frames

Predict how?

You know your space separation x ' =  4 meters (primes for rocket measurements), and 
your time separation, t ' =  'b meters. You know the space separation for the bullet 
rider, x"  =  0 (double primes for bullet measurements), since she is present at both the 
firing and the impact. From this you can use invariance of rhe interval to determine the 
wristwatch time between these events for the bullet rider:

i t ' y  -  { x " f  =  {t'Y  -  {x'Y

or

(/")^ — (0)^ =  (5 meters)^ — (4 merers)^ — (3 meters)^

so that t” =  3 meters. This is the proper time, agreed on by all observers but measured 
directly only on the wristwatch of the bullet rider.

Fine. C an’t we use the same procedure to determine the space an d  time separations between these 
events in your laboratory frame, an d  thus the bullet speed fo r you?

Unfortunately not. We do reckon the same value for the interval. Use unprimed 
symbols for laboratory measurements. Then f- — xd =  {?) meters)^. That, however, is 
not sufficient to determine x  or t separately. Therefore we cannot yet find their ratio 
x /t,  which determines the bullet’s speed in our frame.

Need more to compare velocities 
in different frames

So how can we reckon these x an d  t  separations in your laboratory frame, thereby allowing us to 
predict the bullet speed you measure?

Use rhe Lorentz transformation. This transformation reports that our laboratory space 
separation between firing and impact is x =  40 /3  meters and the time separation is 
slightly greater: t =  41 /3  meters. Then bullet speed in my laboratory frame is 
predicted to be f  =  x j t  — 40/41 =  0.9756. The results of our analysis in three 
reference frames are laid out in Table L-1.

Compare velocities using 
Lorentz transformation

Is the Lorentz transformation generally useful, beyond the specific task of reckoning speeds as 
measured in different frames?

Oh yes! Generally, we insert into the Lorentz transformation the coordinates x ', t ' of an 
event determined in the rocket frame. The Lorentz transformation then grinds and 
whirs, finally spitting out the coordinates x, t of the same event measured in the 
laboratory frame. Following are the Lorentz transformation equations. Here is the 
relative velocity between rocket and laboratory frames. For our convenience we lay rhe 
posirive x-axis along the direction of motion of the rocket as observed in the laboratory 
frame and choose a common reference event for the zero of time and space for both 
frames.
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------Cj A B L E  L - T ^ ------

HOW FAST THE BULLET?
Bullet fired
(coordinates 

of this event)

Bullet hits
(coordinates 

of this event)

Speed of bullet
(computed from 

frame coordinates)

Rocket frame x' =  0 x' =  4 meters as measured
(moves at =  4/5 
as measured in laboratory)

l' =  0 t' =  5 meters in rocket frame: 
v' =  4/5 =  0.8

Bullet frame x" =  0 x" =  0 as measured
(moves at v' =  4/5 t"  =  0 t"  =  3 meters in bullet frame:
as measured in rocket) (from invariance 

of the interval)
r" =  0

Laboratory frame x =  0 X =  40/3 meters as measured
r =  0 t =  41/3 meters 

(from Lorentz 
transformation)

in laboratory frame:
1- =  40/41 =  0.9756

Lorentz transformation previewed

k' rel ‘
(1

x ' +  t'

(1
and

Check for yourself that for the impact event of bullet with target (rocket coordi­
nates: x ' =  A meters, / ' =  5 meters; rocket speed in laboratory frame: =  4 /5 ) one
obtains laboratory coordinates x  =  40 /3  meters and t =  41 /3  meters. Hence v =  x f t  
== 40/41 =  0.9756.

You say the Lorentz transformation is general. I f  it is so important, then why is this a  special topic 
rather than a  regular chapter?

Lorentz transformation: Useful 
but not fundamental

The Lorentz transformation is powerful; it brings the technical ability to transform 
coordinates from frame to frame. It helps us predict how to add velocities, as outlined 
here. It describes the Doppler shift for light (see the exercises for this chapter). On the 
other hand, the Lorentz transformation is not fundamental; it does not expose deep 
new features of spacetime. But no matter! Physics has to get on with the world’s work. 
One uses the method of describing separation best suited to the job at hand. On some 
occasions the useful fact to give about a luxury yacht is the 50-meter distance between 
bow and stern, a distance independent of the direction in which the yacht is headed. 
On another occasion it may be much more important to know that the bow is 30 
meters east of the stern and 40 meters north of it as observed by its captain, who uses 
North-Star north.

Two foundations of 
Lorentz transformation

W hat does the Lorentz transformation rest on? On w hat foundations is it  based?

On two foundations: (1) The equations must be linear. That is, space and time 
coordinates enter the equations to the first power, not squared or cubed. This results 
from the requirement that you may choose any event as the zero of space and time.
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(2) The spacetime interval between two events must have the same value when 
computed from laboratory coordinate separations as when reckoned from rocket 
coordinate separations.

All right, I 'll reserve judgment on the validity of what you claim, hut show me the derivation itself. 

Read on!

L.3 FIRST STEPS
invariance off the interval gets us started

Recall that the coordinates y  and z transverse to the direction of relative motion 
between rocket and laboratory have the same values in both frames (Section 3.6):

y - y
z =  z' (L-1)

where primes denote rocket coordinates. A second step makes use of the difference in 
observed clock rates when the clock is at rest or in motion (Section 1.3 and Box 3-3). 
Think of a sparkplug at rest at the origin of a rocket frame that moves with speed 
relative to the laboratory. The sparkplug emits a spark at time t' as measured in the 
rocket frame. The sparkplug is at the rocket origin, so the spark occurs at x ' =  0.

Where and when (x and t) does this spark occur in the laboratory? That depends on 
how fast, v^i, the rocket moves with respect to the laboratory. The spark must occur at 
the location of the sparkplug, whose position in the laboratory frame is given by

X =  V^it

Now the invariance of the interval gives us a relation between t and t',

{t'r -  ( x y  =  { t y  -  {oy = = f - x ^  =  f -  { v j f  =  t w -  vij>

Derive difference in clock rates

from which

t' =  t { \ -  ri,)V2

or

[when x' = 0] (L-2)

The awkward expression 1/(1 — occurs often in what follows. For simplic­
ity, this expression is given the symbol Greek lower-case gamma: /.

7 =
1

(1 -

Because it gives the ratio of observed clock rates, y is sometimes called the tim e 
stre tch  factor (Section 5.8). Strictly speaking, we should use the symbol /„i, since 
the value of y is determined by For simplicity, however, we omit the subscript in 
the hope that this will cause no confusion. With this substitution, equation (L-2) 
becomes

y f [when x' = 0] (L-3)

Time stretch factor defined
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Substitute this into the equation x = v ^ ^ t  above to find laboratory position in terms of 
rocket measurements:

[when x' = 0] (L-4)

Equations (L-1), (L-3), and (L-4) give the first answer to the question, “If we know 
the space and time coordinates of an event in one free-float frame, what are its space 
and time coordinates in some other overlapping free-float frame?” These equations are 
limited, however, since they apply only to a particular situation: one in which both 
events occur at the same place {x' =  0) in the rocket,

L 4  FORM OF THE LORENTZ 
TRANSFORMATION

any event can be reference event? then 
transformation is linear

Lorentz transformation: 
Linear equations

Arbitrary event as reference event? 
Then Lorentz transformation 

must be linear.

What general form does the Lorentz transformation have? It has the form that 
mathematicians call a linear transform ation . This means that laboratory coordi­
nates X and t are related to linear (first) power of rocket coordinates x '  and t '  by 
equations of the form

/ =  fix' -f D t'
X =  Gx' +  Ht' (L-5)

where our task is to find expressions for the coefficients B, D, G, and H  that do not 
depend on either the laboratory or the rocket coordinates of a particular event, though 
they do depend on the relative speed

Why must these transfotmations be linear? Because we are free to choose any event 
as our reference event, the common origin x =  y =  z =  / =  0 in all reference frames. Let 
our rocket sparkplug emit the flashes at =  1 and 2 and 3 meters. These are equally 
spaced in rocket time. According to equation (L-3) these three events occur at 
laboratory times t =  ly  and 2y and 37 meters of time. These are equally spaced in 
laboratory time. Moving the reference event to the first of these events still leaves them 
equally spaced in time for both observers: t ' =  0 and 1 and 2 meters in the rocket and t 
=  0 and ly  and 2y in the laboratory.

In contrast, suppose that equation (L-3) were not linear, reading instead t =  Kt'^, 
where K is some constant. Rocket times t ' = \  and 2 and 3 meters result in laboratory 
times t =  IK  and 4K  and 9K  meters. These are not equally spaced in time for the 
laboratory observer. Moving the reference event to the fitst event would result in 
rocket times t' =  0 and 1 and 2 meters as before, but in this case laboratoty times t =  0 
and 1K and 4K  metets, with a completely different spacing. But the choice of reference 
event is arbitrary: Any event is as qualified to be reference event as any other. A clock 
that runs steadily as observed in one frame must run steadily in the other, independent 
of the choice of reference event. We conclude that the relation between t and t ' must be 
a linear one. A similar argument requires that events equally separated in space in the 
rocket must also be equally separated in space as measured in the laboratory. Hence 
the Lorentz transformation must be linear in both space and time coordinates.
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L5  COMPLETING THE DERIVATION
invariance off the interval completes the story

Equations (L-3) and (L-4) provide coefficients D  and H  called for in equation (L-5):

t — Bx' +  yt'
X =  Gx' +  v^yyt' (L-6)

About the two constants B and G we know nothing, for an elementary reason. All 
events so far considered occured at point x' =  0 'm the rocket. Therefore the two 
coefficients B and G could have any finite values whatever without affecting the 
numerical results of the calculation. To determine B and G we turn our attention from 
an x ' =  0 event to a more general event, one that occurs at a point with arbitrary rocket 
coordinates x ' and t ' . Then we demand that the spacetime interval have the same 
numerical value in laboratory and rocket frames for any event whatever;

Demanding invariance of 
interval . . .

Substitute expressions for t and x from equation (L-6):

(fix' +  y t'Y  -{ G x ' +  p^^yt'y =  r'2 -  x'^

On the left side, multiply out the squares. This leads to the rather cumbersome result

B2 -b 2Byx't' +  yV ^  -  G^x'^ -  2Gv^{yx't' -  vlyyh'^ =

Group together coefficients of coefficients of x'^, and coefficients of the cross-term 
x 't ' to obtain

y \ \  -  +  2y{B -  v jG )  x 't ' -  {G^ -  B?)x'^ =  t'^ -  x'^ a-7)

Now, t ' and x ' can each take on any value whatsoever, since they tepresent the 
coordinates of an arbitrary event. Under these circumstances, it is impossible to satisfy 
equation (L-7) with a single choice of values of B and Gunless they are chosen in a very 
special way. The quantities B and G must first be such as to make the coefficient of x 't ' 
on the left side of equation (L-7) vanish as it does on the tight:

2y{B -  VJG) =  0

But 7 can never equal zero. The value of 7 =  1 /(1  ~  ^) *̂  ̂equals unity when =  0 
and is greatet than this fot any othet values of Hence the left side of this equation 
can be zero only if

(B -  =  0 or B — v„,G (L-8)

Second, B and G must be such as to make the coefficient of x equal on the left and 
right of equation (L-7); hence

-  B2 =  1

Substitute B from equation (L-8) into equation (L-9):

G^ -  {v^ fiY  = 1  ot G K \ - v l ^ ) = \

(L-9)

. . . between any pair of events 
whatsoever . . .

. . . leads to completed form of 
Lorentz transformation.



The Lorentz transformation

Divide through by (1 — and take the square root of both sides:

1

But the right side is just the definition of the time stretch factor y, so that

G = y

Substitute this into equation (L-8) to find B:

B =  v^y

1 0 2  SPECIAL TOPIC LORENTZ TRANSFORMATION

These results plus equations (L-1) and (L-6) yield the Lorentz transformation equa­
tions:

t =  +  yt'
x =  yx' +  v„iyt' (L-lOa)
y = : /
ẑ — z

or, substituting for the value of gamma, y =  1/(1 —

x' +  Vg,/
(L-1 Ob)

y - y and z — z

In summary, the Lorentz transformation equations rest fundamentally on the re­
quired linearity of the transformation and on the invariance of the spacetime interval. 
Invariance of the interval was used twice in the derivation. First, we examined a pair 
of events both of which occur at the same fixed location in the rocket, so that rocket 
time between these events— proper time, wristwatch time— equals the space-time 
interval between them (Section L.3). Second, we demanded that the interval also be 
invariant between every possible event and the reference event (the present section).

L.6 INVERSE LORENTZ 
TRANSFORMATION

from laboratory event coordinates, reckon 
rocket coordinates

Equations (L-10) provide laboratory coordinates of an event when one knows the 
rocket coordinates of the same event. But suppose that one already knows the 
laboratory coordinates of the event and wishes to predict the coordinates of the event 
measured by the rocket observer. What equations should be used for this purpose?

An algebraic manipulation of equations (L-10) provides the answer. The first two 
of these equations can be thought of as two equations in the two unknowns x ' and t ' . 
Solve for these unknowns in terms of the now-knowns x  and t. To do this, multiply 
both sides of the second equation by and subtract corresponding sides of the
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resulting second equation from the first. Terms in x  cancel to yield

y ■ t'
t =  yt' -  vuyt' =  n i  -K O f =  32  vf'  =  yd =  —  t' =  -

y2 y

Here we have useci the definition — 1/(1 — The equation for t' can then be 
written

t' =  - ^ r ^ y x  +  yt

A similar procedure leads to the equation for x ' . Multiply the first of equations (L-10) 
by i'rel and subtract corresponding sides of the first equation from the second —  try it! 
The y and z components are respectively equal in both frames, as before. Then the 
inverse Lorentz transfo rm ation  equations become

t '=  -v ,,^ y x -V y t  
/  - y x -  v^^yt 
y = yr _
Z —  Z

Or, substituting again for gamma, y =  1/(1 —

(L-lla )

(1
X • ^el t

(L-llb )

and

Long derivation of inverse 
Lorentz transformation

Inverse Lorentz transformation

Equations (L-11) transform coordinates of an event known in the laboratory frame to 
coordinates in the rocket frame.

A simple but powerful argument from symmetry leads to the same result. The symmetry 
argument is based on the relative velocity between laboratory and rocket frames. With 
respect to the laboratory, the rocket by convention moves with known speed in the 
positive x-direction. With respect to the rocket, the laboratory moves with the same speed 
but in the opposite direction, the negative x-direction. This convention about positive and 
negative directions —  not a law of physics! —  is the only difference between laboratory 
and rocket frames that can be observed from either frame. Lorentz transformation 
equations must reflect this single difference. In consequence, the “inverse” (laboratory- 
to-rocket) transformation can be obtained from the “direct” (rocket-to-laboratory) 
transformation by changing the sign of relative velocity, v ^ , in the equations and 
interchanging laboratory and rocket labels (primed and unprimed coordinates). Carrying 
out this operation on the Lorentz transformation equations (L-10) yields the inverse 
transformation equations (L-11).

Short derivation of inverse 
Lorentz transformation

L.7 ADDITION OF VELOCITIES
add light velocity to light velocity: get light 
velocity!

The Lorentz transformation permits us to answer decisively the apparent contradiction 
to special relativity outlined in Section L.2, namely the apparent addition of velocities 
to yield a resultant velocity greater than that of light.
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Return to velocity addition 
paradox

I travel in a rocket that you observe to move at 4 (5 light speed. Out the front of my rocket I fire a 
bullet that I observe to fly forward at 4fb light speed. Then you measure this bullet to streak 
forward at4l3'k-4l5 = 8j5 = 1.6 light speed, which is greater than the speed of light. There!

SAMP L E PRO B L E M L - 1
TRA N S FO RM IN G  OVER AND BACK
A rocket moves with speed =  0.866 (so y =  2) 10 meters, y = 1  meters, z =  i  meters, and t' =
along the x-direction in the laboratory. In the 20 meters of light-travel time with respect to the
rocket frame an event occurs at coordinates x' =  reference event.

a. What are the coordinates of the event as observed in the laboratory?

b. Transform the laboratory coordinates back to the rocket frame to verify that the 
resulting coordinates are those given above.

SOLUTION
a. We already know from Section 3.6 — as well as from the Lorentz transformation, 

equation (L-10) — that coordinates transverse to direction of relative motion are 
equal in laboratory and in rocket. Therefore we know immediately that

y — y ' — 1 meters 
z — z' — i  meters

The X  and t  coordinates of the event as observed in the laboratory make use of the 
first two equations (L-10):

t  =  v^^ifx' +  yt' =  (0 .866)(2)(10 meters) +  (2)(20 meters)
=  17.32 +  40 =  57.32 merers

and

X — yx' -h v^^fyt' =  2(10 meters) +  (0.866)(2)(20 meters)
=  20 +  34.64 =  54.64 merers

So rhe coordinates of the event in the laboratory are t =  57.32 meters, x  =  54.64 
meters, y =  l  meters, and z =  3 meters.

b. Use equarion (L-11) ro rransform back from laboratory to rocket coordinates.

t ' =  ~ v^{yx +  yt =  — (0.866)(2)(54.64 meters) +  (2)(57.32 meters)
=  —94.64 -b 114.64 =  20.00 meters

and

X = y x — v ^ y t  =  2(54.64 merers) — (0.866)(2)(57.32 meters) 
=  109.28 -  99.28 =  10.00 meters

as given in rhe original statement of the problem.



To analyze this experiment, convert statements about the bullet to statements about 
events, since event coordinates are what the Lorentz transformation transforms. Event 
1 is the firing of the gun, event 2 the arrival of the bullet at the target. The Lorentz 
transformation equations can give locations x,, and X2, ?2 of these events in the 
laboratory frame from their known locations x \ ,  t \  and x  2 , t '2 in the rocket frame. In 
particular:

X2 =  yx2 +  v^C/t' 2 

Xi =  y x / +

Subtract corresponding sides of these two equations:

(X2 — xi) =  y (x 2 — x 'l) +  v,^{y{t'2 — z'l)

We are inrerested in the differences between the coordinates of the two emissions.
Indicate these differences with the Greek uppercase delta. A, for example Ax. Then 
this x-equation and the corresponding /-equation become
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A x  =  y A x ' +  /^ „ iy A /  
A /  =  t^reiyAx' +  y A / (L-12)

Incremental event separations 
define velocities

The subscript “tel” distinguishes relative speed between laboratory and rocket frames 
from other speeds, such as particle speeds in one frame or the other.

Bullet speed in any frame is simply space sepatation between two events on its 
trajectory measured in that frame divided by time between them, observed in the same 
frame. In the special case chosen, only the x-coordinate needs to be considered, since 
the bullet moves along the direction of relative motion. Divide the two sides of the first 
equation (L-12) by the corresponding sides of the second equation to obtain labora­
tory speed:

A x  yA x^ +  v̂ {yiS.t'
A /  t „ ,y A x '  +  y A /

Then the time stretch factor y cancels from the numerator and denominator on the 
right. Divide every term in numerator and denominator on the right by A/'.

Ax _  (A x '/A /)  +
A t v^^fA x '/A t') +  1

Now, A x '/ A t ' is just distance covered per unit time by the patticle as observed in 
the rocket, its speed —  call it v , with a prime. And A x /A t  is particle speed in the 
laboratory —  call it simply v. Then (reversing order of terms in the denominatot to 
give the result its usual form) the equation becomes

v' +  v„
1 + V v„

(1-13) Law of Addition of Velocities

This is called the Law o f  A d d itio n  o f  V elocities in one dimension. A better name is 
the Law o f  C o m bination  o f  V elocities, since velocities do not “add” in the usual 
sense. Using the Law of Combination of Velocities, we can predia bullet speed in the 
laboratory. The bullet travels at v' — 4 /5  with respect to the rocket and the rocket 
moves at v^  ̂=  4 /5  with tespect to the laboratory. Therefore, speed v of the bullet

(continued on page 1 10)
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S A MP L E  P R O B L E M  L-2
“ ET TU, S P A C E T I M E I”
Julius Caesar was murdered on March 15 in the 
year 44 B.c. at the age of 55 approximately 2000 
years ago. Is there some way we can use the laws of 
relativity to save his life?

Let Caesar’s death be the reference event, la­
beled 0: =  0, C ~  0. Event A is you reading this
exercise. In the Earth frame the coordinates of 
event A  are x^ =  0 light-years, =  2000 years. 
Simultaneous with event A  in your frame, Starship 
Enterprise cruising the Andromeda galaxy sets off

a firecracker: event B. The Enterprise moves along 
a straight line in space that connects it with Earth. 
Andtomeda is 2 million light-years distant in our 
frame. Compared with this distance, you can ne­
glect the orbit of Earth around Sun. Therefore, in 
our frame, event B has the coordinates Xg =  2 X 
10^ light-years, tg — 2000 years. Take Caesar’s 
murder to be the reference event for the Enterprise 
too (x / =  0 , r /  =  0).

a. How fast must the Enterprise be going in the Earth frame in order that Caesar’s 
murder is happening N OW  (that is, =  0) in the Enterprise rest frame? Under 
these circumstances is the Enterprise moving toward or away from Earth?

b. If you are acquainted with the spacetime diagram (Chapter 5), draw a spacetime 
diagram for the Earth frame that displays event 0  (Caesar’s death), event A  (you 
reading this exercise), event B (firectacker exploding in Andromeda), your line of 
NOW  simultaneity, the position of the Enterprise, the worldline of the Enter­
prise, and the Enterprise NOW  line of simultaneity. The spacetime diagtam need 
not be drawn to scale.

c. In the Enterprise frame, what are the x and / coordinates of the firecracker 
explosion?

d. Can the Enterprise firecracker explosion warn Caesar, thus changing the course of 
Earth history? Justify your answer.

SOLUTION
a. From the statement of the problem.

Xo — x /  — 0 
L =  l /  =  0

=  0
2000 years

Xg — 2 X 10  ̂ light-years 
/g =  2000 years

We want the speed of the Entetprise such that tg' — 0. The first two Lorentz 
transformation equations (L-10) with tg' =  0 become

'̂rel y^B 
X g y X g

We do not yet know the value of X g '.  Solve for by dividing the two sides of the
first equation by the respective sides of the second equation. The unknown Xg' 
drops out (along with y), and we are left with in terms of the known quantities 
tg and x„:

'B _ 2 X 10  ̂ years
— ---- ^ -----=  10-3 =  0.001
2 X  1 0^ vpar<:Xg 2 X  10  ̂years

This is the desired speed p^̂  between Earth and Enterprise frames. This velocity is 
a positive quantity, so the Enterprise moves in the positive x-direction, namely 
away from Earth.
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Surprised to see a speed given as the ratio of a time separation to a space 
separation: Then realize that x^ and /g are not displacements of any
particle. Nothing can travel the distance Xg in the time /g, as discussed in d. The 
goal here is to find a frame in which Caesar’s death and the firecracker explosion 
are simultaneous. For this limited purpose the rocket speed =  /g/xg is correct.

Why is the relative velocity so small compared with the speed of light? 
Because of the large denominator Xg in the equation that leads to this value. 
Consider the string of Earth clocks stretching toward Andromeda when all Earth 
clocks read zero time (Caesar’s death). Enterptise clocks read (from equations 
L-11 with / =  0) as follows: / ' =  — fx . This is an example of the relativity of 
simultaneity (Section 3-4). The farther the x-distance from Earth, the earlier will 
Enterprise clock read. With x =  2 million light-years, the relative speed does 
not have to be large to carry Enterprise time back 2000 years for Earth.

b.

Earth spacetime diagram, showing events 0, A, and B. Not to scale.

c. We need the value of gamma, y, for the inverse Lorentz transformation equation 
(L-11). This value is very close to unity, and from it come tg and Xg'.

y =  .
1 1 1

1 +
10-

[1  -  i i  -  (10-3)231/2  Q  _  1 0 -6 ]l/ 2

tg =  - V , , J X g  -b ytg =  }»(- 10“ 3 X 2 X 10  ̂ -f 2 X 103)
=  y( - 2  X 103 4- 2 X 103) =  0 years 

Xb =  yxB -  v â JIb =  7(2 X 10  ̂ -  10-3 X 2 X 103) =  2y(l -  10-«) 10«
10-6 10-

=  2^1 “  10-6)106 =  2^

«= 1.999999 X 106 light-years.

1 106

We chose the relative velocity so that the time of the firecracker explosion as 
observed in the rocket is the same as the time of Caesar’s death, namely tg' =  0. 
The x-coordinate of this explosion is not much different in the two frames because 
their relative velocity is so small.

d. There exists a frame — the rest frame of the Enterprise —  in which Caesar’s death 
and the firecracker explosion occur at the same time. In this frame a signal 
connecting the two events would have to travel at infinite speed. But this is 
impossible. Therefore the Enterprise cannot warn Caesar; his death is final. Sorry. 
(Note: In the language of Chapter 6 , the relation between the two events is 
spacelike, and spacelike events cannot have a cause-effect relationship.)
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WHY NO THING TRAVELS FASTER THAN LIGHT
A material object traveling faster than light? No! If one 
did, we could violate the normal order of cause and 
effect in a million testable ways, totally contrary to all 
experience. Here we investigate one example, making 
use of Lorentz transformation equations.

The Peace Treaty of Shalimar was signed four years 
before the Great Betrayal. So pivotal an event was the 
Great Betrayal that it was taken as zero of space and 
time.

By the Treaty of Shalimar, the murderous Klingons 
agreed to stop attacking Federation outposts in return 
for access to the Federation Technical Database. Fed­
eration negotiators left immediately after signing the 
Shalimar Treaty in a ship moving at 0.6 light speed.

Within four years the Klingons used the Federation 
Technical Database to develop a faster-than-light pro­
jectile, the slaughtering Super. On that dark day of 
Great Betrayal (reference event 0), the Klingons 
launched the Super at three times light speed toward 
the retreating Federation ship.

Two Federation space colonies lay between the Klin­
gons and the point of impact of the Super with the Fed­
eration ship. A lonely lookout at the first colony wit­
nessed with awe the blinding passage of the Super 
(event 1). Later many citizens of the second colony 
gaped as the Super demolished one of their communi­
cation structures (event 2) and zoomed on. Both colo­
nies desperately sent warnings toward the Federation 
ship, but to no avail since the Super autran the radio 
signals.

Klittgon (**iaboratory”) spacetime diagram . The Kltngon worldline is 
the vertical time axis. The Treaty of Shalimar is followed four years later by 
the Great Betrayal {event 0) at which Klingons launch the Super, which moves 
at three times light speed. Traveling from left to right, the Super passes one 
Federation colony {event 1) and then another {event 2). Finally the Super 
destroys the retreating ship of Federation negotiators {event

Finally, at event 3, the Super overtook and destroyed 
the Federation ship. All Federation negotiators were 
lost in a terrible flash of light and scattering of debris. A 
long dark period of renewed warfare began.

But wait! Look again at events of the Great Betrayal, this 
time from the point of view of the Federation rocket 
ship. Where and when does the Great Betrayal occur in 
this frame? The Great Betrayal is the “ hinge of history,” 
the reference event, the zero of space and time coordi­
nates for all laboratory and rocket frames.

Where and when does the Super explode (event 3) in 
this rocket frame? In the Klingon “ laboratory” frame, 
event 3 has coordinates X3  = 3 light-years and =  1 
y e a r . U se the inverse  Lorentz transform ation  eq u atio n s  
to find the location of event 3 in the rocket frame of the 
Federation negotiators. Calculate the time stretch fac­
tor y using speed of the Federation rocket, v,ei = 0.6, 
with respect to the Klingon frame:

1 1 1
^ [, _ ( o .6 )2]>/2 [ i - o .36]' '2

1
[0.64]’'2 0.8= 1.25
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^*Rocket” sp a c e tim e  d ia g r a m  o f  d e p a r t in g  F e d e r a t io n  n e g o tia to rs . In
this frame their destruction comes first {event 3), followed by the passage of the 
Super from right to left past Federation colonies in reverse order (event 2  
followed by event 1). Finally, the Super enters the Klingon launcher without 
doing further damage {event 0). The Great Betrayal has become the Great 
Confusion of Cause and Effect.

Substitute these values into equations (L-1 1) to reckon 
the rocket coordinates of event 3:

f' 3  =  -V re iy xa  +  yf3
=  —(0.6H1.25)(3 years) + (1.25)(1 year)
= —2.25 years + 1.25 years = — 1 year 

x'3 =  7x3 — v„|yt3
= (1.25)(3 years) — (0.6)(1.25)(1 year)
= 3.75 years — 0.75 year = 3 years

Event 3 is plotted in the rocket diagram and the world­
line of the Super drawn by connecting event 3 with the 
launching of the Super at event 0. Notice that this 
worldline slopes downward to the right. More about 
the significance of this in a minute.

In a similar manner find the rocket coordinates of the

treaty signing at Shalimar (subscript Sh), which has lab­
oratory coordinates Xĵ  = 0  and tsh ~ years:

f’sh ~  ~  ''reiyxjh -h yfsh
= -(0.6)(1.25)(0 years) -h (1.25)(-4  years)
= — 5 years 

x'sh =  yxsh -  Vreiyfsh
=  (1.25)(0 years) -  (0.6)(1.25)(-4 years)
= -f3 years

In the Federation (rocket) spacetime diagram, the 
worldline of Federation negotiators extends from 
treaty signing at Shalimar vertically to explosion of the 
Super (event 3). The worldline of the Klingons extends 
from Shalimar diagonally through the launch of the 
Super at event 0.

In the Federation spacetime diagram, the worldline for 
the Super tilts downward to the right. In this frame 
deaths of Federation negotiators (event 3) occur at a 
time f' 3  = minus 1 y e a r ,  that is, b e f o r e  the treacherous 
Klingons launch the Super at the event of Great Be­
trayal (reference event 0). From the diagram one would 
say that the Super moves with three times light speed 
from  Federation ship t o w a rd  the Klingons. This seems to 
be verified by the fact that in this frame the Super 
passes Federation colonies in reverse order, event 2 
followed by event 1 , going in the opposite direction. 
Yet Federation negotiators have created no such terri­
ble weapon and in fact are destroyed by it at the mo­
ment they are supposed to launch it, as proved by the 
flying photons and debris. More: Klingons suffer no 
damage from the mighty impact of the slaughtering 
Super (event 0). Rather, in this frame it enters their 
launching cannon mild as a lamb.

What have we here? A confusion of cause and effect, a 
confusion that cannot be straightened out as long as we 
assume that the Super —  or any other material object 
—  travels faster than light in a vacuum.

Why does no signal and no object travel faster than 
light in a vacuum? Because if either signal or object did 
so, the entire network of cause and effect would be 
destroyed, and science as we know it would not be 
possible.
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relative to the laboratory comes from the expression

Velocity addition paradox  
resolved

4 /5  +  4 /5 8/5 8/5 40
1 +  (4/5X 4/5) 1 +  16/25 41/25 41

Thus the bullet moves in the laboratory at a speed less than light speed.
As a limiting case, suppose that the “bullet” shot out from the front of the rocket is, 

in fact, a pulse of light. Guess: What is the speed of this light pulse in the laboratory? 
Here is the calculated answer. Light moves with respect to the rocket at speed f ' = l  
while the rocket continues along at a speed =  4 /5  with respect to the laboratory. 
The light then moves with respect to the laboratory at speed p:

Light speed is invariant, 
as expected.

1 +  4 /5  _  9 /5  _
l + ( l ) ( 4 / 5 )  9 /5  ~

So light moves with the same speed in both frames, as required by the Principle of 
Relativity. Question: Is this true also when a light pulse is shot out of the rear of the 
rocket?

S A M P L E  P R O B L E M  L-3
THE FIRING MESON
A K° (pronounced “K-naught”) meson at rest in a 
rocket frame decays into 7T'*' (“pi plus”) meson 
and a 7l~ (“pi minus”) meson, each having a 
speed of =  0.85 with respect to the rocket. Now 
consider this decay as observed in a laboratory with

SOLUTION

respect to which the K° meson travels at a speed of 
t'rei ~  0.9. What is the greatest speed that one of 
the n  mesons can have with respect to the labora­
tory? What is the least speed?

Let the speeding fC°-meson move in the positive x-direction in the laboratory. In the 
rocket frame, daughter TT-mesons come off in opposite directions. Their common line of 
motion can, however, be oriented arbitrarily in this frame. The maximum speed of a 
daughter TT-meson in the laboratory results when it is emitted in the forward x-direction. 
For such a meson, the law of addition of velocities gives

V + 0.85 +  0.9 1.75
1 +  (0.85)(0.9) 1.765

=  0.9915

Thus adding a speed of 0.85 to a speed of 0.9 does not yield a resulting speed greater than 
1, light speed.

The slowest laboratory speed for a daughter meson occurs when it is emitted in the 
negative x-direction in the rocket frame. In this case the velocity of the daughter meson is 
negative and the law of addition of velocities becomes a law of subtraction of velocities:

V +  V,
^min , /

\ —  V v„

rel -0.85 +  0.9 0.05
1 -  (0.85K0.9) 0.235

0.2128

Although the minimum-speed meson moves to the left in the rocket, it moves to the right 
in the laboratory because of the very great speed of the original fC°-meson in the 
laboratory.
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L.8 SUMMARY
Lorentz transformation deals with coordinates, 
not invariant quantities

Given the space and time coordinates of an event with respect to the reference event in 
one free-float frame, the Lorentz coord inate  transfo rm ation  equations tell us 
the coordinates of the same event in an overlapping free-float frame in relative motion 
with respect to the first. The equations that transform rocket coordinates (primed 
coordinates) to laboratory coordinates (unprimed coordinates) have the form

v„,x■' +  /

(1 ) l / 2

(1 V ) l / 2
rel

and

(L-lOb)

where stands for relative speed of the two frames (rocket moving in the positive 
x-direction in the laboratory). The inverse Lorentz transfo rm ation  equations 
transform laboratory coordinates to rocket coordinates:

/' =

(1
■ y and

(L-11b)

in which is treated as a positive quantity. In both these sets of equations, coordi­
nates of events are measured with respect to a reference event. It is really only the 
difference in coordinates between events that matter, for example %2 ~  =  Ax for any
two events I and 2, not the coordinates themselves. This is important in deriving the 
Law of Addition of Velocities.

The Law o f A ddition o f Velocities or Law o f C om bination o f V elocities in
one dimension follows from the Lorentz transformation equations. This law tells us the 
velocity of a particle in the laboratory frame if we know its velocity v' with respect to 
the tocket and relative speed between rocket and laboratory.

1 +  v t (L-13)

REFERENCE
Sample Problem L-3, The Firing Meson, was adapted from A. P. French, Special 
Relativity (W.W. Norton, New York, 1968), page 159.
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SPECIAL TOPIC EXERCISES

PRACTICE
L-1 a super-speed super?
Take two more steps in the parable of the Great 
Betrayal (Box L-1).

a Find the speed of a new rocket frame moving 
relative to the Klingon frame such that the Super 
travels at 6 times the speed of light in this new frame. 
Hint: Examine the coordinates x '  and t '  of event 3 in 
the new frame. The ratio of these two, x ' / t ' , is the 
speed of the Super in this frame. We know the coor­
dinates of event 3 in the Klingon frame. There­
fore . . .

b Find the speed of yet another rocket frame, 
relative to the Klingon frame, such that the Super 
travels with infinite speed in this frame. Hint: What 
does infinite speed imply about the time t '  between 
events 0 and 3 in this new frame?

L-2 a bad clock
Note: This exercise uses spacetime diagrams, intro­
duced in Chapter 5.

A pulse of light is reflected back and forth between 
mirrors A  and B separated by 2 meters of distance in 
the ^-direction in the Earth frame, as shown in the 
figure (left). A swindler tells us that this device con­
stitutes a clock that “ticks” every time the pulse 
arrives at either mirror.

The swindler claims that events 1 through 6 are 
sequential “ticks” of this clock (center). However, we 
notice that the ticking of the clock is uneven in a 
rocket frame moving with speed in the Earth 
frame (right). For example, there is less time between 
events 0 and 1 than between events 1 and 2 as mea­
sured in the rocket frame.

a What is the physical basis for the “bad” be­
havior of this clock? Use the Lorentz transformation

mirror A

2 meters

light
pulse

mirror 6

EARTH FRAME ROCKET FRAME
EXERCISE L-2. heft: Horizontal light-pulse clock as observed in the Earth frame. Center: Spacetime diagram showing worldlines of mirrors 
A and B and the “uniformly ticking” light pulse as observed in the Earth frame. Right: Time lapses between sequential ticks ofthe light-pulse 
clock are not uniform as observed in the rocket frame.



EXERCISE L-4 LIMITS OF NEWTONIAN MECHANICS 1 1 3

equations to account for the uneven ticking of this 
clock in the rocket frame.

b Use some of the same events 0 through 4 to 
define a “good” clock that ticks evenly in both the 
laboratory frame and the rocket frame. From the 
spacetime diagrams, show qualitatively that your 
good clock “runs slow” as observed from the rocket 
frame —  as it must, since the clock is in motion with 
respect to the rocket frame.

C Explain why the clock of Figure 1 -3 in the text 
is a “good” clock.

L-3 the Galilean transformation
a Use everyday, nonrelativistic Newtonian ar­

guments to derive transformation equations between 
reference frames moving at low relative velocities. 
Show that the result is

{Newtonian: «  c) {1)

(Newtonian: «  c) (2)

where is time measured in seconds and is 
speed in conventional units (meters/second for exam­
ple). List the assumptions you make in your deriva­
tion.

b Convert equations (1) and (2) to measure time 
t in meters and unitless measure of relative velocity, 
frei “  Non/'"- Show the tesults are:

x ' =  X —  t (Newtonian: v «  1) (3)

t ' —  t (Newtonian: V«  1) (4)

Do the new units make these equations correct at 
high relative velocity between frames?

C Use the first two terms in the binomial expan­
sion to find a low-velocity approximation for /  in the 
Lorentz transformation.

y-
1

(1 -

(1 -  v i y 1/2 1

Show that this expression differs from unity by less 
than one percent provided p is less than 1/7. A sports 
car can accelerate uniformly from rest to 60 miles/ 
hour (about 27 meters/second) in 7 seconds. 
Roughly how many days would it take for the sports 
car to reach y =  1/7 at the same constant accelera­
tion?

d Set 7 =  1 in the Lorentz transformation equa­
tions. Show that the resulting “low-velocity Lorentz 
transformation” is

x ' —  X — t (Lorentz: v «  1) (5)

t ' =  — v^^x y  t (Lorentz: v «  1) (6)

What is the difference between the time transfor­
mations for the “Newtonian low-velocity limit” of 
equation (4) and the “Lorentz low-velocity limit” of 
equation (6)? How can they both be correct? The term 

does not depend on any time lapse, but only on 
the separation x  of the event from the laboratory 
origin. This term is due to the difference of synchroni­
zation of clocks in the two frames.

e In each of the following cases a laboratory 
clock (measuring /) at a distance x  from the origin as 
measured in the laboratory frame is compared with a 
passing rocket clock (measuring / ) .  Say whether or 
not the time difference t — t ' =  v̂ ^̂ x can be detected 
using wristwatches (accuracy of 10~  ̂second =  3 X 
10  ̂ meters of light-travel time) and using modern 
electronic clocks (accuracy of 10“  ̂ second =  0.3 
meter of time).

(1) Sports car traveling at 100 kilometers/hour 
(roughly 30 meters/second) located 1000 
kilometers down the road from the origin as 
measured in the Earth frame.

(2) Moon probe traveling at 30,000 kilometers/ 
hour passing Moon, 3.8 X 10’ kilometers 
from the origin on Earth as measured in the 
Earth frame.

(3) Distance from origin on Earth at which space 
probe traveling at 30,000 kilometers/hour 
leads to detectable time difference between 
rocket wristwatch and adjacent Earth-linked 
latticework clock. Compare with Earth-Sun 
distance of 1.5 X 10“  meters.

f Summarize in a sentence or two the conditions 
under which the regular Galilean transformation 
equations (3) and (4) will lead to correct predictions.

L-4 limits off Newtonian 
mechanics

Use the particle speed =  1 /7  (Exercise L-3) as an 
approximate maximum limit for the validity of 
Newtonian mechanics. Determine whether or not 
Newtonian mechanics is adequate to analyze motion 
in each of the following cases, following the example.

Example: Satellite circling Earth at 30,000 
kilometers/hour =  18,000 miles/hour. Answer: 
Light moves at a speed =  (3 X 10’ kilometers/ 
second) X (3600 seconds/hour) =  1.08 X 10  ̂
kilometers/hour. Therefore the speed of the satellite 
in meters/metet is v — Nonv/'" ~  2.8 X 10~’. This
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is much less than =  1/7, so the Newtonian de­
scription of satellite motion is adequate.

a  Earth circling Sun at an orbital speed of 30 
kilometers/second.

b Electron circling a proton in the orbit of small­
est radius in a hydrogen atom. Discussion: The 
classical speed of the electron in the inner orbit of an 
atom of atomic number Z, where Z is the number of 
protons in the nucleus, is given, for low velocities, by 
the expression v =  Z / \ ^ l . For hydrogen, Z =  1.

c Electron in the inner orbit of the gold atom, for 
which Z =  79.

d  Electron after acceleration from rest through a 
volrage of 5000 volts in a black-and-white television 
picture tube. Discussion: We say that this electron 
has a kinetic energy of 5000 electron-volts. One elec­
tron-volt is equal to 1.6 X  10“ ^̂  joule. Try using the 
Newtonian expression for kinetic energy.

e Electron after acceleration from rest through a 
voltage of 25,000 volts in a color television picture 
tube.

f  A proton ot neutton moving with a kinetic 
energy of 10 MeV (million electron-volts) in a nu­
cleus.

PROBLEMS
L-5 Doppler shift
A sparkplug at rest in the rocket emits light with a 
frequency/'’ pulses or waves per second. W hat is the 
frequency / of this light as observed in the laboratory? 
Let this train of waves (or pulses) of light travel in the 
positive x-direction with speed c, so that in the course 
of one meter of light-travel time, f / c  of these pulses 
pass the origin of the laboratory frame. It is under­
stood that the zeroth or “fiducial’ ’ crest or pulse passes 
the origin at the zero of time— and that the origin of 
the rocket frame passes the origin of the laboratory 
frame at this same time.

a  Show that the x-coordinate of the «th pulse or 
wave crest is related to the time of observation t  (in 
meters) by the equation

n =  (//c)(r — x)

b The same argument, applied in the rocket 
frame, leads to the relation

n =  — x'}

Express this rocket formula in laboratory coordi­
nates X  and t  using the Lorentz transformation. 
Equate the resulting expression f o r / ' to the labora­

tory formula for /  in terms of x  and t to derive the 
simple formula for/in terms of f '  and , the relative
speed of laboratory and rocket frames.

(wave moves in 
positive x-direction]

e Now observe a wave moving along the nega­
tive x-direction from the same source at rest in the 
rocket frame. Show that the frequency of the wave 
obsetved in the laboratoty frame is

/ d F " ' " '+  '̂rel/
[wove moves in 

negative x-direction]

d Astronomers define the redsh ift z of light 
from a receding astronomical object by the formula

_fendt /obs
fobs

Here/nut is the frequency of the light measured in 
the frame in which the emitter is at rest and /^s the 
frequency observed in another frame in which the 
emitter moves directly away from the observet.

The most distant quasar reported as of 1991 has a 
tedshift z =  4.897. With what fraction of the speed 
of light is this quasar receding from us?
Reference: D. P. Schneider, M. Schmidt, and J. E. Gunn, Astronomi­
cal Journal, Volume 102, pages 8 3 7 -8 4 0  (1991).

L-6 transformation of angles
a  A meter stick lies at rest in the rocket frame 

and makes an angle (/)' with the x'-axis. Laboratory 
observers measure the x- andy-projections of the stick 
as it streaks past. W hat values do they measure for 
these projections, compared with the x '-  and ''-pro­
jections measuted by rocket observers? Therefore 
what angle (f) does the same meter stick make with 
the x-axis of the laboratory frame? What is the length 
of the “meter stick’’ as observed in the laboratory 
frame?

b Make the courageous assumption that the di­
rections of electric-field lines around a point charge 
transform in the same way as the directions of meter 
sticks that lie along these lines. (Electric field lines 
around a point charge are assumed to be infinite in 
length, so the length transformation of part a does not 
apply.) Draw qualitatively the electric-field lines due 
to an isolated positive point charge at rest in the rocket 
frame as observed in (1) the rocket frame and (2) the 
laboratory frame. What conclusions follow concern­
ing the time variation of electric forces on nearby 
charges at rest in the laboratory frame?
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L>7 transformation of y-velocity
A particle moves with uniform speed v'̂  =  ts.y'/ lS.t' 
along the;/'-axis of the rocket frame. Transform lS.y' 
and A /  to laboratory displacements A x , A y , and A /  
using the Lorentz transformation equations. Show 
that the x-component and the y-component of the 
velocity of this particle in the laboratory frame are 
given by the expressions

‘'rel

< ( 1

L-8 transformation of velocity 
direction

A particle moves with velocity v' in the x 'y ' plane of 
the rocket frame in a direction that makes an angle (f)' 
with the x'-axis. Find the angle (f) that the velocity 
vector of this particle makes with the x-axis of the 
laboratory frame. (Hint: Transform space and time 
displacements rather than velocities.) Why does this 
angle differ from that found in Exercise L-6 on trans­
formation of angles? Contrast the two results when 
the relative velocity between the rocket and labora­
tory frames is very great.

L-9 the headlight effect
A flash of light is emitted at an angle (f)' with respect 
to the x'-axis of the rocket frame.

a Show that the angle (f) the direction of motion 
of this flash makes with respect to the x-axis of the 
laboratory frame is given by the equation

cos (/) =
cos (/)' + rel

1 + (f)'

b Show that your answer to Exercise L-8 gives 
the same result when the velocity v ' is given the value 
unity.

c A particle at rest in the rocket ftame emits light 
uniformly in all directions. Consider the 50 percent of 
this light that goes into the forward hemisphere in the 
rocket frame. Show that in the labotatory frame this 
light is concentrated in a narrow forward cone of 
half-angle (f)g whose axis lies along the direction of 
motion of the particle. The half-angle (j)„ is the solu­
tion to the following equation:

cos (/)„ =

This result is called the headligh t effect.

L-10 the tilted meter stick
Note: This exercise uses the results of Exercise L-7.

A meter stick lying parallel to the x-axis moves in 
the y-direction in the laboratory frame with speed 
as shown in the figure (left).

a  In the rocket frame the stick is tilted upw ard in 
the positive x'-direction as shown in the figure 
(right). Explain why this is, first without using equa­
tions.

b Let the center of the meter stick pass the point 
X =  y =  x ' =  y ' =  0 at time t =  t '  =  0. Calculate 
the angle <f>' at which the meter stick is inclined to the 
x'-axis as observed in the rocket frame. Discussion: 
Where and when does the right end of the meter stick 
cross the x-axis as observed in the laboratory frame? 
Where and when does this event of right-end crossing 
occur as measured in the rocket frame? What is the 
direction and magnitude of the velocity of the meter 
stick in the rocket frame (Exercise L-7)? Therefore 
where is the right end of the meter stick at / '  =  0 , 
when the center is at the origin? Therefore . . .

EXERCISE L-10. Left: Meter stick moving transverse to its length as observed in the laboratory frame. 
Right: Meter stick as observed in rocket frame.
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L-11 the rising manhole
Note: This exercise uses the results of Exercise L-10.

A meter stick lies along the x-axis of the laboratory 
frame and approaches the origin with velocity . A 
very thin plate parallel to the xz laboratory plane 
moves upward in the y-direction with speed Vy as 
shown in the figure. The plate has a circular hole with 
a diameter of one meter centered on the y-axis. The 
center of the meter stick arrives at the laboratory 
origin at the same time in the laboratory frame as the 
rising plate arrives at the plane y =  0. Since the meter 
stick is Lorentz-contracted in the laboratory frame it 
will easily pass through the hole in the rising plate. 
Therefore there will be no collision between meter 
stick and plate as each continues its motion. However, 
someone who objects to this conclusion can make the 
following argument: “In the rocket frame in which 
the meter stick is at rest the meter stick is not con­
tracted, while in this frame the hole in the plate is 
Lorentz-contracted. Hence the full-length meter stick 
cannot possibly pass through the contracted hole in 
the plate. Therefore there must be a collision between 
the meter stick and the plate.’’ Resolve this paradox 
using your answer to Exercise L-10. Answer unequiv­
ocally the question, Will there be a collision between 
the meter stick and the plate?
Reference: R. Shaw, American Journal o f Physics, Volume 30, page 
72 (1962).

L-12 paradox of the
skateboard and the grid

A girl on a skateboard moves very fast, so fast that the 
relativistic length contraction makes the skateboard 
very short. On the sidewalk she has to pass over a grid. 
A man standing at the grid fully expects the fast short 
skateboard to fall through the holes in the grid. Y et to 
the fast girl her skateboard has its usual length and it 
is the grid that has the relativistic contraction. To her

the holes in the grid are much narrower than to the 
stationary man, and she certainly does not expect her 
skateboard to fall through them. Which person is 
correct? The answer hinges on the relativity of rigidity.

Idealize the problem as a one-meter rod sliding 
lengthwise over a flat table. In its path is a hole one 
meter wide. If the Lorentz contraction factor is ten, 
then in the table (laboratory) frame the rod is 10 
centimeters long and will easily drop into the one- 
meter-wide hole. Assume that in the laboratory frame 
the meter stick moves fast enough so that it remains 
essentially horizontal as it descends into the hole (no 
“ tipping’’ in the laboratory frame). Write an equa­
tion in the laboratory frame for the motion of the 
bottom edge of the meter stick assuming that t =  
/ '  =  0 at the instant that the back end of the meter 
stick leaves the edge of the hole. Eor small vertical 
velocities the rod will fall with the usual acceleration 
g. Note that in the laboratory frame we have assumed 
that every point along the length of the meter stick 
begins to fall simultaneously.

In the meter stick (rocket) frame the rod is one 
meter long whereas the hole is Lorentz-contracted to a 
10-centimeter width so that the rod cannot possibly 
fit into the hole. Moreover, in the rocket frame differ­
ent parts along the length of the meter stick begin to 
drop ar different times, due to the relativity of simul­
taneity. Transform rhe laboratory equations into the 
rocket frame. Show that the front and back of the rod 
will begin to descend at different times in this frame. 
The rod will “droop” over the edge of the hole in the 
rocket frame — that is, it will not be rigid. Will the 
rod ultimately descend into the hole in both frames? Is 
the rod really rigid or nonrigid during the experiment? 
Is it possible to derive any physical characteristics of 
the rod (for example its flexibility or compressibility) 
from the description of its motion provided by rela­
tivity?
Reference: W . Rindler, American Journal o f Physics, Volume 29, 
page 3 6 5 -3 6 6  (1961).

EXERCISE L-11. W ill  the “meter s t ic k ” pass 
through the “one-meter~diameter" hole w ith ­
out collision?
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L-13 paradox off the identically 
accelerated twins

N ote: This exercise uses spacetime diagrams, intro­
duced in Chapter 5.

Two fraternal twins, Dick and Jane, own identical 
spaceships each containing the same amount of fuel. 
Jane’s ship is initially positioned a distance to the right 
of Dick’s in the Earth frame. On their twentieth 
birthday they blast off at the same instant in the Earth 
frame and undergo identical accelerations to the right 
as measured by Mom and Dad, who remain at home 
on Earth. Mom and Dad further observe that the 
twins run out of fuel at the same time and move 
thereafter at the same speed v. Mom and Dad also 
measure the distance between Dick and Jane to be the 
same at the end of the trip as at the beginning.

Dick and Jane compare the ships’ logs of their 
accelerations and find the entries to be identical. 
However when both have ceased accelerating, Dick 
and Jane, in their new rest frame, discover that Jane is 
older than Dick! How can this be, since they have an 
identical history of accelerations?

a  Analyze a simpler trip, in which each spaceship 
increases speed not continuously but by impulses, as 
shown in the first spacetime diagram and the event 
table. How far apart are Dick and Jane at the begin­
ning of their trip, as observed in the Earth frame? 
How far apart are they at the end of their accelera­
tions? What is the final speed v (not the average 
speed) of the two spaceships? How much does each 
astronaut age along the worldline shown in the dia­
gram? (The answer is not the Earth time of 12 years.)

b The second spacetime diagram shows the two 
worldlines as recorded in a rocket frame moving with 
the final velocity of the two astronauts. Copy the 
figure. On your copy extend the worldlines of Dick 
and Jane after each has ceased accelerating. Label your 
figure to show that Jane ceased accelerating before 
Dick as observed in this frame. Will Dick age the 
same between events 0 and 3 in this frame as he aged 
in the Earth frame? Will Jane age the same between 
events 4 and 7 in this frame as she aged in the Earth 
frame?

c Now use the Lorentz transformation to find 
the space and time coordinates of one or two critical 
events in this final rest frame of the twins in order to 
answer the following questions

(1) How many years earlier than Dick did Jane 
cease accelerating?

(2) W hat is Dick’s age at event 3? (not the rocket 
time t '  oi this event!)

(3) What is Jane’s age at event 7?
(4) What is Jane’s age at the same time (in this 

frame) as event 3?
(5) What are the ages of Dick and Jane 20 years 

after event 3 , assuming that neither moves 
again with respect to this frame?

( 6) How far apart in space are Dick and Jane when 
both have ceased accelerating?

(7) Compare this separation with their initial (and 
final!) separation measured by Mom and Dad 
in the Earth frame.

d Extend your results to the general case in which 
Mom and Dad on Earth observe a period of identical 
continuous accelerations of the two twins.

(1) At the two start-acceleration events (the two 
events at which the twins start their rockets), 
the twins are the same age as observed in the 
Earth frame. Are rhey the same age at these 
events as observed in every rocket frame?

(2) At the two cease-acceleration events (the two 
events at which the rockets run out of fuel), are 
the twins the same age as observed in the Earth 
frame? Are they the same age at these events as 
observed in every rocket frame?

(3) The two cease-acceleration events are simulta­
neous in the Earth frame. Are they simulta­
neous as observed in every rocket frame? (No!) 
Whose cease-acceleration event occurs first as 
observed in the final frame in which both twins 
come to rest? (Recall the Train Paradox, Sec­
tion 3.4.)

(4) “ When Dick ceases accelerating, Jane is older 
than Dick.” Is this statement true according to 
the astronauts in their final rest frame? Is the 
statement true according to Mom and Dad in 
the Earth frame?

(5) Criticize the lack of clarity (swindle?) of the 
word when in the statement of the problem: 
‘‘However when both have ceased accelerat­
ing, Dick and Jane, in their new rest frame, 
discover that Jane is older than Dick!”

e Suppose that Dick and J ane both accelerate to 
the left, so that Dick is in front of Jane, but their 
history is otherwise the same. Describe the outcome of 
this trip and compare it with the outcome of the 
original trip.

f  Suppose that Dick and J ane both accelerate in 
a direction perpendicular to the direction of their 
separation. Describe the outcome of this trip and 
compare it with the outcome of the original trip.
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Earth Frame Observations

Event x-position Time
number (light years) (years)

0 0 0
1 1 4
2 3 8
3 6 12
4 12 0
5 13 4
6 15 8
7 18 12

ROCKET FRAME
EXERCISE L-13. Top: Worldlines of Dick and Jane as observed in the Earth frame of Mom and Dad. 
Bottom: Worldlines of Dick and Jane as observed in the “final" rocket frame in which both Dick and Jane 
come to rest after burnout.

Discussion: Einstein postulated that physics in a 
uniform gravitational field is, locally and for small 
particle speeds, the same as physics in an accelerated 
frame of reference. In this exercise we have found that 
two accelerated clocks separated along the direction of 
acceleration do not remain in synchronism as observed 
simultaneously in their common frame. Rather, the 
forward clock reads a later time (“runs faster”) than 
the rearward clock as so observed. Conclusion from 
Einstein’s postulate: Two clocks one above the other

in a uniform gravitational field do not remain in 
synchronism; rather the higher clock reads a later time 
(“runs faster”) than the lower clock. General relativ­
ity also predicts this result, and experiment verifies it. 
(Read about the patrol plane experiment in Section 
4.10.)

Reference: S. P. Boughn, American Journal o f Physics, Volume 57, 
pages 7 9 1 -7 9 3  (September 1989). Reference to general relativity 
result: Wolfgang Rindler, Essential Relativity (Springer, New York,
1977), pages 17 and 117.
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L-14 how do rods Lorenlz- 
contracl?

Note: Calculus is used in the solution to this exercise; 
so is the formula for Lorentz contracrion from Section 
5,8.

Laboratory observers measure rhe length of a mov­
ing rod lying along its direction of motion in the 
laboratory frame. Then the rod speeds up a little. 
Again laboratory observers measure its length, which 
they find to be a little shorter than before. They call 
this shortening of length Lorentz contraction. How 
did this shortening of length come about.^ As happens 
so often in relativity, the answer lies in the relativity of 
simultaneity.

First, how much shortening takes place when the 
rod changes from speed v to speed v +  dv} Let be 
the proper length of the rod when measured at rest. At 
speed V its laboratory-measured length L will be 
shorter than this by the Lorentz contraction factor 
(Section 5.8):

L =  (l

a Using calculus, show that when the rod speeds 
up from y to a slightly greater speed v +  dv, the 
change in length dL is given by the expression

dL =  -
L^vdv

(1 -  t̂ 2)l/2

The negative sign means that the change is a shorten­
ing of the rod. We want to explain this change in 
length.

How is the rod to be accelerated from v to v  dv̂ . 
Fire a rocket attached to the rear of the rod? No, Why 
not? Because the rocket pushes only against the rear of 
the rod; this push is transmitted along the rod to the 
front at the speed of a compression wave — very slow! 
We want the front and back to change speed “at the 
same time” (exact meaning of this phrase to be deter­
mined later). How can this be done? Only by 
prearrangement! Saw the rod into a thousand equal 
pieces and tap each piece in the forward direction with 
a mallet “at exactly 12 noon” as read off a set of 
synchronized clocks. To simplify things for now, set 
aside all but the front and back pieces of the rod. Now 
tap the front and back pieces ‘ ‘ at the same time. ’ ’ The 
change in length of the rod dL is then the change in 
distance between these two pieces as a result of the 
tapping. So much for how ro accelerare the “rod.”

Now the central question: What does it mean to 
tap the front and back pieces of the rod “at the same 
time”? To answer rhis question, ask another: What is 
our final goal? Answer: To account for the Lorentz

contraction of a fast-moving rod of proper length L„. 
More: We want a careful inspecror riding on the 
fast-moving rod to certify that it has the same proper 
length L(, as it did when it was at rest in the laboratory 
frame. To achieve rhis goal, the inspector insists that 
the pair of accelerating taps be applied to the front 
and back rod pieces at the same time in the current rest 
frame of the rod. Otherwise the distance between these 
pieces would not remain rhe same in the frame of the 
rod; the rod would change proper length. [Notice that 
in Exercise L-13 the taps occur at the same time in the 
laboratory (Earth) frame. This leads to results differ­
ent from those of the present exercise.}

b You are the inspector riding along with the 
front and back pieces of the rod. Consider the two 
events of tapping the front and back pieces. How far 
apart Ax' are these events along the x-axis in your 
(rocket) frame? How far apart A /' in time are these 
events in your frame? Predict how far apart in time Ar 
these events are as measured in the laboratory frame. 
Use the Lorentz transformation equation (L-10):

b it =  V yAx' +  y l \ t '

The relative velocity in equation (L-10) is just v, 
the current speed of the rod. In the laboratory frame is 
the tap on the rear piece earlier or later than the tap on 
the front piece?

Your answer to part b predicts how much earlier 
the laboratory observer measures the tap to occur on 
the back piece than on the front piece of the rod. Let 
the tap increase the speed of the back end by dv as 
measured in the laboratory frame. Then during labo­
ratory time Ar the back end is moving at a speed dv 
faster than the front end. This relative motion will 
shorten the distance between the back and front ends. 
After time interval At the front end receives the iden­
tical tap, also speeds up by dv, and once again moves 
at the same speed as the back end.

C Show that the shortening dL predicted by this 
analysis is

dL =  ~dvlS.t — —ybsx'vdv =  —vjL^dv 
Ljjdv

(1 - r ; 2)i/2

which is identical to the result of part a, which we 
wanted to explain. QED.

d Now start with the front and back pieces of the 
rod at rest in the laboratory frame and a distance L^ 
apart. Tap them repeatedly and identically. As they 
speed up, be sure these taps take place simultaneously 
in the rocket frame in which the two ends are currently 
at rest. (This requires you, the ride-along inspector, to



1 2 0  EXERCISE L-15 THE PLACE WHERE BOTH AGREE

resynchronize your rod-rest-frame clocks after each set 
of front-and-back taps.) Make a logically rigorous 
argument that after many taps, when the rod is mov­
ing at high speed relative to the laboratory, the length 
of the rod measured in the laboratory can be reckoned 
using the first equation given in this exercise.

e Now, by stages, put the rod back together. 
The full thousand pieces of the rod, lined up but not 
touching, are all tapped identically and at the same 
time in the current rest frame of the rod. One set of 
taps increases the rod’s speed from p top -h dp in the 
laboratory frame. Describe the time sequence of these 
thousand taps as observed in the laboratory frame. If 
you have studied Chapter 6 or the equivalent, answer 
the following questions: What kind of interval — 
timelike, lightlike, or spacelike— separates any pair 
of the thousand taps in this set? Can this pair of taps 
be connected by a light flash? by a compression wave 
moving along the rod when the pieces are glued back 
together? Regarding the “logic of acceleration,” is 
there any reason why we should not glue these pieces 
back together? Done!

f  During the acceleration process is the reglued 
rod rigid—  unchanging in dimensions —  as observed 
in the rod frame? As observed in the laboratory frame? 
Is the rigidity property of an object an invariant, the 
same for all observers in uniform relative motion? 
Show how an ideal rigid rod could be used to transmit 
signals instantaneously from one place to another. 
What do you conclude about the idea of a “rigid 
body” when applied to high-speed phenomena?
Reference: Edwin F. Taylor and A. P. French, American Journal of 
Physics, Volume 51, pages 889-893, especially the Appendix 
(1983).

L-15 the place where both agree
At any instant there is just one plane in which both the 
laboratory and the rocket clocks agree.

a By a symmetry argument, show that this plane 
lies perpendicular to the direction of relative motion. 
Using the Lorentz transformation equations, show 
that the velocity of this plane in the laboratory frame 
is equal to

=  —  [1 -  (1 -

b Does the expression for p,=,> seem strange? 
From our everyday experience we might expect that 
by symmetry the “plane of equal time” would move 
in the laboratory at half the speed of the rocket. Verify 
that indeed this is correct for the low relative velocities 
of our everyday experience. Use the first two terms of

the binomial expansion

(1 +  z)” ~  1 +  «z for |z| «  1

to show that for low relative velocity, p,=,' p^ /2 .
c W hat isp,=,’ for the extreme relativistic case in 

which f'rei 1? Show that in this case is com­
pletely different from ^rel/2.

d Suppose we want to go from the laboratory 
frame to the rocket frame in two equal velocity jumps. 
Try a first jump to the plane of equal laboratory and 
rocket times. Now symmetry does work: Viewed 
from this plane the laboratory and rocket frames 
move apart with equal and opposite velocities, whose 
magnitude is given by the equation in part a. A 
second and equal velocity jump should then carry us 
to the rocket frame at speed with respect to the 
laboratory. Verify this directly by using the Law of 
Addition of Velocities (Section L.7) to show that

P r . 1  —

P ,= ,' +  P ,= ,'

1 +  P ,= ,'P ,= ,'

L-16 Fizeau experiment
Light moves more slowly through a transparent ma­
terial medium than through a vacuum. Let t'medium 
represent the reduced speed of light measured in the 
frame of the medium. Idealize to a case in which this 
reduced velocity is independent of the wavelength of 
the light. Place the medium at rest in a rocket moving 
at velocity p„ ,̂ to the right relative to the laboratory 
frame, and let light travel through the medium, also 
to the right. Use the Law of Addition of Velocities 
(Section L.7) to find an expression for the velocity p of 
the light in the laboratory frame. Use the first two 
terms of the binomial expansion

(1 -f- z)” ~  1 -b «z for |z| «  1

to show that for small relative velocity between the 
rocket and laboratory frames, the velocity p of the 
light with respect to the laboratory frame is given 
approximately by the expression

P ^m edium ^  ^ rc lf f  ^m edium )

This expression has been tested by Fizeau using 
water flowing in opposite directions in the two arms of 
an interferometer similar (but not identical) to the 
interferometer used later by Michelson and Morley 
(Exercise 3-12).
Reference: H. Fizeau, Comptes rendus, Volume 33, pages 349-355 
(1851). A fascinating discussion (in French) of some central themes 
in relativity theory—delivered more than fifty years before Einstein’s 
first relativity paper.


